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ABSTRACT  
We use an Eulerian Vlasov code for the numerical solution of the fully relativistic one-dimensional (1D) Vlasov-
Maxwell equations, to study the generation of plasma wake fields by intense laser pulses. The very low noise 
level of the Vlasov code allows to study accurately the physics of the particles acceleration by the wake-field, in 
the very low density of the phase-space. 
 
 
1. INTRODUCTION  

Large amplitude wake fields can be produced by propagating ultrahigh power, short laser pulses in plasmas. 

When the laser power is high enough, the electron oscillation (quiver) velocity becomes relativistic, and large 

amplitude wake fields are generated which support acceleration gradients much greater than those obtained in 

conventional linear accelerators. In the laser wake-field accelerator concept, a correctly placed trailing electron 

bunch can be accelerated by the longitudinal electric field and focused by the transverse electric field of the 

wake plasma waves. Some important aspects of this problem and other nonlinear problems related to large 

amplitude laser-plasma interactions have been discussed using fluid quantities assumed to satisfy the cold 

relativistic fluid equations (see for instance [1,2], see also the recent review article in [3] ).  

In the present work, we study the problem of the laser wake-field acceleration by using an Eulerian Vlasov code 

for the numerical solution of the 1D relativistic Vlasov-Maxwell equations. A fully nonlinear 1D relativistic 

Vlasov-Maxwell model to study the self-consistent interaction of intense laser pulses with plasmas can be found, 

for instance, in [4,5]. A characteristic parameter of a high power laser beam is the normalized vector potential 

0
2/ acMAea e == ⊥⊥

ρρ
 , where ⊥A

ρ
 is the vector potential, e and Me are the electronic charge and mass 

respectively, and c the speed of light. We are interested in the regime 10 ≥a . The code we use applies a 

numerical scheme based on a two-dimensional advection technique, of second order accuracy in time-step, 

where the value of the distribution function is advanced in time by interpolating in two dimensions along the 

characteristics using a tensor product of cubic B-splines [6,7]. Eulerian Vlasov codes have been successfully 

applied in recent years to study several problems in plasma physics, especially problems associated with wave-

particle interaction (see the recent review article in [8]). Interest in Eulerian grid-based Vlasov solvers arise from 

the very low noise level associated with these codes, which allows accurate representation of the low density 

regions of the phase-space. Other numerical methods like particle in cell (PIC) codes can lead to phase-space 
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errors and unphysical numerical heating in the simulation. It was indeed reported in [9] that the results obtained 

by the PIC codes show a momentum spread inside the laser pulse which is excessively and unphysically large, 

and hence kinetic effects in the phase-space structure will be poorly approximated in the simulation. This is 

obviously an important deficiency, especially if the physics of interest is in the low density region of phase-space 

or in the high energy tail of the distribution function, as is the case in the present problem, since at high laser 

intensities this can lead to spurious trapping of erroneously large levels. However, since the early work in 

[10,11] which applied the second-order fractional step scheme for the solution of the Vlasov-Poisson system, the 

direct solution of the Vlasov equation as a partial differential equation in phase-space, which is used in the 

present work, has become an important method for the numerical solution of the Vlasov equation, especially due 

to its numerical stability and its very low noise level [8,12,13].  

 

2. THE RELEVANT EQUATIONS 

2.1 The 1D relativistic Vlasov-Maxwell model 

The general form of the Vlasov equation is written for the present problem in a 4D phase-space for the electron 

distribution function ),,,,( tpppxF zeyexee  and the ion distribution function ),,,,( tpppxF ziyixii  (one 

spatial dimension) as follows : 
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with ( ) 2/12
,

2
,

2
,

2
,, )(1 izeiyeixeieie pppm +++=γ                                                                                    (2) 

The upper sign in Eq.(1) is for electrons and the lower sign for ions, and subscripts e or i denote electrons or ions 

respectively. Time t is normalized to the inverse electron plasma frequency 1−
peω , length is normalized to 

1
0

−= pecl ω , velocity and momentum are normalized respectively to the velocity of light c and to cM e . In our 

normalized units 1=em  and 
i

e
i M

M
m = .  

