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Abstract 
 
    In this paper, a parallel initial value algorithm is presented for quasilinear stationary shock problems 
with turning points exhibiting two-boundary layers or an internal layer. The method is based on 
obtaining two independent asymptotically equivalent first-order singularly-perturbed initial-value 
problems (SPIVPs) of the original problem. The error is estimated to be of orderε . The two SPIVPs 
are modified to obtain two boundary-layer correction problems. These non-stiff initial-value problems 
are solved simultaneously in parallel process using (RKV45) non-stiff code integrator. The obtained 
solutions are combined to approximate the solution of the original problem. Numerical experiments 
indicate the high accuracy and the efficiency of the method. Furthermore, the accuracy of numerical results 
improves as the small parameter ε  tends to zero 
 
Keywords: quasilinear singular perturbation problems; turning points problems; two boundary layer; internal layer;  Initial 
value methods, parallel algorithms. 
 
1. Introduction 
        
      Consider the quasilinear singular perturbation problem of the general form: 
 

, [ 1,1],( , ) ( , ) 0 x Iy p x y y q x yε ∈ = −′′ ′+ − =                                      (1.1.a) 

( 1) , and (1) .y A y A− +− = =                                                                     (1.1.b) 
 

whereε  is a small positive parameter (0 1),ε< =  A− and A+ are given constants, ( , ),p x y  ( , )q x y  

are assumed to be sufficiently continuously differentiable functions for x I∈ and y ∈ ، .  
Equation (1.1.a) can be rewritten in the conservative form 
 

( , ) ( , ) 0, [ 1,1],y f x y g x y xε ′′ ′+ − = ∈ −                                             (1.2) 
where                                         

( , ) ( , ) , ( , ) ( , ) ( , ).y xf x y p x y g x y q x y f x y= = +  
Assume that 

( , ) ( , ) ( , ) 0,   ,   .y x yg x y p x y q x y x I y= + ≥ ∈ ∈ ،                             (1.3) 
 

Condition (1.3) grantees that problem (1.1) has a unique solution y ε [1]. As 0ε → , y ε tends to a bounded 

variation function, u , which may be discontinuous at some point * ( 1,1)x ∈ − , corresponding to the location of 
a stationary shock [2]. For instance; u , defined in this way, is considered a solution of the reduced problem 
which results from (1.1) when ε  is formally set to zero. Recently, Osher [3], Abrahamsson and Osher [4], 
Lorenz [5], [6] and Niijima [7] treated problem (1.1) for the case of two boundary layers where 
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( , ) ( ).p x y p x≡  Vulanovic [8] discussed the case in which the coefficient of y ′  is written as ( , )x p x y  
with ( , ) 0p x y β≥ > , and ( , ) 0q x y ≡ . Lin [9] treated problem (1.1) at a turning point 0x = . Lorenz [10] 
treated problem (1.1) with an internal layer for the case of ( , ) ( )p x y p y≡ . Now, we want to achieve the 
following tasks. Firstly, deal with problem (1.1) in its general form with two-boundary layer or an internal layer 
and unknown turning point position. Secondly, reduce the order of the original problem to be solved as non-stiff 
first order initial value problems. Thirdly, extend parallel techniques to be applied on the general form of 
quasilinear problem (1.1) with turning points.  
 
To reduce the order of problem (1.1) in its general form, we should take into account that, there are many 
techniques reduced the order of problem (1.1) without turning point. For example, Gasparo and Macconi [11] 
and Y.N. Reddy, P. P. Chakravarthy [12] replaced (1.1) by two equivalent IVP in two cases ( , ) ( )p x y p x≡  
or ( , ) ( )p x y p y≡ .M.K.Kadabajoo, Y.N.Reddy [13] replaced (1.1) by an equivalent IVP in the 
case ( , ) ( )p x y p y≡ . Y.N. Reddy, P. Pramod Chakravarthy [14] treated the linear case by three equivalents 
IVP. Habib and El-Zahar [15] considered a semi-linear SPP which was integrated to obtain a scalar first-order 
initial-value problem. A variable step size technique using locally exact integration was implemented to solve 
the obtained first order (IVP). They later [16] treated the general case ( , ) ( , )p x y p x y≡ and showed that the 
obtained formula is general to those in [11, 12, 13, 15]. Recently [17] they obtained an improved initial value 
technique to that in [16] to obtain the exact equivalent (IVP), under certain conditions. Therefore, we will reduce 
the order of problem (1.1) using a special case of that technique presented in [16] for problem (1.1) without 
turning point. The method is based on obtaining two independent asymptotically equivalent first-order SPIVPs 
of the original problem with bounded error of orderε  .These SPIVPs are modified to obtain two independent 
boundary-layer correction problems. These non-stiff problems are solved simultaneously in parallel process 
using a non-stiff solver and the obtained solutions are combined to approximate the solution of the original 
problem. Numerical experiments indicate the high accuracy and the efficiency of the method. 
Furthermore, the accuracy of numerical results improves as the small parameter ε  tends to zero 
 
