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ABSTRACT  
 
A new probability model based on the theory of fuzzy sets is presented. In this 
model, a difference of comparable fuzzy sets is the primary operation. The idea of      
a difference of fuzzy sets (fuzzy events) is simple: If we have two comparable events 
a  and b  ( ba ≤ ), then our knowledge on a  and b  entails the complete knowledge of 
the complement of a  in b , i. e., b  ⊖ a .  
The new algebraic structure of fuzzy sets is called a difference poset (a D-poset) of 
fuzzy sets. Some properties of a lattice ordered D-poset of fuzzy sets (a D-lattice of 
fuzzy sets) are studied. An MV-algebra of fuzzy sets (a Bold algebra) is characterized 
in the D-poset of fuzzy sets set-up. The sufficient and necessary conditions for a D-
lattice of fuzzy sets to be a Bold algebra are given. The basic notions of the quantum 
logic theory - a state and an observable are defined in D-posets of fuzzy sets.  
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1 INTRODUCTION  
 
The model of fuzzy sets was created by Zadeh [23] to describe the events that are 
not given exactly, that are commented vaguely, non-uniquely. If A  is a subset of       
a non-empty set X , then from the mathematical point of view the set A  can be 
positively identified by its characteristic function }{ 1,0: →XAχ  such that  ( ) 1=xAχ  if 

Ax∈  and ( ) 0=xAχ  if Ax∉ .  
On the other hand, a fuzzy set A  can be characterized by a function [ ]1,0: →XAµ . 
The function Aµ  is called a membership function of a fuzzy set A  and the value 

( )xAµ  is called the grade of membership of x  in A . In the fuzzy set theory a fuzzy 
set is completely identified with its membership function. Relations between fuzzy 
sets and operations of fuzzy sets are defined by means of their membership 
functions. However, these operations of fuzzy sets should be defined in an 
appropriate way, i.e., they should coincide with the "classical" set operations in the 
case of the "classical" (the crisp) sets. The elementary operations of fuzzy sets A  
and B  (fuzzy union, fuzzy intersection and fuzzy complementation) were defined by 
Zadeh as follows 

 
CBA =∪  iff ( ){ })(,max xx BAXxC µµµ

∈
=  (denoted by BAC µµµ ∪= ), 

DBA =∩  iff ( ){ })(,min xx BAXxD µµµ
∈

=  (denoted by BAD µµµ ∩= ), 

AXAc −=  iff ( ) ( )xx AAc µµ −= 1  for all Xx∈ (denoted by Aµ ′). 
 
These operations are connected with the ordering ⊆  of fuzzy sets, that is made 
identical with the natural ordering of membership functions 

 
BA ⊆  iff ( ) ( )xx BA µµ ≤  for all Xx∈ . 

 
Recall that these Zadeh's connectives are not the only possible ones (see, for 
example, Klement and Mesiar [12]). 
In the mid Eighties of the last century there appeared attempts to build the quantum 
theory using ideas of the fuzzy sets theory. In the von Neumann's quantum logic 
theory [22], an important example is the set L(H) of all closed subspaces of a (real or 
complex) Hilbert space H. From the algebraic point of view, the system L(H) is a 
complete orthomodular lattice. Another important example is a q-σ-algebra, 
suggested by Suppes [21], that is a non-empty collection Q  of subsets of a non-
empty set X  which is closed with respect to the complementation and the countable 
unions of disjoint subsets. On the other hand, for the fuzzy sets theory, Piasecki [15] 
suggested a model of a soft fuzzy σ-algebra. 
A soft fuzzy σ-algebra is a system M  of fuzzy sets of a non-empty set X  (i.e. M  is 
a system of functions defined on X  with values into the interval [ ]1,0 ) such that 
(2.1) .1 MX ∈  

(2.2) If ( )
2
1

2
1

=x
X

 for every Xx∈ , then M
X
∉

2
1 . 

(2.3) If Mf ∈ , then f ′ ( ) Mf ∈−= 1 . 
(2.4) If, 1, ≥∈ nMfn , then Mff nn

Nn
∈=

∈
supU . 
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Piasecki investigated the fuzzy probability measures from the Bayes principle point of 
view and he showed that the fuzzy probability measures fulfilling the Bayes principle 
are only so called fuzzy P-measures.  
A mapping [ ]1,0: →Mp  is a fuzzy P-measure, if the following properties are 
satisfied. 
(i)  ( ffp ∪ ′) 1=  for all Mf ∈ . 