We write the Hamiltonian of a particle in the electromagnetic field of the wave: 

         ϕγ μ)1(1
,

,
, −= ie

ie
ie m

H .                                                                                                         (3) 

where ϕ  is the scalar potential. Eq.(1) can be reduced to a two-dimensional phase-space Vlasov equation as 

follows. The canonical momentum iceP ,

ρ
 connected to the particle momentum iep ,

ρ
 by the relation 

apP ieice
ρ

μ
ρρ

,, = . cMAea e/
ρρ

=  is the normalized vector potential. From Eq.(3), we can write: 

        ( ( ) ) ϕμρρ
1)(11 2/12

,
2
,

,
, −±+= aPm

m
H iceie

ie
ie .                                    (4) 

Choosing the Coulomb gauge ( 0=adivρ ) , we have for our one dimensional problem 0=
∂
∂

x
ax  , hence 

0=xa . The vector potential ),( txaa ⊥=
ρρ

, and we also have the following relation along the longitudinal 

direction: 
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x
H

dt
dP ieicxe

∂
∂

−= ,,                                                                                                   (5) 

And since there is no transverse dependence : 

0,
, =−∇= ⊥

⊥
ie

iec H
dt

Pd
ρ

.                                                                    (6) 

This last equation means =⊥ iecP ,

ρ
const. We can choose this constant to be zero without loss of generality, 

which means that initially all particles at a given (x,t) have the same perpendicular momentum 

),(, txap ie ⊥±=
ρρ

. The Hamiltonian now is written: 

( ( ) ) ),(1),(11 2/122
,

2
,

2
,

,
, txtxampm

m
H ieixeie

ie
ie ϕμ−++= ⊥ .             (7) 

The 4D distribution function ),,,( ,,, tppxF ieixeie ⊥
ρ

 can now be reduced to a 2D distribution 

function ),,( ,, tpxf ixeie :  

)(),,(),,,( ,,,,,, ⊥⊥⊥ = aptpxftppxF ieixeieieixeie
ρ

μ
ρρ δ .                          (8) 

),,( ,, tpxf ixeie  verify the relation: 
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Which gives the following Vlasov equations for the electrons and the ions:: 
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where ( ) ( )( ) 2/12
,

2
,,, 1 ⊥++= ampm ieixeieieγ .  

              
x

Ex ∂
∂

−=
ϕ

       and            
t

aE
∂
∂

−= ⊥
⊥

ρρ
                                                                                (11)  

and Poisson’s equation is given by: 

        xixiixexee dppxfdppxf
x

),(),(2

2

∫∫ −=
∂
∂ ϕ

                                                                              (12)  

 

The transverse electromagnetic fields  , zy BE and  , yz BE for the circularly polarized wave obey Maxwell’s 

equations. With zy BEE ±=±  and yz BEF ±=± , we have: 

 yJE
xt

−=
∂
∂

±
∂
∂ ±)( .  ;         zJF

xt
−=

∂
∂

∂
∂ ±)( μ                                  (13) 

Which are integrated along their vacuum characteristic x=t. In our normalized units we have the following 

expressions for the normal current densities: 
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2.2  The numerical scheme 

The numerical scheme to advance Eq.(10) from time tn to tn+1 necessitates the knowledge of the electromagnetic 

field ±E  and ±F  at time tn+1/2 . This is done using a centered scheme where we integrate Eq.(13) exactly along 

the vacuum characteristics with tx Δ=Δ , to calculate 2/1+±nE  and 2/1+±nF  as follows: 

   ),2/(),(),( 2/12/1 nynn ttxtJtxEttxE Δ±Δ−=Δ± −
±

+
±                                         (15) 

with 
2

),(),(
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A similar equation can be written for 2/1+±nF . From Eq.(11) we also have 2/11 +
⊥⊥

