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Abstract: We shall generalize the concept of fuzzy neighborhood group, which is introduced by 

Ahsanullah in [1], using the concept of t-norm. We establish some basic results and prove some 

characterization theorem of fuzzy T-neighborhood groups. 

1- Preliminaries 

For the definition of fuzzy topology we refer to [10]. Our work mainly will deal with fuzzy   T-

neighborhood spaces introduced by Hashem and Morsi [5]. The notion of filterbasis which plays an 

essential role for the development of fuzzy T-neighborhood spaces can be found in [4]. The saturation 

operation for filterbasis β is define as 

                      β ~ = { }µεµβνεµ εε ≤−∈∃∈∀∈ ../ 0 tsII X  

For our convenience, however, we shall recall here the definition of fuzzy T- neighborhood  spaces [5]. 

  A family β = (β(x))x∈X, of filterbases in IX, will be a T-neighborhood base in X if and only if it satisfies 

the following two conditions  for all x ∈X : 

  (TNB1) υ(x) = 1 for all υ ∈  β(x); 

  (TNB2) Every  υ ∈ β(x)  has a T-kernel in β. This is a family (υyε ∈  β(y)),  ( y,ε) ∈  X × Io  

which satisfies for all (y, z, ε ) ∈  X × X × Io , 

                      [υx,ε (z) T υz,ε (y)] ≤ υ (y) + ε. 

If β is a (fuzzy) T-neighborhood system on X, then it provides a unique fuzzy closure operator given by 

                       µֿ (x) = inf      hgt(µ T υ)  =   inf     sup   (µ(y) T υ (y)). 
                      υ∈β(x)           υ∈β(x)  y∈X 

The fuzzy topology generated by this fuzzy closure is denoted by t(β). Then the fuzzy topological space 

(X, t(β)) is called a fuzzy T-neighborhood  space. 
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     2-Fuzzy T-Neighborhood Groups 

In the sequel we shall write a multiplicative group as (G, .) or often as G, and e shall denote its identity 

element. Throughout, T is a continuous triangular norm. 

Definition 2.1 Let (G, .) be a group and β a fuzzy T-neighborhood system on G . Then the triple (G, ., 

t(β)) is called a fuzzy T-neighborhood group if and only if the following are fulfilled: 

      (FG1) The mapping m : (G × G,  t(β) ×  t(β))→ (G, t(β)) : 

      (x, y)→ xy is continuous. 

     (FG2) The mapping r : (G, t(β))→ (G, t(β)) : 

        x → x-1 is continuous. 

     A group structure and a fuzzy T-neighborhood system are said to be compatible if and only if (FG1) 

and (FG2) are satisfied. 

 

Definition 2.2   Let (G, . ) be a group, then for all  µ,ν ∈  IG  and x ∈  G we define  

                    µ. ν (x) = sup µ (s) ∧ ν  (t) 
                                   st=x 

we can also  write 

                   µ. ν (x) = m (µ× ν ) 

where µ× ν ∈  IG×G is given by 

µ× ν : G× G → I : (x, y) → µ(x) ∧  ν(y). 

Remark that the above definition is obtained from the extension principle of Zadeh. 

Definition 2.3  Let (G, .) be a group, X a set, and f ∈ XG, then we define  

f -1 = f  o r 

and we call  f  symmetric if and only if     f = f -1. 

 

Proposition 2.1 Let (G, .) be a group and β a fuzzy T-neighborhood system on G. Then       (G, ., t(β)) is 

fuzzy T-neighborhood group if and only if the mapping  

                      h : (G × G, t (β) × t(β)) →  (G, t(β)) : (x, y) a x y -1    is continuous. 

      Proof. 

           Let k(x, y) = (x,y-1). Then continuity of k follows from (FG2). This together with (FG1) shows that 

h is continuous. The converse follows from the facts that x-1 =e.x-1 =h(e, x) and      x y = x(y-1)-1=h(x, y-1) 

Proposition 2.2 Let (G, . ) be a group and β a fuzzy T-neighborhood system on G. Then 

(a) The mapping r is continuous at e ∈G if and only if for all µ ∈  β (e) and for all ε ∈  I0 there exists    

ν∈ β (e)    such that   ν – ε ≤ µ-1 
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(b) The mapping m is continuous  at  (e ,e) ∈ G× G  if and only if  for all µ ∈ β (e) and for all ε ∈ I0  

there exists ν ∈ β (e) such that ν .ν – ε ≤ µ  

       Proof.  

          (a) Follow from the fact that r--1 (µ) = µ (r (x)) = µ o  r(x) = µ-1 

          (b) m is continuous at (e. e) ∈ G×G if ∀µ ∈  β (e) , and ∀ε ∈  I0 ∃  ν × ν∈  β(e) × β(e)  

such that  m ( ν × ν ) – ε ≤ µ.  Since m (ν × ν) = ν. ν, then the assertion follows. 

