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Abstract 

 
 A well known linear programming model and its equivalent model are introduced as a 
handling type of Fuzzy optimal problem. Linear programming (LP) with Crisp objective 
function and crisp constraints is modified and presented to be Fuzzy linear programming 
(FLP) with Fuzzy objective function and Fuzzy constraints (Zimmermann 1983, Wemers 
1984). 

For each value ri of the objective function r = cTx, ro < ri < r1, the membership 
rC

~μ

 of the 

constraints obtained by the min-max method and the membership 
rG

~μ

of the objective 

function are to be found. The Fuzzy set { ri, 
rG

~μ

 .  
rC

~μ

 } implies the optimal value ri which 

satisfies the equality approach 
rG

~μ

= 
rC

~μ

 , or the product approach : i
max

{
rG

~μ

. 
rC

~μ

}. 

 

Key words: 

 Fuzzy optimization, Min-max, membership function, fuzzy decision making, fuzzy linear 
programming. 

{1} – Introduction: 

 The classical model of linear programming can be stated as :  

Maximize r (x) = cTx 

Such that A x < b      ……….                   .…. (1) 

  x > o 

With C, x € ℜ n, b € ℜ m, A € ℜ m×n 



Proceeding of 4th International Conference on Engineering Mathematics and Physics S-EM III 111 
 

123
Before developing a specific model of linear programming in a fuzzy environment, we 

must take into consideration that fuzzy linear programming is not a uniquely defined type of 

model, many variations are possible, depending on the assumptions or features of the real 

situation to be modeled. 

A first basic model for fuzzy linear programming (FLP) can be obtained from (1) by 

establishing an aspiration level Z for the value of the objective function to be achieved and by 

molding each constraint as a fuzzy set. We get a fuzzy LP model as follows: 

For a fuzzy set to represent a crisp constraint Aix < bi, an interval Pi is to be introduced 

in such a manner that :  

Aix < bi+ Pi-α i Pi , o <  α i <1 …………………………. (2) 

 Where Pi are chosen constants of admissible violations of the constraints and the 

objective function (Zimmermann, 1976) 

Then :  

α i = (bi+  Pi- Ai x) / Pi …………………………………………          …. (3) 

Where α i is interpretted as the degree to which x fulfills the Fuzzy inequality A i x < 

bi (Bellman – Zadeh, Zimermann)  

The membership function α i of the fuzzy constraint Aix < bi is: 

 α i = 1 - 
i

ii

p
bxA −   …………………………………………………         . (4) 

If α i = 1 we get the fuzzy region ~
oR and  

If α i = o we get the fuzzy region ~
1R  

  For the objective function r = cTx, let  r = ro be the maximum value of the objective 

function on the fuzzy region 
~
R o and r = r1 be the max. value of the objective function on 

~
R 1. 

Then the optimal. value of the objective function r = cTx satisfies ro < r < r1, the membership 

function μ 
G
~  of the objective function (Wemers 1984, Zimmermann 1987) is defined as :  

 μ 
G
~   = 

o

o

rr
rr

−
−

1

 …………………………………………...…….     ……. (5) 

To find the optimum of the objective function r = cTx, we put:  
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μ
c
~

r

=    
T

min   {  μ
c
~

r

 ;  i  = 1, … , m} ……………………..……  …. (6) 

And we find the point of intersection of (5) and (6) , i.e,. 

μ
G
~

r

 =    μ
c
~

r

       ………………………………………………        .  (7) 

{ 2. A well known LP model Under equality approach: 

Let us consider the LP model: 

Maximize r =  2x1 + x2 

 Such that  x1 < 3 

  x1 + x2 < 4    …………………… (8) 

  5x1 + x2 < 3 

  x1 , x2 > 0 

Taking the P intervals to be P1 = 6 , P2 = 4 , P3 = 2 

We get the parametric linear program: 

Maximize r = 2x1 + x2 

Such that  x1 < 9 - 6α  

  x1 + x2 < 8 - 4α    ……………………. (9) 

  5x1 + x2 < 5-2α  

   x1, x2 > o 

for α  = o we get the fuzzy region 
~
R 1 

for α  = 1 we get the fuzzy region 
~
R o , (Fig. 1).   

