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ABSTRACT 

 The hydromagnetic instability of compressible hollow jet involved with surface tension is 
discussed in the axisymmetric mode for all short and long wavelengths. The dispersion 
relation is derived and discussed analytically and numerically. The axial magnetic fields 
inside the gas and liquid regions have stabilizing effects for all short and long wavelengths. 
This is physically interpreted that the axial field exerts a strong effect which causes the 
bending and twisting of the magnetic lines of force. The compressibility effects need careful 
treating. Here the incompressible fluid result is obtained as a  tends to ∞ ( a is the sound speed 
in the fluid). For finite value of a  (i.e. compressible fluid), the temporal amplification is 
larger than that in the incompressible case. So the compressibility has a strong destabilizing 
tendency and increase the unstable domains. The streaming is destabilizing for all short and 
long wavelengths. The capillary force is destabilizing for small wave numbers while it is 
stabilizing for all the rest wavelengths. Whatever the stabilizing effect of the electromagnetic 
force is strong enough, the capillary, streaming and compressible instability could not be 
suppressed and the model will be always unstabl 
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INTODUCTION 
 
The stability and oscillation of full liquid jet endowed with surface tension or/and acted by 
electromagnetic force have been documented in several reported works  based on the linear 
perturbation technique of small disturbance. See Rayligh (1945) , Lin (1976), Drazin and Reid 
(1980), Chandrasekhar (1981), Avital (1995) and Radwan (2004). The instability of hollow 
jet ( gas cylinder penetrated in a liquid ) acted by surface tension only is envised and studied 
for first time in the scientific province by Chandrasekhar ( for axisymmetric mode (m=0) , m 
is the azimuthally wave number)only . Also Drazin and Reid (1980) and Kendall (1986) gave 
an idea about such problem to be done mathematically for axisymmetric and non-
axisymmetric . In such work Channdrasekhar (1981), the inertia of the liquid is considered to 
be predominate over that of the gas and consequently the gas inertia force is neglected. Cheng 
(1985) elaborated the capillary stability of a streaming gas jet in a liquid, taking into account 
the inertia of both incompressible gas and liquid . However one has to infer here that the 
result given by Cheng (1985), in Eqs. (4) and (5), are incorrect in the third term. In fact the 
term ( )2221 oRks −−  must be in the numerator as it is clear from Eq.(3) in(1985) . See also 
equations (45),(46) and (48) in the present work and Drazin & Reid's result (1980) p.16 and 
also Chandrasekhar's dispersion relation (1981) p.538 and p.540 ( Eqs. (147) and (155) there). 
Radwan(1991)  has examined the effect of a magnetic field on the capillary instability of an 
incompressible inviscid hollow jet. 
 
Here we extend the latter works by considering the liquid is compressible, which means that 
the velocity is not solinoidal and that the density is not constant. 
 
BASIC  STATE 
 
We consider a hollow jet which is a gas cylinder pervaded into a liquid. In the initial state the 
gas cylinder is of radius Ro. The liquid is assumed to be non-viscous, perfectly conducting 
and compressible (i.e. its density ρ will not be constant) and pervaded by the uniform 
magnetic field ( )oo HH ,0,0= . The gas is pervaded by the uniform magnetic field 

( )o
g
o HH α,0,0=  where Ho is the intensity of the magnetic field in the unperturbed state, 

while α is parameter satisfying certain restriction. The components of the vector fields Ho and 
Ho

g are considered along the cylindrical coordinates ( )zr ,,ϕ  system with the z-axis 
coinciding with the axis of the hollow model jet. Each of the gas and liquid is considered with 
constant magnetic permeability. 
 
The acting forces on the present model of a compressible hollow jet are the electromagnetic, 
pressure gradient and capillary forces. Under the present circumstances, the MHD basic 
equations for describing the motion of a compressible fluid model are given as follows. See 
Lamb (1959), Roberts (1967), Bernstein (1983), Mayer (1987) and Radwan (2005). 
 