(ii) If mnn ffnMf ≤≥∈ ,1, ′, mn ≠ , then ( )∑
∈∈

=⎟
⎠
⎞⎜

⎝
⎛

Nn
nn

Nn
fpfp U . 

 
The triplet pMX ,,  is called a soft fuzzy probability space.  
Riečan [ ]18  combining the von Neumann approach with the Piasecki concept of the 
fuzzy soft-σ-algebra proposed to study a model of F-quantum spaces (fuzzy quantum 
spaces).  
An F-quantum space is a couple ( )MX , , where X  is a non-empty set (a universum) 
and [ ]XM 1,0⊂ , which fulfils the conditions (2.1) – (2.4). 
If S is a σ-algebra of subsets of a non-empty set X  and { ∈= AM A :χ S}, then ( )MX ,  
is an F-quantum space. 
Pykacz [ ]17  suggested to substitute the property (2.4) by a weaker one 
(2.4)* If mnn ffnMf ≤≥∈ ,1, ′, mn ≠ , then Mfn

Nn
∈

∈
U . 

 
The set M  fulfilling the conditions (2.1) – (2.3) and (2.4)* is said to be a fuzzy-q-σ-
algebra and the couple ( )MX ,  an F-quantum poset (a fuzzy quantum poset). 
Let Q  be a q-σ-algebra of subsets of a non-empty set X  and F { QAA ∈= :χ . Then F 
is a fuzzy-q-σ-algebra and ( X , F) is an F-quantum poset. 
F-quantum spaces and F-quantum posets were studied by many authors. They 
mainly investigated problems which were important namely from quantum logic point 
of view. Therefore, there were introduced such notions as F-states, F-observables, 
compatibility and sum ability of F-observables, mean value, entropy, etc. (see, for 
example [ ] [ ] [ ] [ ] [ ] [ ] [ ]19,10,9,8,7,6,4 ). 
In the early 1990s the attempts to create fuzzy sets probability models without the 
obligation of the domain of fuzzy sets to be a lattice occurred. Kôpka [ ]13  introduced 
a new probability model based on the theory of fuzzy sets, a difference poset of fuzzy 
sets (a D-poset of fuzzy sets), in which a difference of comparable fuzzy sets is the 
primary operation. 
In this paper, we introduce some properties of a D-lattice of fuzzy sets (i.e. a D-poset 
of fuzzy sets, that is a lattice as well), we characterize MV- algebras of fuzzy sets 
(Bold algebras) in the D-poset of fuzzy sets set-up and we give the sufficient and 
necessary conditions for a D-lattice of fuzzy sets to be a Bold algebra. 
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2 DIFFERENCE POSETS OF FUZZY SETS 
 
Let F be a partially ordered system of fuzzy sets. We say that F is lattice ordered (or 
F is a lattice), if for every ∈gf , F the least upper bound gf ∨  and the greatest lower 
bound gf ∧  exist in the system F. Let us note that gf ∨  need not coincide with 

gf ∪  and dually gfgf ∩≠∧ , in general. However, if ∈∪ gf F  ( ∈∩ gf F) then 
gfgf ∨=∪  ( gfgf ∧=∩ ). 

 
Example 1 Let F [ ][ ]1,01,0⊆ , F ={ }gf ,,1,0 , where ( ) 00 =x , ( ) 11 =x , ( ) xxf = , ( ) xxg −= 1  

for all [ ]1,0∈x . Then ( )( )
[ ]
( )

2
1

2
11,max

1,0
−+=−=∪

∈
xxxxgf

x
 for every [ ]1,0∈x  and so 

∉∪ gf F, but 1=∨ gf  and ∈1 F. 
 
If a system of fuzzy sets is lattice ordered, we can define the difference of fuzzy sets 
equivalently to the difference of crisp sets by the formula 

gfgf ∧=− ′ min= { gf , ′}. 
In this case, 
                                                   ( ) ggff =−−                                                          (1)                      
is not true for comparable fuzzy sets fg ≤ , in general. 
Kôpka [ ]13  defined the difference of comparable fuzzy sets such that the property (1) 
is fulfilled. 
 