+
⊥ Δ−= nnn Etaa

ρρρ
, from 

which we calculate 2/)( 12/1 nnn aaa ⊥
+

⊥
+

⊥ +=
ρρρ

. To calculate 2/1+n
xE , two methods have been used. A first 

method calculates n
xE  from n

ief ,  using Poisson’s equation, then we use a Taylor expansion:: 
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A second method to calculate 2/1+n
xE  is to use Ampère’s equation: x

x J
t

E
−=

∂
∂

, from which 

n
x

n
x

n
x tJEE Δ−= −+ 2/12/1 . Both methods gave the same results. ( We have used this second method in the 

results presented in section 3). Now given n
ief ,  at mesh points (we stress here that the subscript i denotes the ion 

distribution function), we calculate the new value 1
,
+n
ief  at mesh points from the relation (see [6-8] for details):  

        ;  )2-,2(),(
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1
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ie pxfpxf ΔΔ−=+ .                                    (17) 

ixe,Δ  and 
ixep ,

Δ  are calculated from the solution of the characteristics equations for Eq.(10), which are given 

by:  
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This calculation is effected as follows. We rewrite Eq.(17) in the vectorial form: 

        ;  )2()( ,,,,
1

, ieie
n
ieie

n
ie ff XXX Δ−=+ .                                                     (19) 
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ie,X  is the two dimensional vector ( )ixeie px ,, ,=X , and ),(
,,, ixepixeie ΔΔ=ΔX  is the two dimensional 

vector calculated from the implicit relation: 
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μV . Eq.(20) for ie,XΔ  is implicit and is solved 

iteratively: ),-(
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ie tt
XX XV  , where we start the iteration with ie,XΔ =0 for 

k=0. Usually two or three iterations are sufficient to get a good convergence. Then 1
,
+n
ief  is 

calculated from n
ief ,  in Eq.(17) by calculating the shifted value using two-dimensional 

interpolation in the two dimensional phase-space ),( ,ixepx . Similarly in Eq.(20) the shifted 

value was calculated at every iteration using a two-dimensional interpolation. These two-

dimensional interpolations are effected using a tensor product of cubic B-splines. The 

interpolation function is written in the form (see for details [6-8]): 
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For the calculation of the coefficients of the B-spline interpolation function ),( xpxs , the 

coefficients jkη are calculated from the values of the function at the grid points. The cubic B-

spline is defined as follows: 
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and 0)( =xB j  otherwise. h is the grid size. A similar definition holds for )( xk pB . 

 

3. RESULTS 

A generous number of grid points has been used in the simulation, to reproduce accurately the fine details which 

develop in phase-space. Nx =13000 is the number of grid points in space, for a length L = 50.444 . Npxe =1600 is 

the number of grid points in momentum for the electrons (pxmaxe =20, pxmine = -20). And for the ions Npxi =256 

(pxmaxi = 11, pxmini = -11.). We assume the frequency of the laser pulse 1/0 >>pωω  ( 10/0 =pωω  in the 
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present calculation), and the radiation envelope of the laser pulse changes on a time-scale which is long 

compared to the wave period. The spatial length of the envelope of the laser pulse is pp cL ωπλ /2== , much 

longer than the laser field wavelength λ . The model is similar to what has been presented in [1,2] for the fluid 

calculations, with the addition that in the present simulation we include a kinetic 1D relativistic Vlasov equation, 

and this is done for both electrons and ions. The evolution of the circularly polarized laser pulse is calculated 

self-consistently with Maxwell’s equations. The validity of the 1D model requires that the laser beam transverse 

dimension pr λ>> . 

The system is initially neutral (ne = ni ). The density in our normalized units is equal to 1 in the flat central part, 

with steep gradients and vacuum at both ends. The length of the vacuum region is 0.6 on each side, and the 

length of the transition region for the density from 0 to the flat value of 1 is 1.4. The electrons and ions have 

initially a Maxwellian distribution, with a temperature Te = 3keV for the electrons and Ti = 1keV for the ions. 