 
2. Turning point problems with two-boundary layer. 
 

Consider problem (1.1) with 
 

( )2( , ), ( , ) [ 1,1] ,p x y q x y C∈ − × ،                                                       (2.1.a) 

                           * * *( , ) 0, ( , ) 0, ( 1,1) , ,xp x y p x y x y= < ∈ − ∈ ،                               (2.1.b) 
*( , ) 0, for , ,p x y x x y≠ ≠ ∈ ،                                                             (2.1.c) 

( )0( , ) 0, on [ 1,1] .yq x y q≥ > − × ،                                                     (2.1.d) 
 

Thus, there is a turning point at *.x x=   Furthermore; problem (1.1) has a unique solution y services 
exponential boundary layer at each end point. The problem can be considered as two SPPs, each with a single 
boundary layer. Therefore, the solution y  consists of two smooth curves y and y+ −  that satisfy 
 

( , ) ( , ) 0, ,y p x y y q x y x Iε ± ± ± ± ± ± ± ±′′ ′+ − = ∈                                            (2.2.a) 

( 1) , (1) .y A y A− − + +− = =                                                                    (2.2.b) 
 

where * *[ 1, ], [ ,1], ( ), ( ).x I x x I x y y x y y x− − + + − − + +∈ = − ∈ = = =  
 

Problem (2.2) has a limited solution u± satisfying the reduced problem 
 

* *( , ) ( , ) 0, ( ,  ( )) 0p x u u q x u q x u x± ± ± ± ± ±′ − = =  ,                               (2.3) 

under condition (2.1) .u u− +=  
 
 
 
2.1. Derivation of the Approximate Equation  



Proceeding of 4th International Conference on Engineering Mathematics and Physics S-EM II  
     

 

 

73

 

 
Rewriting Eq (2.2.a) in the conservative form 

 

               ( , ) ( , ) 0, ,dy f x y g x y x I
dx

ε ± ± ± ± ± ± ±
±

′′ + − = ∈                               (2.4) 

where 
                     ( , ) ( , ) , ( , ) ( , ) ( , ).y xf x y p x y g x y q x y f x y

± ±± ± ± ± ± ± ± ± ± ±= = +                                           
(2.5)                                 

 
We can simply replace y ± by u±  in the ( , )g x y± ±  term of Eq (2.4) to obtain the approximate equation 

 

( , ) ( , ) 0,dy f x y g x u x I
dx

ε ± ± ± ± ± ± ±
±

′′ + − = ∈   ,                                         (2.6) 

 

Integrating Eq. (2.6) w.r.t x ± we get 

( , ) ( , ( ))
x

y f x y g s u s ds kε ±

± ± ±′ + = +∫  ,                                          (2.7) 

where k is the constant of integration.  
 
Substituting Eq. (2.3) and Eq. (2.5) into Eq. (2.7), we get 
 

                                       [ ]( , ) ( , ( )) ( , ( ))
x

sy f x y q s u s f s u s ds kε ±

± ± ±′ + = + +∫   

                                 
( )( , ( )) ( , ( ))

x

s
du sp y u s f s u s ds k

ds
±

±
⎡ ⎤= + +⎢ ⎥⎣ ⎦∫  

                                 
( )( , ( )) ( , ( ))

x

u s
du sf s u s f s u s ds k

ds
± ⎡ ⎤= + +⎢ ⎥⎣ ⎦∫   

or 
                                    ( , ) ( , ) .y f x y f x u kε ± ± ± ± ±′ + = +                                                                   (2.8) 

 
In order to determine ,k  we impose the condition that the reduced equation of (2.8) should satisfy the boundary 

condition * *( ) ( ) ( ) .y x u x O ε λ± ±= + =  i.e. 
           