Definition 2 Let F [ ]X1,0⊆  be a system of fuzzy subsets of a non-empty set X .         
A partial binary operation ⊖ is said to be a difference on F, if the element f θ g  is 
defined in F  for fg ≤ , and the following conditions are satisfied. 
(D1) f θ g f≤ . 
(D2) f θ  ( f θ g ) g= . 
(D3) If ∈hgf ,, F, fgh ≤≤ , then f θ g f≤ θ h  and ( f θ h )θ ( f θ g )= g θ h .θ  

 
With respect to the probability theory, we need consider such system F of fuzzy sets 
for which the next conditions hold. 
(D4) If 1F ( ) 1=x   for any Xx∈ , then 1F∈F. 

(D5) If ( ) ⊆∈Nnnf F, 1,1 ≥≤ + nff nn , then ∨
∈Nn

∈nf F.  

 
Definition 3 A system F of fuzzy sets fulfilling the conditions (D1) – (D4) is called      
a difference poset of fuzzy sets (shortly a D-poset of fuzzy sets). Moreover, if a D-
poset of fuzzy sets F is lattice ordered, then F is called a D-lattice of fuzzy sets. The 
system F fulfilling the conditions (D1) – (D5) is called   a D-σ-poset of fuzzy sets. 
 
It is evident, that the element 1F is the greatest element of F and the element 1F θ 1F  
is the least element of F, denoted by 0 F and, moreover, 0 F ( ) 0=x  for any Xx∈ . 
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Example 4 Let F be a system of fuzzy subsets of a non-empty set X . Let     
[ ] )[ ∞→Φ ,01,0:  be an injective increasing continuous function such that ( ) 00 =Φ .       

A partial binary operation ⊖  defined by the formula 
( f θ g ) ( ) ( )( ) ( )( )( )tgtft Φ−ΦΦ= −1  

for every ∈gf , F, Xtfg ∈≤ , , is a difference on F. 
Specifically, if ( ) 0, >=Φ kkxx , then ⊖ is the usual difference of real functions 

( f θ g ) ( ) ( ) ( ),tgtft −=  

and if ( ) 2xx =Φ  then 

( f θ g ) ( ) ( ) ( )tgtft 22 −= . 
A function Φ  is called a generator of a difference. Moreover, if ( ) 11 =Φ , then Φ  is 
called a normed generator. 
 
Proposition 5 Let F be a D-poset of fuzzy sets and let ∈khgf ,,, F. Then the 
following assertions are true. 
(i)   If hfg ≤≤ , then f θ g ≤ h θ g , and (h θ )g θ ( f θ ) =g h θ f . 
(ii)  If hg ≤  and f ≤ h θ g , then g ≤ h θ f , and ( h θ g )θ f = ( h θ f )θ g . 
(iii) If hfg ≤≤ , then g ≤ h θ ( f θ )g , and ( h θ ( f θ )g )θ g h= θ f .  
(iv) If hg ≤  and f ≤ h , then h θ f = h θ g  if and only if gf = . 
(v) If hfk ≤≤ , hgk ≤≤ , then h θ f = g⊖ k  if and only if h θ g = f θ k . 
(vi) If fg ≤ , then  f θ 0=g F  if and only if gf = . 
(vii) If fg ≤ , then  f θ fg =  if and only if  0=f F. 
 
For any ∈f F  we put 

1=⊥f F  θ f . 

The unary operation ⊥  is an involution (i.e. ( ) ff =
⊥⊥ ) and an order-reversing 

operation (i.e., if fg ≤  then ⊥⊥ ≤ gf . 
If F is a D-lattice of fuzzy sets, then we can define a (total) binary operation –  on F  
by the formula 
                                            fgf =− θ ( )gf ∧ .                              (2) 
 
It is easy to prove that the binary operation – has the following properties. 
 
(1) If fg ≤  then fgf =− θ g . 
(2) fgf ≤−  for any  ∈gf , F. 
(3) ( ) gfgff ∧=−− . 
(4) If fg ≤ , then −g 0=f F . 
(5) 0=∧ gf F  if and only if fgf =− . 
 
