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Abstract: 
 
This paper deals with numerical approximations of electromagnetic phenomena, which 
described by Maxwell's equations,. A two time-level difference scheme (TTLD) is introduced 
for solving Maxwell’s equation as wave equation; this is to reduce the large computational 
and storage costs of Yee scheme. Convergence and stability conditions have been studied. 
The comparison with Yee scheme is presented. 
 

1- Introduction  
 
    Maxwell's equations have many important implications in the life of a modern person. The principles of 
electromagnetism have been deduced from experimental observations. These principles are faraday's law, 
Ampere's law and Gauss's laws for electric and magnetic fields. These equations had appeared throughout James 
Clerk Maxwell's 1861. Those equations describe the interrelationship between electric field, magnetic field, 
electric charge, and electric current, [5] and [13]. This alteration in Ampere's law provides that a changing 
electric flux produces a magnetic field, just as Faraday's law provides that a changing magnetic field produces an 
electric field. The relationships of electricity and magnetism are called Maxwell's equations, [10]. 
The exact solution of Maxwell's system is very complicated or even impossible; this is why numerical methods 
are generally applied. The first and still applied method is the Finite Difference Time Domain (FDTD) 
constructed by K. Yee in 1966. Despite the simplicity of the scheme, it requires large computational and storage 
costs, [1] and [3]. 
 
2- Maxwell's Equations 

 
Let Ω×T be the Cartesian product of a bound simply-connected domain Ω and a non- negative time interval T. 
Let Ω, have a smooth or a polygonal boundary Γ. Electromagnetic phenomenon in Ω×T can described by the 
differential equations 

t
BE
∂
∂

−=×∇                      In      T×Ω                (1) 

j
t
DH +
∂
∂

=×∇                 In      T×Ω                                     (2) 

With the linear material; constitutive relations 
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Coupled with Gauss's law 

0. =∇ B                                                                            (3) 
ρ=∇ D.                                                                          (4)  

Equation (1) and equation (2) are Faraday and Amper's laws of Maxwell's equations. E is the electric field, 
H is the magnetic field, J is the total electric current density, μ is the magnetic permeability, we assume that 
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the magnetic permeability does not depend on time and ∈ is the electric permittivity, in vacuum we 
have 00/1 ∈= μc . The electric permittivity is also assumed not depend on time, σ is the electric 
conductivity, its value is non-negative for dissipative structures [1], [3], [10], [11], [12] and [13]. Both E and 
H are vectors in three dimensions, and then equation (1) and equation (2) can be written as 
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Since the electric field and magnetic field travel perpendicular to one another, thus their dot product must be 
zero. The solution of Maxwell's equations means the computation of the field strengths using the material 
parameters and some initial and boundary conditions. For simplicity we suppose that there are no conductive 
currents and free charges in the computational domain, thus we must solve only the system consisting of 
equation (1) and equation (2) without electric conductive current density, [7]. The magnetic field well be 
constrained to two dimensional (x-y)-plane. The electric field is then constrained to the z direction. Hence 
equation (5) and equation (6) become  
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The above set of equations usually referred to as the transverse magnetic (TM) mode [10]. 
Most (FDTD) scheme solves the time-dependent Maxwell equations using algorithms 
based on Yee scheme. A limitation of Yee scheme techniques is that their stability is 
conditional, [7].         

 

 
3-Finite-Difference Time-Domain Method (FDTD) 
 

The time-dependent Maxwell's equations (in partial differential form) are discredited using central-
difference approximations to the space and time partial derivatives. The resulting finite-difference equations 
are solved in a leapfrog manner. The electric field vector components in a volume of space are solved at a 
given instant in time, then the magnetic field vector components in the same spatial volume are solved at the 
next instant in time; and the process is repeated over and over again until stop. [1], [3], [9], [10], [13], and 
[14]. 
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Two Time-Level Finite Difference Scheme (TTLD) 
 
    In this paper, Maxwell's equations are solved using a simple finite difference scheme without using 
leapfrog manner. The solution is computed as follows. 
 

1. Elimination of H (or E) in equation (1) and equation (2) to obtain the wave equation (This is to 
reduce the large computational and storage costs of Yee scheme) 

2. Determine a finite difference scheme which will be used to solve the reduced set of equations. 
3. Studying convergence, consistency and stability for the proposed scheme. 