                         * *( , ) ( , ( ))f x f x O kλ λ ε= − +   

                        ( )*( , ) ( ) , ( )yf x O k Oξ ε λ ξ λ ε= ≤ ≤ +   

                        ( )*( , ) ( ) .p x O kξ ε =             

Thus ( )k O ε=  
 
Upon integrating the first part of (2.5) and inserting it into Eq. (2.8) we obtain two independent SPIVPs  

                                    ( , ) , ( 1)
u

y

y p x s ds y Aε
−

−

− − − −′ = − =∫                                             (2.9.a) 

( , ) , (1)
u

y

y p x s ds y Aε
+

+

+ + + +′ = =∫                                             (2.9.b)  

or simply 
*( , ) ( , ), ( 1) , [ 1, ]y f x y f x u y A x xε − − − − − − −′ + = − = ∈ −  ,                         (2.10.a) 

*( , ) ( , ), (1) , [ ,1]y f x y f x u y A x xε + + + + + + +′ + = = ∈  ,                         (2.10.b) 
 

Equations (2.10) is first order equations, which are asymptotically equivalent to the second-order nonlinear 
singularly-perturbed two-point boundary-value problem (2.2). 
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2.2. Error estimate 
    
 From (2.1.a, b, c) it is easily proved that there exists a small positive numbers 0,δ β and 1β  independent of ε  
such that 

                      0( , ) 0, [ 1, ]p x y xβ δ≥ > ∈ − −                                             (2.11.a) 

1( , ) 0, [ ,1 ]p x y xβ δ δ≤ − < ∈ −                                             (2.11.b) 
 

Then for the solution y of Eq (2.2) we have the following bound 
 
LEMMA 1. Assume that (2.1) holds true. Then form [1] 
 

( ) ( ) ,            y x u x C xε δ− ≤ ≤  

(1 )/( ) ( ) ,      [ 1, ].m xy x u x C e xεε δ−⎡ ⎤− ≤ + ∈ ± ±⎢ ⎥⎣ ⎦
m  

where m is a positive constant independent of .ε  
 
 
LEMMA  2. Let condition (2.1) be satisfied. Then problem (2.2) can be reduced to the following    
        asymptotic initial-value problem  

( , ) ( ), ( 1)
u

y

y p x s ds O y Aε ε
±

±

± ± ±′ = + ± =∫  

 
Proof. Integrating Eq. (2.4) w.r.t x ±  results in 
 

( , ) ( , ( )) ( ) .
x

y f x y g s y s ds k G x kε ±

± ± ± ±′ + = + = +∫                                          (2.12) 
 

The solution of problem (2.12) is the same as that of (2.2) for x I± ±∈ .  In what follows we construct an 
approximate solution of (2.12). Let 
 

( ) ( , ( ) ) , ( ) ( , ( ) ) .
x x

G x g s y s ds G x g s u s ds± ±

± ±= =∫ ∫  
 

 Replacing ( ) ( )G x by G x± ±  in the above expression and from LEMMA1 we get the following bounded 
error equation. 
 

( )( ) ( ) ( , ( ) ) ( , ( ) ) .

( , ) ( ) ( )
1

x

x

y

G x G x g s y s g s u s ds

C x for x
g s y s u s ds

C for x

ε δ
ξ

ε δ

±

±

± ±

±

− = −

⎧ ≤⎪≤ − ≤ ⎨
≤ ≤⎪⎩

∫

∫
 

Where ξ± lies between ( )u x ± and ( )y x ±   
 
Equation (2.12) can be approximated by Eq (2.7) with ( )O ε , which results in  asymptotic first-order initial-
value problems (2.10). 
  
3. Interior shock problems 
   

        The following summarizes some results from [2,18, 19]. 
 Consider problem (1.1) with 
 

* *
*( , ) 0, ( , ) 0, , .yp x y q x y q x I y= ≥ > ∈ ∈ ،                                       (3.1) 
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The solution has a shock layer at *x x=  where * ( 1,1),x ∈ −  * *( )y y x= . The problem has a solution 

consisting of two smooth curves y and y+ − , which satisfy  
* * *( , ) ( , ) 0, ( ) ( ) .y p x y y q x y y x y x yε ± ± ± ± ± ± − +′′ ′+ − = = =                                  (3.2) 

 

The corresponding reduced problem has a discontinuous solution consisting of two smooth curves, u and u+ − , 
which satisfy: 

( , ) ( , ) 0, ( 1) , (1) .p x u u q x u u A u A± ± ± ± ± − − + +′ − = − = =                                              (3.3) 
 

Applying the proposed method to Eq (2.9) through Eq (3.2), we obtain two independent SPIVPs, which can be 
solved separately as follows.  
 