In the liquid 
 
The equation of motion 
 

( ) ( ) HHPuu
t
u

∧∧∇+−∇=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ µρ                                            (1) 
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Equation of continuity  

( ) 0=⋅∇+
∂
∂ u

t
ρρ                                           (2) 

 
Equation of conservation of energy  

( ) ( )uPTu
t
TCv ⋅∇−=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ρ                                         (3) 

 
Equation of state  

γρKP =                                            (4) 
 
Gauss' law 
  0. =∇ H                                           (5) 
 
Evaluation equation of magnetic field in perfectly conducting fluid  

( ) ( ) ( ) ( )HuuHuHHu
t
H

∇⋅−⋅∇−∇⋅=∧∧∇=
∂
∂                                       (6) 

In the gas region 
  

0=⋅∇ gasH                                            (7) 
 

0=∧∇ gasH                                            (8) 
 
Along the gas-liquid interface, the  surface  pressure  due  to  the  capillary  force  is  given by  
 

( )NSPs .∇=                                            (9) 
 
with 
 1

2
1

1. −− +=∇ rrN                                          (10) 
 
Here u and P are the liquid velocity and kinetic pressure, H is the magnetic field intensity, T is 
the temperature of the liquid, Cv is the specific heat of constant volume, γ(= (Cp/Cv)) is the 
ratio of specific heats of the liquid, S is the surface tension coefficient, while r1 and r2 are the 
principle radii of curvature. N is,  a  unit  vector  outward  normal  to  the  performed   
interface f(r, z, t) = 0, given by 
   

( ) ( )tzrftzrfN ,,,, ∇∇=                                         (11) 
 
In the unperturbed state, we consider the liquid streams with the velocity uo = (0, 0, U). The 
unperturbed state is studied and consequently the kinetic pressure of the liquid is  given  by  

( ) gas
o

o

o
o P

H
R
SP +−+−= 1

2
2

2

2 α
µ

                            (12) 

In the absence of the capillary force effect (S = 0),  the  pressure Po is  positive as  long  as  
(α > 1). However the model will collapse as (α = 1). Also if we neglect the surface tension 
effect, so g

oP  must be greater than ( )2
oRS  to avoid the collapsing of the model. 
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 LINEARIZATION 
    
We assume a small axisymmetric disturbance along the gas-liquid interface, then for small 
departure from the unperturbed state, every physical quantity χ(r, z, t) may be expressed, see 
Radwan (2004) and (1996) as 
 
( ) ( ) ( )zrtrtzr o ,)(,, χεχχ +=                                            (13) 

 
where the subscript zero characterizes quantities in the initial state while those with the index 
unity are their increments. Here χ stands for ρ, P, u, H, Hgas, N and the radical distance of the 
gas cylinder. The amplitude of the perturbation ε(t) is given by 
 
( ) ( )tt o σεε exp=                                            (14) 

 
where σ is the growth rate of instability or rather the oscillation frequency if σ( = i ω with i = 
(-1)½ the imaginary factor) is imaginary. Consider an axisymmetric sinusoidal propagating 
wave along the gas-liquid interface. For a single Fourier term and based on the linearized 
perturbation technique, the perturbed radial distance of the gas cylinder is being 
 

1RRr oo ε+=                                                                                                             (15) 
 
with 

( )tikzR σ+= exp1                                              (16) 
 
The second term in the right side of (15) represents the elevation of the surface wave 
measured from the unperturbed position with k is the longitudinal wave number. 
 
Based on the foregoing expansions, the relevant perturbation equations are given by: 
 

( ) ( ) 111
1 ∏−∇=∇⋅−∇⋅+

∂
∂ HHuu

t
u

o
o

o ρ
µ                        (17) 

 
( ) ( ) ( ) ( ) ( )ooooo HuuHHuHuuHH ⋅∇+⋅∇−∇⋅−∇⋅−∇⋅= 111111σ                   (18) 

 
01 =⋅∇ H                           (19) 

 
1

2
1 ρaP =                           (20) 

 

( ) 011
1 =+⋅∇+

∂
∂

oo uu
t

ρρ
ρ                        (21) 

 
0^,0 11 =∇=⋅∇ gasgas HH                   (22),(23) 
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and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+= 2
1

2
2

121 z
R

RR
R
SP o

o
s                                                               (24) 