4.1 The Wave Equation 
 

4. If we take the time derivative of Faraday and Ampere's in Maxwell's equation and assume that 
the material properties are time independent, we obtain 
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    This reduces to 
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Where ∈= μ/1c  is the speed of propagation for the electromagnetic wave.  In a similar manner, 
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by the same way 
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Now, equation (10) is used to find approximate solution for electric field in z  direction. Equations (11) and 
(12) are used together to find an approximate solution of the magnetic field. By using equation (10) we can 
find approximate solution of  at a new time if we know the values of  at the boundary, and and zE zE zE

t
Ez
∂
∂

 at the initial time. By using the central difference approximation in both side of equation (10), we 

may show that 
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Analysis study 
 

This section is concerned with the conditions that must be satisfied if the solution of the finite-difference 

equations is to be reasonably accurate approximation to the solution of the corresponding partial differential 

equation. 
4.2.1  The Stability of TTLD Scheme 

The vector solution 1+kE  of the finite difference equations at the time-level is related to the 

vectors solution 
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where C is a vector of known values, i=1,..,N-1, j=1,..,N-1 and   k=1,2,..,T. equation (14) can be written as 

                                                           (15) kkkk CEAEE +−= −+ 11

   Where A  is (N-1)²×(N-1)² blocktridiagonal matrix as is displayed. Each D and R  are (N-1)×(N-1)  matrix 
have the following form 
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Equation(13) can be written as 
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where I  is the unit matrix of order (N-1)², This technique has reduced a three-level difference equation to 
two-level one, [2] and [4]. 
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Equation (16) will be stable when each Eigen value of P has a modules ≤ 1. The matrix A has (N-1)² 
different eigenvalus. Also the matrix I has (N-1)² eigenvalus each equal 1. Hence the eigenvalues λ of P are 
the eigenvalus of the matrix 

⎥
⎦

⎤
⎢
⎣

⎡ −
01
1sλ  

 

Where sλ is the ths  Eigen value of A. The eigenvalus of A are given by the eigenvalus of matrices 
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We want to see under what condition, 1≤±λ , two possible cases have been considered. 
Case 1: 

If   then λ is complex, then  42 ≤sλ 0)cos1(1 ≤−−≤−
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Therefore TTLD scheme is stable for all 
2
10 ≤< r , then the time increment  must satisfy the condition 
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Case 2: 

     If   then λ is real 42 ≥sλ 12 >±λ , In this case the scheme is unstable 
 

4.2.2  Analytical treatment of consistency 
  
   The convergence of the solution of an approximating set of linear difference equations, (13), to the 
solution of  a linear partial differential equation (10), can be investigated directly by deriving a difference 
equation for the discretization error e.  
Denote the exact solution of the partial differential equation by  and the exact solution of the finite 

difference equation by . Then
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i.e., converges to the exact solution as Δt and h tends to zero. zE
 
 
 

 
4 Computational Cost Comparisons 

We consider a test  case with the following boundary and initial conditions: 
)4sin()3sin()0,,( yxyxEz ππ=  
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)5cos()4sin()3sin(),,1( tytyEz πππ=  

0),0,( =txEz  
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)5cos()4sin()3sin(),1,( txtxEz πππ=  
The exact solution in this case is: 

)5cos()4sin()3sin(),,( tyxtyxEz πππ=  

For the two schemes we choose uniform grid spacing with . The error in  
norm for the two schemes is measured at the same time. The comparison is shown in tables (1:4). The 
programs were written in MATHEMATICA  5.2 and run on IBM PC (160 MHZ). 

2, hthyx =Δ=Δ=Δ 2L

 
 

 
two time-level difference Scheme (TTLD) Yee Scheme (FDTD) 

k 
2errorMax  CPU-time 

50 .000499 29.06 Seconds 
100 .00202 57.95 
150 .00452 87.7 
200 .007932 116.5 
300 .0170 169.32  

k 
2errorMax  CPU-time 

50 .000573 73.06 Seconds 
100 .00210 147.2  
150 .00461 222.454 
200 .00803 289.17 
300 .0171 437.25  

Table(1) 

2errorMax  at  thk  levels h=1/80 ,Δt =h² 

)5cos()4sin()3sin( tyxEz πππ=  
 
 

 
Scheme 

2errorMax  CPU-time 

two time-level difference Scheme .02 15.2 Seconds  
Yee Scheme .02 31.1 Seconds 

Table(2) 

at thk time-level, k=300,h=1/20,   Δt=1/10000 
 

 
Scheme 2errorMax  CPU-time 

two time-level difference Scheme .01 56.2 Seconds  
Yee Scheme .01 127.1 Seconds 

Table(3) 

at thk time-level, k=300,h=1/40,   Δt=1/10000 
 

 
Scheme 2errorMax  CPU-time 

two time-level difference Scheme .007 217 Seconds  
Yee Scheme .007 488.7 Seconds 

Table(4) 

at thk time-level, k=300,h=1/80,   Δt=1/10000 
 

 
6 Conclusion 

The present study shows that the CPU time needed to achieve the same accuracy in Yee scheme is more 
than two times larger than required for TTLD scheme, this is due to the large computational and storage 
costs of Yee scheme. 
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