* *( , ) , ( )
u

y

y p x s ds y x yε
−

−

− − −′ = =∫  ,                                           (3.4.a) 

* *( , ) , ( )
u

y

y p x s ds y x yε
+

+

+ + +′ = =∫  ,                                          (3.4.b) 

or simply 
* * *( , ) ( , ), ( ) , [0, ]y f x y f x u y x y x xε − − − − − − −′ + = = ∈ ,                    (3.5.a) 

* * *( , ) ( , ), ( ) , [ ,1]y f x y f x u y x y x xε + + + + + + +′ + = = ∈ ,                      (3.5.b) 
 
 

To obtain the position of the turning point *,x  we proceed in the following way. 
 
Recalling the continuity conditions at the turning point *,x  * * * *( ) ( ) ( ) ( )y x y x and y x y x− + − +′ ′= = in 
Eq (3.4), to obtain 

*

*

( )
*

( )

( , ) 0
u x

u x

p x s ds
+

−

=∫  ,                                                        (3.6) 

 
4. Parallel initial value algorithm 
 
   The SPIVPs Eq.(2.10.a) and Eq.(2.10.b) or Eq. (3.5.a) and Eq.(3.5.b) could be rewritten as 
 

0 0( , ), ( )Y X Y Y X Yε ψ′ = =            
0

0 * *
0

1 (2.10)

(3.5)

A at X with Eq
Y

y at X x with Eq

=⎧⎪= ⎨
=⎪⎩

m m
                 (4.1) 

where X x ±≡  , Y y ±≡ , Y y ±′ ′≡  . 
 
Setting     ( ) ( ) ( ) ( ),Y X U X V Oτ ε= + + where ( )U X u±=  and ( )0 /X Xτ ε= −  in (4.1), we obtain 
the boundary layer corrected equation 
 

   0 0 0( , ( ), ( ) ( ))dV X U X V U X
d

ψ ετ ετ τ ετ
τ
= + + + +                                                                 (4.2) 

 

with the boundary condition             0(0) (0)U V Y+ =     
 
letting 0ε =  we have   

0 0 0 0 0 0( , ( ), ( ) ( )) ( ) ( )dV X U X V U X with V X Y U X
d

ψ τ
τ
= + = −                  (4.3) 
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 Notice that since the perturbation parameter ε  is not present in Eq. (4.3), any standard techniques for non-stiff 
problems could be used. We prefer (RKV56) code of Matlab to get the solution.  
In the view of practical experiments, Eq. (4.3) should be solved only over a bounded region containing the 
transition layer .i.e. from  0Xτ =  to outτ τ= , where ( ) 0outV τ ≈ . In our algorithm, the integration of 

process is stopped when 7( ) min (10 , )V τ ε−≤ .  
 
Note that. The Initial-value problem (4.3) is simple formula, so their analytical solutions can be obtained easily. 
This enables us from obtaining an asymptotic analytical solution for the nonlinear original problem. 
 
These details will be performed by the following algorithms 
 
For problems with two-boundary layer  
 
Algorithm1 
 
Step1. Set, 0 1X = −  , 0Y A−= , 0( ) ( 1)U X u= − , and integrate Eq. (4.3) using (RKV56) code in the 

forward direction and stop when    7( ) min (10 , )V τ ε−≤  

Step 2. set ( ) ( ),y U X V τ− = +  

Step 3. Set, 0 1X =  , 0Y A+= , 0( ) (1)U X u= ,and integrate Eq. (4.3) using (RKV56, Abtol= 810− ) code in 

the backward direction and stop when   7( ) min (10 , )V τ ε−≤  

Step 4. set ( ) ( ),y U X V τ+ = +  

Step 5. Combine the two solution y − and y + to obtain the solution overall the problem domain 
 
For problems with internal layer  
 
Algorithm2 
 
Step1. Set, *

0X x=  , *
0Y y= , *

0( ) ( )U X u x= ,and integrate Eq. (4.3) using (RKV56) code in the 

backward direction and stop when   7( ) min (10 , )V τ ε−≤  

Step 2. set ( ) ( ),y U X V τ− = +  

Step 3. Set, *
0X x=  , *

0Y y= , *
0( ) ( )U X u x= ,and integrate Eq. (4.3) using (RKV56) code in the 

forward direction and stop when  7( ) min (10 , )V τ ε−≤  

Step 4. set ( ) ( ),y U X V τ+ = +  

Step 5. Combine the two solution y − and y + to obtain the solution overall the problem domain 
 
In fact, the integration of the initial-value problems (2.10.a) and (2.10.b) or (3.5.a) and (3.5.b) are completely 
independent and can be performed simultaneously. 
 