Where 

( )111 2
HHPo ⋅+=∏

µρ                               (25) 

 
is the total magnetohydrodynamic pressure which is the sum of the perturbed kinetic pressure 
P1 of the liquid and the magnetodynamic pressure (µ/2) (H.H)1, due to electromagnetic acting 
force. While a  is the speed of sound in the compressible liquid defined by: 
 

( )2
1

ooPa ργ=                                (26) 
 
By combining equations (20) and (21), we get 
 
( ) ( )1

2
1 uaPikU o ⋅∇−=+ ρσ   

 
In view of the time-space dependence and according to the linear perturbation technique used 
for solving the stability problems of cylindrical models (cf. Chandrasekhar (1981)and Radwan 
(2005), every fluctuating quantity χ1 (r, z, t) could be expressed as 
 

( ) ( ) ( )ikztrtzr o += σχεχ exp,, *
11                            (27) 

 
By the use of the expansion (27), the perturbed equations (17)-(24) are solved and the 
perturbed quantities u1, P1, ρ1, H1, H1

g, T are identified. These variables contain constants due 
to integration. Such constants may be determined upon applying the following boundary 
conditions. 
 
(i) The normal component ur of the velocity vector u must be compatible with the velocity of 
the perturbed gas-liquid boundary across the interface (15) at r = Ro.  
This condition yields 
  

( ) 1
1

1 Ru
t

R
u or ∇⋅+

∂
∂

=                  (28) 

 
(ii)  The jump of the normal component of the magnetic field vanishes across the liquid-gas 
interface at r = Ro. This condition reads 
  

N. < H > = 0                  (29) 
 

Up to first order, the condition (29) gives 
 
No. < H1 > + N1 . < Ho > = 0                           (30) 
 
with  

liquidgas HHH −=〉〈                  (31) 
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)0,0,1(=oN                             (32) 
( ) ( )ikztikN +−= σexp,0,01                                     (33) 

    
(iii) The balance of the normal component of the total stress tensor across the gas-liquid 
interface at (r = Ro) is being 

( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡

∂
⋅∂

+⋅+=
∂
⋅∂

+
∂
∂

+∏
r

HHRHHP
r

HHR
r
P

R
gas
o

gas
ogasgas

s
ooo

o 111111 22
µµρ  

                                                                                                                              (34) 
 
Consequently the authors finally, after calculations, obtained the following. 
  
The total MHD pressure  

( ) ( )( ) ( ) 1
22

1
1 RrKikU

yK oA
o

ησ
η ι Ω++−=∏                         (35) 

The magnetic field in the liquid region 

( ) 21211 eP
a

H
u

ikU
ikH

H
o

oo

ρσ
+

+
=                         (36) 

  
The velocity components of the liquid   

( )
( )( ) rikU

ikUu
A

r ∂
∏∂

Ω++
+

−= 1
221 σ

σ                        (37) 

01 =φu                                                          (38) 

( ) ( )[ ] 1222
2

2

1 1
−

++⎥
⎦

⎤
⎢
⎣

⎡
+−+= o

o
z HkikU

a
H

ikUiku µσ
ξ
µ

σ                     (39) 

The magnetic field in the gas region  

( )1
1

1 )(
)(

RkrI
xI

Hi
H o

ogas ∇=
α

                       (40) 

The curvature pressure along the gas-liquid interface  

( ) 1
2

21 1 Rx
R
SP

o
s −=                                    (41) 

with  
( )

ξ
ση 2

2
22

a
ikUk +

+=                         (42) 

( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

+= 2
2

2

2

2

1 k
a
ikU

ikU
H o σ

σρ
µ

ξ                      (43) 

 
Here x (= k Ro) is the ordinary longitudinal dimensionless wave number, y(= η Ro) the 
compressible longitudinal dimensionless wave number (where η→ k as a  → ∞), Io and Ko 
are the modified Bessel functions of the first and second kind of order zero, and 

( ) 2
122

ooA kH ρµ=Ω  is Alfven wave frequency defined in terms of Ho. 
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By resorting to the foregoing solutions (12) and (35)–(43) of the basic equations in the 
unperturbed and perturbed states for compressibility condition (34), the following stability 
criterion is obtained  

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
+−=+

)(
)(1

)()(
)()( 2

3
22

2

2
2

yK
yyKx

R
S

yKxI
yKxIxyx

R
HikU

o

o

oooo

oo

oo

o
ι

ι

ι

ρ
α

ρ
µσ             (44) 