For the fuzzy sets representing the fuzzy constraints 
ic

~μ (x) , the membership 

function  is specified as: 

ic
~μ  (x) = 1 - 

ιP
bxA ii −  , (i= 1 , 2, 3) …………………….…       . (10) 

For the constraint x1 < 3;  μ  
1

~
c  = 

6
9 1x−  
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For the constraint x1 + x2 < 4 , μ  ~

2c
= 

4
8 21 xx −−  

For the constraint 5x1 + x2 < 3 μ  ~

3c
 = 

2
55 21 xx −−  

Let 2x1 + x2 = r then, 

 
rC

~μ  = 
r

min { max {
6

9 1x− , 
4

8 21 xx −− , 
2

55 21 xx −− }} 

For r = 16 

x1 = 8 , x2 = 0  ιμ  = max { 
6
1 , 0 , 0 } = 

6
1  

x1 = 7, x2 = 2  ιμ  = max {
3
1  , 0 , 0 } = 1/3 

x1 = 6 , x2 = 4  ιμ  = max { 
2
1  , 0 , 0} = 1/2 

x1 = 5 , x2 = 6  ιμ  = max { 
3
2  , 0 , 0}  = 2/3 

x1 = 4 , x2 = 8  ιμ  = max { 
6
5  , 0 , 0} = 5/6 

then, 

for r = 16, 
rC

~μ  = min { 
6
1  , 

3
1 , 

2
1 , 

3
2  , 

6
5 } = 

6
1  

for r = 15  

x1 = 7.5 , x2 = 0  ιμ  = max { 
4
1  , 0 , 0}  = 1/4 

x1 = 7, x2 = 1  ιμ  = max {
3
1  , 0 , 0 } = 1/3 

x1 = 6 , x2 = 3  ιμ  = max { 
2
1  , 0 , 0} = 1/2 

x1 = 5, x2 = 5  ιμ  = max {
3
2  , 0 , 0 } = 2/3 

then, 

for r = 15, 
rC

~μ  = min {
3
2,

2
1,

3
1,

4
1 } = 

4
1  

Similarly, 
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for r = 14 ,  
rC

~μ   =  
3
1  

for r = 12 , 
rC

~μ   =  
2
1  

for r = 10 

x1 = 5, x2 = 0  ιμ  = max {
3
2  , 

4
3  , 0 } = 3/4 

x1 = 4, x2 = 2  ιμ  = max {
6
5  , 

2
1  , 0 } = 5/6 

x1 = 3, x2 = 4  ιμ  = max {1 , 
4
1 0 , 0 } = 1 

for r = 10, 
rC

~μ = min  {
4
3  , 

6
5  , 1 } = 3/4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1) 
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 Figure (2) 
 

for r = 7 , 
rC

~μ = 1  

We get the tabulated data: 

r 7 10 12 14 15 16 

μ r 1 0.75 0.5 0.333 0.25 0.167 

By the least squares method we get a line:  

rC
~μ = 1.642 – 0.093 r ………………………………...……..(11), 

fitting the given points, (Fig. 2) 

For the membership function of the objective function; recall (5) then:  

G~μ   = 
o

o

rr
rr

−
−

1

 …………………………………………….….……. (12) 

From (Fig. 1) : on 
~

1R  the max. objective function ro = 2x1 + x2 passing thr, the point (3,1) 

gives ro = 7 and on 
~

oR  the max obj. Function  

r1 = 2x1 + x2 passing thr, (8,0) gives r1 = 16. 