Parallel algorithm. Two-Processor  
 
Task1. Perform Step 1 on processor P1 
Task2. Perform Step 3 on processor P2 
Task3. Perform Step 5 using the results of Step 2 and Step 4. 
 
Task 1 and Task 2 are simultaneous and require quite the same amount of work. The computational cost of Task 
3 depends on the number of output points in Task 1 and Task 2. 
 
5.  Numerical examples 

 
   In order to assess both the applicability and the accuracy of the parallel initial-value algorithm presented in this 
paper for singular perturbation problems, we applied it to a variety of singularly perturbed problems with turning 
point, as indicated in the following examples. 



Proceeding of 4th International Conference on Engineering Mathematics and Physics S-EM II  
     

 

 

77

 

 
Example 5.1 Consider the nonlinear singular-perturbation problem [9] given by 
 

2 2( 1) ( 1) 0 [ 1,1].y x y y y xyε ′′ ′− + + = ∈ −−                                            (5.1) 
 

with boundary conditions ( 1) 1 (1) 1.y and y− = =   
The asymptotic expansion solution is given by 
 

2

2

3 exp(( 1) / (2 ))( ) .
4 exp(( 1) / )

xy x
x

ε
ε

−
=

− −
 

 
The problem has a turning point at * 0x =  and *( ) 0y x = .The reduced problem solution is ( ) 0u x =  
The corresponding initial value problems are given by 
 

3( ) 0 , ( 1) 1,/ 3 [ 1, 0]y x y y y xε − − − − − −′ − + = − = ∈ −  
3( ) 0 , (1) 1,/ 3 [0,1]y x y y y xε + + + + + +′ − + = = ∈  

 
and the corresponding corrected boundary layer problems are given by 
 

3( ) 0 , (0) 1,/ 3 [ 1, 0]V V V xV − − − − −+ = =′ + ∈ −  
3( ) 0 , (0) 1,/ 3 [0,1]V V V xV + + + + −+ = =′ − ∈  

 
The parallel algorithm was applied to obtain the numerical results shown in Fig.1, Fig.2, Fig.3 and Table 1 

-1 -0.5 0 0.5 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

 
Fig.1.Shows the numerical solution of example 1, at 510ε −= over the region [ 1,1]x ∈ −  

 
Fig 1. Shows that the solution of the problem 1 is symmetric about the origin, and that is clear in Fig.2 and Fig3. 
The given exact solution and the boundary layer corrected problems (Recati Equations) confirm that. This 
indicates why the numerical error over the left region [ 1,0]x ∈ − Fig 1 is identical to that obtained over the 
right region [0,1]x ∈ Fig.2. 
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Fig.1. Error distribution of the obtained numerical solution of example 1, at 510ε −= over the region 

[ 1,0]x ∈ −  
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Fig.2. Error distribution of the obtained numerical solution of example 1, at 510ε −= over the region 

[0,1]x ∈  
 
 

Example 5.2 Consider the nonlinear singular perturbation problem [18] given by 
 

0 [0,1],y yy xyε ′′ ′+ = ∈−                                                   (5.2) 
                                                                     (0) (1)1/ 2 1.y and y= =−  
  
The problem has an approximate solution [18] for comparison 
 

[ ]1 1 tanh( ( 1/ 4) / 8 )
4

y u x ε+ + += − + − − ,          [ ]1 1 tanh(( 1/ 4) / 8 ) .
4

y u x ε− − −= + + −  
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The reduced problem solution is ( ) 1/ 2, ( ) .u x x u x x− − − + + += − =  Equation (3.6) is turned into a 

quadratic equation. Thus * 1/ 4x = and [ ]* (1/ 4) (1/ 4) / 2 0y u u− += + =  
The corresponding initial-value problem is given by 
 

( )220.5 0.5 , (1 / 4)1/ 2 0, [0,1/ 4]y y yx xε − − − − −′ + = =− ∈  

                                2 20.5 0.5 , (1 / 4) 0, [1/ 4,1]y y yx xε + + + + −′ + = = ∈  
 
and the corresponding corrected boundary layer problems are given by 
 

2 0.25 0 , (0) 0.250.5V V VV − − − −− = =′ + , 
2 0.25 0 , (0) 0.250.5V V VV + + + += = −′ + + . 