A dual binary operation +  to the operation – on a D-lattice of fuzzy sets is defined by 
                              ( )⊥⊥ −=+ gfgf   for any  ∈gf , F.                                              (3) 
  
Evidently 0+f F f= , 1+f F 1= F  and 1=+ ⊥ff F for every ∈f F.   
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Proposition 6 Let F be a D-lattice of fuzzy sets such that ∈∩ gf F for every ∈gf , F. 
Then the operation +  is commutative and associative. 
 
Proof. This result follows from the fact that the operation ∩  is defined point wisely. 
Indeed, 

( )( ) ( ) ( ) ( ) ( )( ) ( )( xfxgxfxgxfxgf ⊥⊥⊥ =−=+=+ θ ( ( ) ))⊥⊥ ∧ )(xgxf  
( )( xf ⊥= θ ( ( ) )) ( ( )xfxgxf ⊥⊥⊥ =∩ )( θ { ( ) })⊥⊥ )(,min xgxf . 

There are always just two possibilities for real numbers ( )xf ⊥  and ( )xg : either 
( )xf ⊥ ≤ ( )xg  or ( )xg ≤ ( )xf ⊥ . The first inequality implies ( )( ) 1=+ xgf  and the same 

result we obtain for  
( )( ) ( ) ( )( ) ( )( xgxfxgxfg ⊥⊥⊥ =−=+ θ { ( ) }) =⊥⊥ )(,min xfxg ( ( )xg ⊥ θ ( )) .1=⊥⊥ xg  

On the other hand, from ( ) ( )xfxg ⊥≤  and (ii) of Proposition 5 we have 

( )( ) ( ) ( )( ) ( )( ( )) ( )( )xfgxfxgxgxfxgf +=−=−=+ ⊥⊥⊥⊥ . 
Similarly ( ) ( )hgfhgf ++=++ .  
     
An MV-algebra (introduced by C. Chang [ ]2 ) is a very important algebraic model of 
many-valued logics.     
 
Definition 7 An MV-algebra A is an algebra (A, + , ∗ , 0 ,1), where A is a non-empty 
set, 0  and 1 are constant elements of A, +  is a binary operation, and ∗  is a unary 
operation, satisfying the following axioms: 
(MVA1)  abba +=+ . 
(MVA2)  ( ) ( )cbacba ++=++ .   
(MVA3)  aa =+ 0 . 
(MVA4)  11 =+a . 
(MVA5)  ( ) aa =

∗∗ . 
(MVA6)  10 =∗ . 
(MVA7)  1=+ ∗aa . 
(MVA8)  ( ) ( ) ababba ++=++

∗∗∗∗ . 
The lattice operations ∨  and ∧  are defined in an MV-algebra A by 

                  =∨ ba ( ) bba ++
∗∗  and =∧ ba ( )( )∗∗∗∗ ++ bba .                                        (4) 

 
We write ba ≤   if bba =∨ . The relation ≤  is a partial ordering over A and 10 ≤≤ a , 
for every ∈a A. An MV-algebra is a distributive lattice with respect to the operations 
∧∨, . 

Let ba,  be any two elements of an MV-algebra A. If we put 

                                  b θ ( )∗∗+= baa   for  ba ≤ ,                                                       (5) 
then θ  is a difference on A with properties (D1) – (D3).  
 
Example 8 Let G [ ]X1,0= . We put ( ) 00 =x , ( ) 11 =x , 
                        ( )( ) ( ) ( ){ }1,min xgxfxgf +=+ ,                                                   (6) 
                                            ( ) ( )xfxf −=∗ 1 ,                                                              (7) 
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for any Xx∈ . Then (G, + , ∗ , 0 ,1) becomes an MV-algebra. 
 
Every sub algebra of G is according to [ ]1  called a Bold algebra (of fuzzy sets). 
 
Proposition 9 Every Bold algebra is a D-lattice of fuzzy sets. 
 
Proof. Let B [ ]X1,0⊆  be a Bold algebra. By the above, B is lattice ordered. First we 
prove that gf ≤  (in B) if and only if ( ) ( )xgxf ≤  for any Xx∈ . 
Due to (4), (6) and (7) we have for any Xx∈ . 