Then from (12):  

G
~μ  = 

9
7−r  = 0.1111 r – 0.7777 ……………………..………….. (13) 

The solution satisfies 
G
~μ  = 

rC
~μ  then from (11) and (13) we get: 

μ
θ~

μ
rμ

r0.0931,642μ r −=
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r 

D
~   = 11.85 

Then 
G
~μ  = 

rC
~μ = μ

D
~  = 

9
785.11 −  = 0.5389 

But 
rC

~μ = 
6

9 1x−  = 0.5389 

Then x1 = 5.7666 

But 2x1 + x2 = 11.85 

Then x2 = 0.317 

The resulting solution: 

x1 = 5.7666, x2 = 0.317, r = 11.85, 

μ  = 0.5389 

{ 3} . An equivalent LP Model: 

The classical model (1) can be transformed into an equivalent model as follows: 

Maximize r(x) = cTx. 

Such that Ax < b, 

  x > o 

 with intervals Pi , i = 1, ……….. , m. 

The membership functions of the fuzzy constraints are: 

iC
~μ  = (bi- Pi - Aix) / pi ……………………………………………  (14) 

rC
~μ  = min {

iC
~μ , i = 1, ………. , m} 

And the membership of the objective function is: 

)(
~

xG
μ = 

o

o
T

rr
rXC

−
−

1

 = 
o

o

rr
rr

−
−

1

 …………………………………..……. (15) 

Since the optimum value of r = cTx is attained under the condition: 

rC
~μ  (x) =  

)(
~

xG
μ   > λ  

Then by (14) 

 ιλ  < (bi+ pi- Ai (x) / pι , …………………………...………..…… (16) 

(ι = 1, …… , m) 

And  λ  =   
i

min  { ιλ  . i = 1, …. , m) ………………….……… … (17) 

And by (15) 
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λ  <  
o

o
T

rr
rXC

−
−

1

 …………………………………….………………  (18) 

From (16) and (18) we get:  

λ i pi + Ai x < bi + Pi., (i= 1…., m)……………………….………    . (19) 

λ   (r1 – ro) – cTx < - ro ……………………………...……………  . (20) 

The equivalent model is introduced as :  

maximize λ  such that  

λ  (r1-ro) – cTx < - ro 

 λ i pi + Ai x < bi+ Pi., (i = 1…….., m) 

λ  < 1 

λ  , x1 , x2 > 0 

 

 

 

 

 { 4}  – A well known equivalent LP model under equality approach  

Let us consider as an example the same model in { 2}  :  

maximize  

r = 2 x1 + x2 such that  

x1 < 3 

x1 + x2 < 4 

5 x 1 + x 2 < 3 

x 1, x2 > 0 

with the intervals of constraints being : 

P1 = 6, P2 = 4, P3 = 2 and with ro = 7 and r1 = 16 as before. 

By (21) , the equivalent model is defined as  

Maximize λ  

Such that  

λ G~  = 
9

72 21 −+ xx  =  
9

7−r  

λ
1

~C  = 
6

9 1x−  

λ
3

~C  = 
4

8 21 xx −−  

λ
~

3c  = 
2

55 21 xx −−  

………… (21) 
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λ  < 1 

λ  , x1 , x2  > 0 

For r = 2x1 + x2 = 16 

x1 x2 λ 
~

1
c  λ 

~

2c  λ 
~

3c  
MAX  

λ 
~

ic  

λ 
G
~  

8 0 1/6 0 0 1/6 1 

7 2 1/3 0 0 1/3 1 

6 4 1/2 0 0 1/2 1 

5 6 2/3 0 0 2/3 1 

4 8 5/6 0 0 5/6 1 

 

~

rc
λ  = 

6
1  , ~

rG
λ  = 1     for  r = 16 

Similarly for r = 15 : 

~

rc
λ  = 

4
1  , ~

rG
λ  = 

9
8     for r = 15 

Similarly for r = 14: 

~

rc
λ  = 

3
1  , ~

rG
λ =  

9
7  for r = 14 …… etc. 