 

Proposition 2.3 Let (G, ., t(β) ) be a fuzzy T-neighborhood group, x ∈  G and y ∈  G. 

 Then 

(a) ζx  : G → G : z a  x z  ( resp. ℜx : G → G : z a  z x ) the left ( resp. right )   translation, ψ(χ,y)  : G 

→ G : z a  x z y  and r  are homeomorphisms. 

(b) The inner automorphism operator Intx  : G →  G : z a  x z x -1  is a homeomorphism. 

(c) ν ∈ β (e)  if and only if  ζx (ν ) ∈  β (x)   if and only if   ℜx (ν) ∈ β (x). 

(d) ν∈  β (x)   if and only if  ζx
-1 (ν) ∈  β (e)  if and only if  ℜx

-1 (ν) ∈  β (e).  

(e) If  ν ∈ β (e) then  ν-1  ∈ β (e).  

(f) ν ∧   ν-1,   ν ∨ ν-1,  and  ν . ν-1  are symmetric. 

    Proof. 

       (a) It is clear that ℜx  is a 1:1 and onto mapping. Then by Definition 2.1 ℜx is continuous. Moreover, it 

is easy to see that the inverse ℜx
-1 of ℜx is the mapping : ga g x-1, which is continuous by the same 

argument as above. Hence ℜx is a homeomorphism. The fact that ζx is a homeomorphism follows 

similarly.  

For the inversion mapping, let r(x) = x-1.  Then clearly r is 1:1, continuous and onto.  

Since r-1(x) = x-1=r(x) is continuous, hence r is a homomorphism. ψ(x,y) as composition of two 

homeomorphisms is homeomorphism. 

(b) Follows from the fact that ψ(x,x
-1

) (z) = xzx-1 is a homeomorphism. 

      (c)-(d) Follows from the fact that ζx  is homeomorphism and  
           ζx (ν) (x) = sup ν (e) ∧ 1x  =1x. 
                               ex=x 

           
      (e) From the continuity of r  

for all ν ∈ β (e) and ε ∈  I0 there exist µ ∈  β (e)  such that  µ - ε ≤ ν-1  and  

                                                    sup (νε–ε) ∈  β (e). 
       ε∈I0 
                                                    Then (µ - ε ) ∈  β (e).  
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                                                    Thus  ν-1  ∈β (e).  

 (f) [ν ∨  ν-1]-1 = r-1 [ν ∨  ν-1] 

         = r-1[ν (x)] ∨  r-1 [ν (x-1)] 

         = ν (x-1) ∨  ν [r(x-1)]  

         = ν-1(x) ∨  ν (x). 

        Then ν∧  ν-1, ν . ν-1 are symmetric similarly. 

 

Definition 2.4  A fuzzy T-neighbourhood space (G, t(β)) is called homogeneous if and only if for all 

 x, y, ∈ G there exists a homeomorphism f : G → G such that f (x) = y. 

Theorem 2.1 If (G, ., t(β)) is a fuzzy T-neighbourhood  group, then the fuzzy                T-

neighbourhood space (G, t(β)) is homogeneous. 

      Proof.   

            Follows from Proposition 2.3 (a), since ℜx
-1

y is a homeomorphism for all              x, y ∈  G   

Theorem 2.2   (G, ., T) is a topological group if and only if (G , ., w (T) ) is a fuzzy 

 T-neighborhood group, where w (T) is the topologically generated fuzzy topology.  

       Proof.  

               This follows from the facts that (G, w (T)) is T-neighborhood space (Theorem 4.1 in [ 5 ]) 

and that the map 

                      h : ( G × G, T × T ) → (G,T) : (x, y) a  xy-1 

is continuous if and only if  

                      h : (G × G, w(T) × w(T)) → (G, w (T)) : (x, y ) a  xy-1 

is continuous [ ]5 . 

Proposition 2.4 If (G, ., t(β)) is a fuzzy T-neighbourhood group, µ is an open fuzzy set and ν∈   IG , 

then µ. ν ( resp. ν.µ ) is an open fuzzy set. 

         Proof.       Let x∈  G then   µ. ν = supµ(s) ∧  ν (t) 
                                                               st=x 
                                                             =sup µ ( xt-1) ∧  ν (t) 
                                                                t∈G  
 

                                                             =supµ (ℜt
-1 (x)) ∧  ν (t) 

                                                               t∈G 
                                                             =supℜt (µ)(x) ∧ ν (t)  
                                                               t∈G 
∴µ. ν = ∨    [ℜ(µ)∧  ν (t)] = (∨     ℜt (µ)∧  ν (t) )(x) 
            t∈  G                            t∈ G 
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       where each ν (t) is constant. Since µ is open and every ℜt is homeomorphism then   µ. ν  is an 

open fuzzy set. 