( )( ) ( )( )( ) ( ) ( ) ( ){ }1,min xgxgfxggfxgf ++=++=∨
∗∗∗∗  

       ( ) ( ){ } ( ){ }1,1,1min1min xgxgxf ++−−= . 
If ( ) ( )xgxf ≤  then ( ) ( )xgxf +−≤ 11  and therefore, 

( )( ) ( ){ } ( )xgxgxgf ==∨ 1,min . 
Conversely, if ggf =∨ then 

( ) ( ){ } ( ) ( )xgxgxgxf =++−− 1,1min1 , 
( ) ( ){ } 11,1min =+− xgxf , 
( ) ( ) 11 ≥+− xgxf , 
( ) ( )xfxg ≥ . 

Suppose that gf ≤ . In view of (5) we get 

( )( ) ( ) ( ) ( ) ( ){ } ( ) ( )( ) ( ) ( )xfxgxgxfxgxfxgfxfg −=−+−=−+−=+=−
∗∗ 111,1min1  

for any Xx∈ . Now the validity of axioms (D1) – (D3) is evident.  
 
The converse assertion is not true, in general. 
 
  
Example 10 Let H [ ][ ]1,01,0⊆ , H { }cba ,,,1,0= , where ( ) 00 =x , ( ) 11 =x , ( ) xxa = , 

( ) xxb −= 1 , ( )
2
1

=xc  for all [ ]1,0∈x . Evidently ab −= 1  and cc −= 1 . H is a D-lattice of 

fuzzy sets, but it is not a Bold algebra. Indeed,   
( )( ) cccaa =∧=∧−∨ 11  and ( ) ( )( ) 0001 =∨=∧−∨∧ caca , 

so H  is not a distributive lattice. 
 
If F be a D-lattice of fuzzy sets such that ∈∪ gf F for every ∈gf , F, then F is   a 

Bold algebra. Indeed, it suffices to put ( )∗∗ −=+ gfgf for any ∈gf , F and 
=∗f 1F. f− . The converse assertion is not true, in general. 

 
Example 11 Let H [ ][ ]1,01,0⊆ , H { }dcba ,,,,1,0= , where ( ) 00 =x , ( ) 11 =x , ( ) xxa = , 

( ) xxb −= 1 , ( ) xxc
2
1

= , ( ) xxd
2
11−=  and operations +  and ∗  are as above. Then     

(H, + , ∗ , 0 , 1) is a Bold algebra, in which ba∪  does not belong to H. 
 
There is a natural question: When will a D-lattice of fuzzy sets be a Bold algebra? 
The answer relates to the notion of the compatibility of fuzzy sets. 
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3 COMPATIBILITY IN D-POSETS OF FUZZY SETS 
 
Very important relation from the physical applications point of view is the compatibility 
relation. It is well known that an orthomodular lattice of pair wise compatible elements 
creates a Boolean algebra. A similar result was obtained in orthomodular posets, 
where a stronger relation of so called f-compatibility has to be used instead of the 
pairwise compatibility (see [16]). Very interesting results were attained during the 
research of the compatibility relation in D-posets of fuzzy sets introduced by Kôpka 
[14]. 
 
Definition 12 Let F be a D-poset of fuzzy sets. We say that fuzzy sets gf , ∈F are 
compatible, and write gf ↔ , if there exist fuzzy sets hk, ∈F such that hfk ≤≤ , 

hgk ≤≤ and h θ f = g θ k  (equivalently h θ g = f θ k ). 
 
Theorem 13 Let F be a D-lattice of fuzzy sets. Then fuzzy sets gf , ∈F are 
compatible if and only if ( gf ∨ )θ g = f θ  ( gf ∧ ). 
 
Proof. First we prove that (( gf ∨ )θ f )∧ (( gf ∨ )θ g ) 0= F for arbitrary gf , from           
a D-lattice of fuzzy sets. 
From the inequalities gfggff ∨≤∨≤ ,  and (D3) we have  