Results with lower temperature have also been obtained, but the results generally show little sensitivity for the 

temperature (see, for instance, [9,14]). The forward propagating circularly polarized laser pulse is penetrating 

from the vacuum at the left boundary, and propagate towards the right, and is written in our normalized units as 

)sin()/sin(2 00 ξπξ kLEE =+  and )cos()/sin(2 00 ξπξ kLEF =−  for 0≤≤− ξL  

(where tx −=ξ ), and E0 =0 otherwise. In vacuum we have for the electromagnetic (EM) wave 

1000 ==ωk (so in our normalized units the wavelength 628.0/2 0 == kπλ ). We have ten oscillations of 

the EM wave in the length L of the pulse envelope. We choose for the amplitude of the potential vector 10 =a , 

so that 10000 == aE ω . Since the envelope is slowly varying, we can write for the corresponding vector 

potential for π2≤t : )cos()/sin( 00 ξπξ kLaa y −= , =za  )sin()/sin( 00 ξπξ kLa . At π2=t , the 

entire envelope of length L of the forward propagating pulse has penetrated the domain , and is left to evolve 

self-consistently using Eqs.(13), and ⊥aρ  is calculated as indicated in the previous section.  

Fig.(1) shows the results for the laser pulse at t= 21.34 (dash curve), and Fig.(2) shows the results for the laser 

pulse at t= 50.444 after crossing the whole domain and reaching the right boundary. The laser pulse is followed 

by the wake field Ex (full curve). For the present set of parameters, the pulse has propagated through the plasma 

with little deformation. Fig.(3) shows at t= 21.34 the plot of the electron density (full curve), the ion density 

(dash curve) and again the axial wake field Ex (dash-dot curve). The pulse has been also added , with its 

amplitude divided by 10, for reference. The amplitude of Ex reaches since the beginning of the simulation a 

maximum peak of 0.6 just behind the pulse. This is close to the projected theoretical value for saturation for cold 

plasma [1,2] given by =maxxE  717.0/)1( 0
2
0 =− γγ , where 21 2

00 =+= aγ . The electron density 

(initially equal to 1 in the central region) is forming spikes surrounded by depleted regions, and the electric field 

Ex is rapidly changing sign at these spikes. Fig.(4) shows the equivalent results at t = 50.444, when the laser 

pulse has reached the right boundary. We see again that the peak electric field behind the pulse is still 0.6, and 

decays slowly as we move away from the pulse. This is in contrast with the results reported for a cold plasma 

[1,2] in the presence of a circularly polarized wave, which showed the electric field reaching a constant 

amplitude throughout the domain. This decay of the amplitude of the electric field agrees however with the 

results reported in [15] for the plasma wake-field accelerators, in the presence of a circularly polarized wave (in 
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the plasma wakefield accelerators, an electron bunch is used, instead of the laser pulse, to excite the wake field). 

Note the electric field Ex shows a steeper variation at the right of Fig.(4) compared to the profile at the left, and 

the period of Ex is slightly longer for the oscillation at the right of Fig.(4), compared to the period of oscillation 

of Ex at the left of Fig.(4). The density peak at the right in Fig.(4) (full curve) is reaching a value of 2.2, which is 

the same value of the equivalent peak in Fig.(3). So the front peaks seem to be following the laser pulse with 

little deformation. Note that the first thin peak density at the left in Fig.(3) results from the interaction of the 

pulse with the region of the sheath along the edge gradient. This peak varies rapidly and remained very localized 

in the sheath region at the edge, and did not interfere with the stable pattern which appears on the flat top of the 

density profile. Figs(5-8) show the phase-space for the electron distribution function at t =21.34, 38.88, 42.68 

and 50.444. Note there is a population which seems to detach itself from the bulk and follows the modulation of 

the bulk, and then accelerates when it reaches the position of a peak of the electric field. Fig.(9) shows the ion 

distribution function at t=50.444. Although the ion density profile (broken curve in Figs(3-4)) appears constant, 

Fig.(9) shows a modulation in the ion distribution function contour plot. For the relatively short run we have 

presented, it shows a modulation which has a tendency to increase as we move to the right. 