The proof of the next two lemmas is verbally the same as in the classical case, so we omit the 

proofs. 

Lemma 2.1 Let (G, ∆) and ( G', ∆' ) be fuzzy topological spaces and  f : G → G'. 

Then f is continuous and closed if and only if f (µ ) = ( )µf  for all µ  ∈ IG. 

Lemma 2.2    If ( G, ∆ ) and ( G', ∆' ) are fuzzy topological space and   f : G → G' is a 

homeomorphism then 

( )ν1−f = f -1 (ν )   ∀ ν ∈  IG' 

Proposition 2.5 In fuzzy T-neighbourhood group (G, ., t(β)) the following properties hold: 

(a)   
11 −− = µµ  ∀ ∈µ  IG 

(b) yxyx 1111 µµ =       ∀ µ ∈  IG  and   ∀ x,.y  ∈  G. 

     Proof.  

(a)  (µ )-1  = r-1 (µ ) = ( )[ ] 11 −−− = µµr using Lemma 2.2 

(b) We have ψ(x, y) (µ) =1x.µ.1y  is homomorphism and using Lemma 2.2  the assertion follows. 

Lemma 2.3 [1]  If (G, .) and (G', .) are groups and f : G → G' is a group-homomorphism, then  

                           f (µ .ζ ) = f(µ) .f(ζ)  for all  µ,ζ∈  IG . 

Corollary 2.1 [1] If (G, .) and (G', .) are groups and f : G → G' a group-homomorphism, then  

f(1x. 1a
-1 .µ) = 1f(x) .1f(a

-1
) . f(µ)       for all µ∈  IG  and  x, a ∈  G. 

Proposition 2.6  Let (G, .,t(β))  and  (G' , .,t(β)) be fuzzy  T-neighborhood groups, and  f: G→ G'          

a continuous group-homomorphism, then 

(a) If µ∈  IG  is symmetric then f(µ) and ( )µf  are symmetric. 

(b) If µ' ∈  IG  is symmetric then f -1 (µ' ) and   ( )µ′−1f are symmetric. 

         Proof.  Straightforward. 

      We shall now give some characterization theorems of fuzzy T-neighborhood groups. The first 

gives necessary and sufficient conditions for a group structure and fuzzy           T-neighborhood 

system to be compatible, and the second gives necessary and sufficient conditions for a filter to be 

the neighborhood filter of e in a fuzzy T-neighbourhood group. 

Theorem 2.3  Let (G, .) be a group and  β a fuzzy T-neighborhood  base on G. then     (G, .,t(β)) is a 

fuzzy T-neighborhood group if and only if the following are fulfilled: 
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(a) for every a∈  G we have 

                                            1−β (a) = {ζa (µ) |  µ ∈  β (e)}-1 

(res . β(a) = {ℜa (µ) | µ ∈  β (e)}) and β(a) = {ζa (µ) | µ ∈  β(e) } is a T-neighborhood  base at a. 

(b) For all µ ∈ β (e) and for all ε ∈ I0 there exists ν ∈ β (e) such that ν - ε ≤ 1−µ , i.e., r is continuous 

at e. 

(c)  For all µ ∈ β (e) and for all ε ∈  I0  there exists ν ∈  β (e) such that ν. ν - ε ≤ µ, i.e.,  m is 

continuous at (e, e). 

(d)  For all µ ∈  β (e), for all ε ∈  I0 and for all x∈ G there exist ν ∈ β (e) such that                 1x. ν.1x 
-

1  -  ε ≤ µ,  i.e., intx  is continuous at e. 

     Proof.  If (G, ., t(β)) is fuzzy T-neighbourhood group, then (a) follows from Proposition 2.3; (a); 

(b) and (c ) are immediate from Proposition 2.2; and (d) is just the fact that 

Intx = ζx
-1 . ℜx

-1 is continuous at e. 

             To prove the converse, we first remark that from (b) it follows that ν ∈ 1−β (e) ⇒ 1−ν ∈ 

1−β (e), and therefore, replacing ν by 1−ν in (c), that for all  µ ∈  β(e), and for all ε∈   I0 there exists a 

ν ∈ β (e) such that  

  µενν ≤−−1. . This proves that 

                        h : G× G → G : (x, y) a  xy-1         is continuous in (e,e). 

As it follows from (a) that ζa (res.ℜa) is continuous at a and e, we immediately obtain the continuity 

of m at (a,b) from scheme: 

                   ζa-1×ζb-1            m       Intb       ζab
-1

         
                                                   G × G     →      G ×  G →  G   →  G  →  G 

(as successively (a, b) a  (e,e) a  ea  ea  ab-1 ). Then apply Proposition 2.1. 