0 F = ( gf ∨ )θ  ( gf ∨ )≤ ( gf ∨ )θ f  
and 0 F≤ ( gf ∨ )θ g . If there exists ∈w F, ≤w ( gf ∨ )θ f , ≤w ( gf ∨ )θ g , then 
f = ( gf ∨ )θ  (( gf ∨ )θ f )≤ ( gf ∨ )θ w , ≤g ( gf ∨ )θ w , therefore,  

gf ∨ ≤  ( gf ∨ )θ ≤w gf ∨  
and so ( gf ∨ )θ w = gf ∨ , which implies that w 0= F. We proved that 0 F is the 
greatest lower bound of the set {( gf ∨ )θ f ,( gf ∨ )θ g }. 
Let gf ↔ . Then there exist fuzzy sets ∈hk, F such that hfk ≤≤ ,  hgk ≤≤  and 
h θ f = g θ k . From the inequalities hgfghgff ≤∨≤≤∨≤ ,  it follows that 
( gf ∨ )θ hf ≤ θ f = g θ gk ≤ , and similarly ( gf ∨ )θ fg ≤ . Then 

f θ  (( gf ∨ )θ g )= (( gf ∨ )θ  (( gf ∨ )θ f ))θ  (( gf ∨ )θ g )= g θ  (( gf ∨ )θ f ). 
Denote u = f θ  (( gf ∨ )θ g ). It is clear that gfu ∨≤  and f θ u = ( gf ∨ )θ g , 
g θ u = ( gf ∨ )θ f . 
Calculate 
  ( gf ∨ )θ u = ( f θ u )∧ ( g θ u )= (( gf ∨ )θ g )∧ (( gf ∨ )θ f ) 0= F, 
hence u = gf ∧ , which gives f θ  ( gf ∧ )= ( gfu ∨≤ )θ g . 
The sufficient condition is evident.   
 
Theorem 14 In a Bold algebra, any two fuzzy sets are mutually compatible. 
Conversely, a D-lattice of mutually compatible fuzzy sets is a Bold algebra. 
 
Proof. Let B⊂ [ ]X1,0  be a Bold algebra and ∈gf , B. There are always just two 
possibilities for real numbers f ( x ), g ( x ): either f ( x )≤ g ( x ) or g ( x )≤ f ( x ). The 
first inequality implies 

(( gf ∨ )θ g )( x )= ( gf ∨ )( x )θ g ( x )= g ( x )θ g ( x ) 0=  
and f θ  ( gf ∧ )( x )= f ( x )θ f ( x ) 0= , for any .Xx∈  
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If g ( x )≤ f ( x ), then (( gf ∨ )θ g )( x )= f ( x )θ g ( x )= f θ  ( gf ∧ )( x ) for any Xx∈ , 
so gf ↔ . 
On the contrary, suppose that B⊂ [ ]X1,0  is a D-lattice of mutually compatible fuzzy 
sets. Let us put ff −= 1*  and =+ gf ( gf −* ) *  for every ∈gf , B, where – is a total 
binary operation on B defined by the formula (2). The completion of the proof requires 
routine verifications of the axioms (MVA1) – (MVA8).  N  
 
Let us assume fuzzy sets cba ,,  from the Example 10. Then ba ↔ , but a θ c . 
Indeed, ( ca ∨ )θ c 1= θ c = c  and a θ  ( ca ∧ )= a θ =0 a . 
 
Definition 15  A maximal subset M of mutually compatible fuzzy sets of a D-lattice of 
fuzzy sets F is called a block of F. 
 
Theorem 16  
(i) Every subset A of mutually compatible fuzzy sets of a D-lattice of fuzzy sets F is 
contained in a block. 
(ii) Every D-lattice of fuzzy sets F is a set-theoretical union of its blocks. 
 
Proof. (i) Let Ø≠ A⊆F be a set of mutually compatible fuzzy sets of F and                 
A = {B⊆F:A⊆B, B is a set of mutually compatible fuzzy sets}. Then for every chain 
B⊆A (i.e., for YX , ∈B we have X ⊆ Y  or Y ⊆ X ), the set U B belongs to A. By 
maximal principle there exists a maximal element M ∈A. 
(ii) Let ∈f F. Denote by fM  the block containing the set A = { 0 F, f , f ┴,1F }. 
 Then 

Ff∈
U M f  = F.   

The exact proof of this theorem can be found in [20] for a general case of a D-lattice. 
 
 
4 STATES AND OBSERVABLES ON D-POSETS OF FUZZY SETS 
 
States and observables are the fundamental notions of the quantum logics probability 
theory. D-posets of fuzzy sets have been studied as carriers of states or probability 
measures in the fuzzy probability theory. 
 