 
The numerical results are presented in the following figures and table1 

0.2494 0.2496 0.2498 0.25 0.2502 0.2504 0.2506
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x
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Fig.4.Shows the numerical solution of example 2, at 510ε −= over the layer region  
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Fig.5. Error distribution of the obtained numerical solution of example 2, at 510ε −= over the layer 

region  
 

Example 5.3 Consider the nonlinear singular perturbation problem given by 
 

3 0 [0,1],y yy xyε ′′ ′+ = ∈−                                                   (5.3) 
(0) (1)2 / 3 1/ 2.y and y= = −  

  
From Smith[20] and Whittman[21] . It is known that a shock, which occurs as the singular perturbation 
parameter ε decreases, causes the interior boundary layer 
 
The problem has an approximate solution  
 

*

*

*

*

4( )/5
*

4( )/5

4( )/5
*

4( )/5

2 8 ,
3 2 5 1

( )
1 8 ,

1 5 1

x x

x x

x x

x x

e x x
x e

y x
e x x

x e

ε

ε

ε

ε

−

−

− −

− −

⎧
− <⎪

− ⎡ ⎤+⎪⎪ ⎣ ⎦≅ ⎨
−⎪ − >⎪ + ⎡ ⎤+⎪ ⎣ ⎦⎩

 

 

The reduced problem solution is 
2 1( ) , ( )

3 2 1
u x u x

x x− − + +
− +

−
= =

− +
 .Equation (3.6) is turned into a 

quadratic equation. Thus * 1/ 4x = and [ ]* (1/ 4) (1/ 4) / 2 0y u u− += + =  
The corresponding initial-value problem is given by 
 

2
20.5 0.5 , (1 / 4)

2 0, [0,1/ 4]
3 2

y y y x
x

ε − − − −
−

′ + = =
⎛ ⎞

∈⎜ ⎟−⎝ ⎠
 

2
20.5 0.5 , (1 / 4)

1 0, [1/ 4,1]
1

y y y x
x

ε + + + −
+

′ + = =
⎛ ⎞−

∈⎜ ⎟+⎝ ⎠
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and the corresponding corrected boundary layer problems are given by 
 

2 0.8 0 , (0) 0.80.5V V VV − − − −− = =′ + , 
2 0.8 0 , (0) 0.80.5V V VV + + + += = −′ + + . 

 
The numerical results are presented in table1 
 

Test 
Problem 

210ε −=  310ε −=  410ε −=  510ε −=  610ε −=  710ε −=  

5.1 2.3793e-003 2.3582e-004 2.3568e-005 2.3617e-006 2.4128e-007 3.0000e-008 

5.2 9.7828e-008 9.7828e-008 9.7828e-008 9.7828e-008 9.7828e-008 9.7828e-008 

5.3 8.4296e-008 8.4296e-008 8.4296e-008 8.4296e-008 8.4296e-008 8.4296e-008 

Table1. Maximum numerical solution error, at different values of ε  for each test problem over the 
entire domain [0,1]x ∈  

 
 

The numerical results in table1 indicate how efficient is the algorithm in approximating the exact solution. 
Moreover, the numerical results confirm that as the small parameter ε  tends to zero the error involved in the 
equivalent (IVPs) decreases and the approximate solution obtained improves in accuracy. In fact the analytical 
solution of the obtained equivalent (IVPs) of example 2 and example 3 are exactly the given problem solutions. 
Therefore, the numerical solver (RKV56) reaches its maximum accuracy regardless the value of the perturbation 
parameterε . 

 
6. Conclusions 
      
    A parallel initial value algorithm is presented for quasilinear stationary shock problems with turning 
points exhibiting two boundary layers or an internal layer and unknown turning point position. The 
original SPP is reduced to two equivalent SPIVPs and the error is estimated to be of orderε .Then, the 
two SPIVPs are modified to obtain two boundary-layer correction problems which are solved 
simultaneously in parallel algorithm using the non-stiff integrator (RKV56). The obtained solutions 
are combined to approximate the solution of the original problem overall the entire domain. The 
numerical results compare very well with the available exact solutions. Furthermore, the accuracy of numerical 
results improves as the small parameter ε  tends to zero.  
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