         Theorem 2.4   Let (G, .) be a group and ℑ a family of fuzzy subset of  G such that the following 
hold: 

(a) ℑ  is a filterbasis, such that µ(e) = 1 for all µ ∈ℑ. 

(b) For all µ∈   ℑ and for all  ε ∈  I0 there exists ν ∈ℑ  such that  ν -ε  ≤ 1−µ . 

(c) For all µ ∈  ℑ and for all ε ∈ I0 there exists ν ∈ ℑ such that ν. ν - ε ≤ µ. 

(d) For all µ ∈  ℑ, for all ε  ∈I0   and for all   x ∈ G   there exists ν ∈ ℑ  such that  

      1x. ν.1x-1-ε  ≤ µ. 

         Then there exists a unique fuzzy T-neighborhood system β such that ℑ is a basis for the fuzzy T-

neighbourhood system at e, β(e) and β is compatible with the group structure. 

This neighbourhood system is given by  
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    β(x) = {1x.µ | µ∈  ℑ }-1  = {µ .1x | µ∈  ℑ}-1 , x∈   G.                                    (1) 

     Proof.  It follows already from the preceding theorem that if fuzzy T-neighborhood system exists, 

compatible with the group structure of G, it must be given by (1), and so it is unique. It follows also from 

the preceding theorem that if (β (x))x∈G , defined by 

(1) Is a fuzzy T-neighborhood system, it is compatible with the group structure. So we have only to 

check the condition (FNS3). 

Given β = 1x. µ∈   β(x) with µ∈  ℑ, and given ε∈  I0, we take ν  ∈ ℑ   such that                                 ν. ν  

- ε ≤ µ, and for all z ∈ G we take βεz  = 1z . ν.  We have for all y∈  G that 

Sup βεx(z) ∧ βεx (y) - ε ≤ sup βεz (z) ∧ βεz (y) - ε 
                   z∈G          z∈G 
            = supv(x-1 z) ∧ ν (y-1 z)-ε 
               z∈G 

            = sup ν (x-1 yt ) ∧ ν (t-1)-ε 
               t∈G 

            = ν. ν (x-1 y)- ε  

            ≤ µ(x -1 y) 

            = 1x .µ (y)  

            = β (y)                  and this ends the proof 

      Remark that if G is a commutative group then 1x.ν.1x-1 = ν for all ν ∈ IG  and x ∈  G.   Remark 

also that if G is a group and β a fuzzy T-neighborhood system on G, then it is immediate that the 

continuity of h at (e,e) is equivalent to the continuity of m at (e,e) togther with that of r at e. there for 

the conditions (b) and  

(c ) in Theorem 2.3 can be replaced by the unique condition: 
(c')  For all µ ∈ β (e) and for all ε ∈  I0 there exist ν ∈  β (e) such that ,. 1 µενν ≤−−   
i.e., h is continuous at (e,e). 
Theorem 2.5 If (G, .,t(β))is a fuzzy T-neighborhood group then the closure operator of (G, t(β)) is 

given for all µ ∈ IG and x ∈ G by 

 µ (x)  = inf          sup µ T ν (s) 
                                                               ν ∈β(x)     s∈G 

                                                                            = inf        sup µ(s) T ν (t) 
                                        ν∈β(e)   st-1=x 

                                                                            = inf         sup µ(s) T ν (t) 
                                                                              ν ∈β(e)    t-1s=x 
 
     Proof.  Let µ ∈  IG  and x∈ G. then from proposition 2.3 [13] we have  

µ  (x)  = inf       sup µT ν (s)  
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                 ν ∈β(x)  s∈G 

               = inf        sup µ (s) T ζx(ν) (s)  
                 ν∈β(e)   s∈G 

                                                               = inf          sup µ (s) T ν (x-1 s) 
                           ν ∈β(e)   s∈G 

                                                               = inf         sup µ (s) T ν (t) 
                 ν ∈β(e)  st-1 =x 
the third formula is proved analogously. 
 
Theorem 2.6  Let (G, ., t(β)) and (G' , ., t(β)) be fuzzy T-neighbourhood groups, and           f : G → G' 

a group-homomorphism. Then f is continuous if and only if  f is continuous at one point. 

      Proof.   We have only to show that if f is continuous at a, it is continuous at each  

x ∈  G. If  x' = f(x) ,let µ' ∈ β’ (x') then ν' = 1x'a'-1.µ ' ∈  β' (a') (with a' = f(a) ), so we can find ν ∈  β 

(a) such that f (ν) ≤ ν'. 

    Now µ = 1xa
-1  ν ∈  β (x) while from Corollary 2.1, it follows that 

f(µ)  = f(1x. 1a . ν ) 

                                                                                =1f(x) .1f(a) 
-1 .f(ν) 

                                                                                ≤ 1x’ 1a’
-1 . ν’ 

                                                                                = µ' , 

hence the result follows. 
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