Definition 17 Let F be a D-σ-poset of fuzzy sets. A probability measure (a state) on F  
is a mapping :m  F [ ]1,0→  such that 
(P1)   1(m F 1) = . 

(P2)  If ( nf ) ⊆∈Nn F, 1+≤ nn ff  and ff nNn
=∨

∈
, then m ( f )= m ( 1f ) ∑

∞

=

+
2

(
n

nfm ⊖ ).1−nf  

 
Example 18 Let F⊆ [ ]X1,0  be a D-poset of fuzzy sets. Let Xt ∈0 such that )( 0tf  there 
exists for every ∈f F. Then the mapping :s F [ ]1,0→  defined by 

)()( 0tffs =  for any ∈f F, 
is a state on F. 
 
An observable is a quantum paraphrase of a random variable. 
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Definition 19 Let F be a D-σ-poset of fuzzy sets and B( R ) be the Borel σ-algebra of 
the real line R . The mapping :x B( R )→F  is said to be an observable on F, if the 
following conditions are fulfilled. 
(O1)  XRx 1)( =  
(O2) If NnnA ∈)(  is a sequence of Borel sets such that 1+⊆ nn AA  for every Nn∈ , then 

)()( 1+≤ nn AxAx , and =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∈
U

Nn
nAx ∨

∈Nn
( )nAx . 

(O3) If BA, are Borel sets, BA ⊆ , then )()\( BxABx = θ n )(Ax . 
 
Example 20 Let F be a D-poset of fuzzy sets and ∈f F. A mapping :fx  B →)(R F 
defined by 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∩
=∩−

=∩
=∩

=

Ø}1,0{,0
},0{}1,0{,1

},1{}1,0{,
},1,0{}1,0{,1

)(

Eif
Eiff

Eiff
Eif

Ex f  

 
is an observable on F called an indicator of f . 
 
The set R( x ) ∈= EEx :)({ B )}(R  is said to be the range of an observable x . We note 
that if x  is an observable in a σ-orthomodular poset L, then the range R )(x  is always 
a Boolean sub-σ-algebra of L. But the range of an observable on a D-poset of fuzzy 
sets is not a sub-D-poset, in general. 
 
Example 21 Let F be a D-poset of fuzzy sets (see Example 4), where tt =Φ )(  for 
every [ ]1,0∈t . Let x  be the observable on F defined as in Example 20, where ∈f F 
is a constant function, for example, f = 0.8. Then R ( ) { }1,8.0,2.0,0=x , but 

8.0 θ 6.02.0 =  is not contained in R )(x . 
 
Proposition 22 Let x  be an observable on a D-poset of fuzzy sets F. Then the range 
R( x ) is contained in the set of pair wise compatible elements. 
 
Proof. Let ∈gf , R( x ), )(),( BxgAxf == , where ∈BA, B( R ). We put )( BAxh ∪=  
and )( BAxk ∩= . Evidently hgkhfk ≤≤≤≤ ,  and 

h θ f = )( BAx ∪ θ )\()\()( BABxABAxAx ∩=∪= = )(Bx θ gBAx =∩ )( θ n ,k  
therefore, .gf ↔ n  
 
It is easy to prove that if :x B( R )→F is an observable on F, then the mapping 

:xm B( R ) [ ]1,0→ , ))(()( ExmEmx = , is a probability measure on B( R ). The mapping 

xm  is said to be a probability distribution of the observable x  in the state m .  
Now a mean value of the observable x in the state m can be defined by the integral 

,)()( ∫= R x dttdmxE  

if it exists and is finite. 



١١  EM-1 Proceeding of 3rd  International Conference on Engineering Mathematics and Physics  
  

 

 

The dispersion (variance) can be defined in a D-poset of fuzzy sets in  a similar 
manner. So, a D-poset of fuzzy sets is a suitable model for the probality theory on 
non-Boolean structures. 
 
 
THE OPEN PPROBLEM 
 
It is known (see Theorem 16) that every D-lattice of fuzzy sets is a set-theoretical 
union of its blocks (Bold algebras). Now, a natural dual question arises: How can we 
construct a D-poset of fuzzy sets from a given collection of Bold algebras?  
We note that a method of quantum logics construction based on the "pasting" of 
Boolean algebras was originally suggested by R. Greechie [11]. A generalization of 
this method for pasting of MV-algebras has been performed in [3]. 
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