We can construct the following tabulated data: 

 

r 16 15 14 13 12 11 

~

rc
λ  

6
1  

4
1  

3
1  

12
5  

2
1  

8
5  

~

rG
λ  1 

9
8  

9
7  

9
6  

9
5  

9
4  

We notice that ~

rc
λ  = ~

rG
λ in the interval 11 < r < 12. 

The first line ~

rc
λ  = f (r) in this interval is determined by the two points (11, 

8
5 ), (12 , 

2
1 ),  

~

rc
λ  = 

8
16 r−  
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The second line ~

rG
λ  = g (r) in this interval is determined by the two points (11, 

9
4 ) , (12 , 

9
5 ) 

,  

~

rG
λ   = 

9
7−r  ……………………………………………………….. (29) 

Putting ~

rc
λ  = ~

rG
λ in (23) and (24) then,  

r = 11.764 

and from (24) we get : λ = 0.5298, (Fig. 3). 

From λ = 
6

9 1x−  = 
4

8 21 xx −−  we get :  

x1 = 5.824 

x2 = 0.116 

 

comparing the first model with the equivalent one under the equality approach we get: 

 First Model Equivalent model 

x1 5.7666 5.824 

x2 0.317 0.116 

r 11.85 11.764 

λ 0.5389 0.5293 

    

 

5 – Product Approach 

For each value r = cTx we find the membership  

~

rC
μ  = min {max  ~

rC
μ   i = 1,…..,m}  

and the membership of the objective function  

rG
~μ  = 

o

o

rr
rr

−
−

1

 

We calculate 
rC

~μ  .  
rG

~μ  for each r = cTx and find 
r

max . { 
rC

~μ  .  
rG

~μ }, the corresponding 

value r is the optimum value. 

From the first F.L.P model we have :  

rC
~μ  = 1.642 – 0.093r 
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rG
~μ  =  0.111r – 0.7777 

Then  δ  = ~

rC
μ  . 

rG
~μ  ;  

for max. δ , 
dr
dδ  = 0  r = 12.32 

At r = 12.32, μ
C
~  = 0.49624, 

G
~μ  = 0.59105 then.  

rC
~μ  .  

rG
~μ = 0.2933  

 

and we get for the first F.L.P model:  

r 
C
~μ  

G
~μ  

C
~μ  . 

G
~μ  Remarks 

7 7 0 0  
10 0.75 0.33 0.25  
11 0.583 0.444 0.2589  

11.85 0.5389 0.5389 0.2904 
C
~μ  =  

G
~μ  

12 0.5 0.555 0.278  
12.32 0.4962 0.5911 0.2933 Max 

C
~μ . 

G
~μ   

15 0.25 0.888 0.222  
16 0.167 1 0.167  

But in the case of the equivalent F.L.P model  

 

since 
rC

~μ  = 2 – 0.125 r , 
rG

~μ  = 0.111 r – 0.7777  

then,  

φ = 
rC

~μ  .  
rG

~μ  ,  for max. φ  , 
dr
dφ = o  r = 11.5 

At r =11.5 , 
C
~μ  = 0.563 , 

G
~μ  = 0.4989 

Then :  
C
~μ . 

G
~μ  = 0.2809 at r = 11.5 

And we get for the equivalent F.LP model: 

r 
C
~μ  

C
~μ  

C
~μ  . 

C
~μ  Remarks 

11 0.625 0.4444 0.277  
11.5 0.5631 0.4989 0.2809 Max 

C
~μ .  

G
~μ  

11.764 0.5293 0.5293 0.2809 
C
~μ  =  

G
~μ  

12 0.5000 0.5555 0.277  
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13 0.4167 0.6667 0.277  
14 0.3333 0.7778 0.259  
15 0.25 0.8889 0.2222  
10 0.167 1.0000 0.167  

Comparing the first model with the equivalent one under the product approache we get: 

 First model Equivalent model 
x1 6.0225 5. 622 
x2 0.275 0.256 
r 12.32 11.5 

λ 0.2933 0.2809 

 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure (3) 
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