Behind the peak showing the first accelerated beam in Figs(5-8), there is a peak which did not show an 

accelerated beam, followed by others peaks where accelerated beams are present. We show in Figs.(10-11) the 

results obtained in another simulation done with the same parameters [16], but with L = 40.35 and different grid 

sizes Nx = 10000, Npxe =1100 (pxmaxe = 12, pxmine = -12, so the grid size in momentum space was slightly smaller 

for the results in Fig.(10)). We see in Fig.(10) particles accelerating at every peak behind the first accelerated 

beam (note the difference in the vertical scale pxe). The reason for this difference is for the moment not very clear 

and needs further investigation. The peak of the wake electric field behind the laser pulse in Fig.(11) is also also 

0.6, and the front density peak is also 2.2. We used the same plotter in both cases (emphasizing slightly the low 

density regions to make the accelerated beams more visible). We show in Fig.(12) a contour plot emphasizing 

the region of the tip the front beam in Fig.(7). The lower part in Fig.(12) is a 3D view of the top of the beam and 

the tail preceding it. It clearly shows at the front edge at the top a well localized beam structure with steep 

gradient. 

 

 

3. CONCLUSION 

The numerical method used in the present work consists of integrating along the characteristics in the two-

dimensional phase-space ( )ixeie px ,, ,=X  the relativistic Vlasov equation , using for interpolation a tensor 

product of cubic B-spline. Both electrons and ions have been included in the present simulation. The method we 

are using have shown in previous applications to be accurate, and to give accurate results in the low density 

regions of the phase-space [6-8]. This is important since numerical results obtained with PIC codes for this 

problem can lead to unphysical numerical heating in the simulation, and show a momentum spread inside the 

laser pulse which is unphysically large [9]. Hence the detailed kinetic effects will be poorly approximated in the 

PIC simulation. The results for the circularly polarized wave we have presented show the peak of the wake field 

immediately behind the laser pulse is in good agreement with the value calculated using the nonlinear relativistic 

cold plasma equations [1,2]. The results in Fig.(12) show the code capable of calculating with a very good 

resolution a very sharp and localized beam structure. 
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            Fig.1: Laser pulse (dash curve) and wake field Ex (full curve) at t=21.34 
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           Fig.2: Laser pulse (dash curve) and wake field Ex (full curve) at t=50.444 

 
 

                          
         Fig.3: Plot at t = 21.34 of the electron density (full curve), the ion density (dash  

                     curve), the axial wake field Ex (dash-dot curve). The laser pulse (amplitude    
                      divided by 10) has been also added for reference. 
 

 

                            
             Fig.4 Plot at t = 50.444 of the electron density (full curve), the ion density (dash  
                    curve), the axial wake field Ex (dash-dot curve). The laser pulse (amplitude    
                    divided by 10) has been also added for reference                       
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    Fig.5 Phase-space contour plot of the                  Fig.6 Phase-space contour plot of the   
   electron distribution function at   t = 21.34      the electron distribution function at t = 42.68  
 

 

 

         
   Fig.7 Phase-space contour plot of the             Fig.8 Phase-space contour plot of the   

     electron distribution function at t = 38.88         electron distribution function at t = 50.444  
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            Fig.9 Phase-space contour plot of the ion distribution function at t = 50.444    

 
 
 
 
 
 

                 
      Fig.10 Phase-space contour plot of the          Fig.11 Plot at t = 40.35 of the electron  

        electron distribution function at t = 40.35       density (full curve), the ion density (dash  
         (from the simulation presented in [16]).         curve), the axial wake field Ex (dash-dot    
                                                                                 curve). The laser pulse (amplitude divided  
                                                                                  by 10) has been also added for reference.  
                                                                                  (from the simulation  presented in [16]). 
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             Fig.12 Phase-space contour-plot of the electron distribution function presented in 
                         Fig.(6) at t=42.68, concentrating on the region of the front beam. Note the 
                         sharp beam structure appearing in the lower 3D plot of 
                         the front end of the beam. 
  
 

 
 
 
 
 
 
 

 
 
 

 