 
 
 ON PREVIOUS WORKS  
 
 The dispersion relation (44) is valid for discussing the MHD  stability of compressible 
hollow jet endowed with surface tension and acted by inertia and electromagnetic forces. This 
relation related the growth rate σ with the wave numbers x and y; the modified Bessel 
functions Io and Ko of the first and second kinds of order zero and their derivatives, the 
parameters ρo, Ro, Ho, µ and S of the problem and with the fundamental quantities 

( )2
1

22
oo HR µρ  and ( )2

1
3 SRooρ  as a unit of time. 

 
 The relation (44) is a general relation from which we may recover other reported works as 
limiting cases. 
 
 For an ideal hollow jet endowed with surface  tension  (Ho = 0 and a  → ∞)   at  rest   initially 
 ( U=0 ), we have  

( ) ( ) ( )xKxK
xK
xxK

x
R
S

o
ooo

1
12

3
2 ,

)(
)(

1 −=−
−

= ι
ιρ

σ                          (45) 

This relation has been given by Chandrasekhar (1981). 
 
If we assume that the fluid is incompressible ( a  → ∞) and initially the fluid is at rest (U = 0), 
the dispersion relation (44), yields 
  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−+⎥

⎦

⎤
⎢
⎣

⎡
−=

)()(
)()(

)(
)(

1
1

1222
2

2
12

3
2

xKxI
xKxI

xx
R

H
xK
xxK

x
R

S

o

o

oo

o

ooo

α
ρ
µ

ρ
σ             (46) 

 
This is the magnetohydrodynamic dispersion relation of a hollow jet subjected by the 
capillary and MHD forces derived and documented by Radwan (1994). 
 
 The magnetodynamic dispersion relation of a streaming compressible hollow jet may 
obtained from equation (44), by just supposing (S = 0), in the form  
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−=+

)()(
)()(22

2

2
2

yKxI
yKxIxyx

R
HikU

oo

oo

oo

o
ι

ι

α
ρ
µσ               (47) 

 
The dispersion relation of a streaming compressible hollow jet subjected by the capillary 
force could be obtained from (44) as (Ho=0), in the form 
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( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−=+

)(
)(

1 2
3

2

yK
yyK

x
R

SikU
o

o

oo

ι

ρ
σ                (48) 

 
which is valid for all short and long wavelengths. 
 
DISCUSSION AND RESULTS 
  
 In order to investigate the instability and oscillation of the present model we have to write 
down about the characteristic and behaviour of the modified Bessel functions. 
The recurrence relations of the modified Bessel functions(cf. Abramowitz and Stegun (1970)  
are given by 
  

)()()(2 11 xFxFxF mmm +− +=ι                (49) 
 
where )(xFm

ι  stands for )(xI m
ι   and )(xKm

ι−   while Fm(x) stands for Im(x) and Km(x). By the 
use of relations (49) and the fact that Io(x) is positive definite and monotonic increasing while 
Ko(x) is monotonic decreasing but never negative for non-zero real value of x, we have  
 
Io(x) > 0, Ko(x) > 0, x ≠ 0                  (50) 
 
 0)(,0)( 00 <> xKxI ιι                                        (51) 

 
Based on the inequalities (50) and (51), we get  

0
)(
)(
<

xK
xxK

o

o
ι

                 (52) 

0
)()(

)()( `2

<
xKxI

xKxIx

oo

oo
ι

ι

                (53) 

By utilizing (52) for (48)  as (U = 0), we see that  

( )
0

/ 2
13

2

≤
oo RS ρ

σ ,               as 1 ≤ x < ∞             (54) 

( )
0

/ 2
13

2

>
oo RS ρ

σ ,              as 0 < x < 1             (55) 

 
This means that the cylindrical hollow jet is capillary unstable only for small domain of wave 
number while it is stable in all other domains. 
 
From the view point of the inequality (53) the dispersion relation (47) reveals that both the 
magnetic fields pervaded in the gas and liquid regions have stabilizing effects. The stabilizing 
effect of the magnetic field in the gas region is valid for all short and long wavelengths. The 
analytical discussions indicate that the streaming has strong destabilizing effect. 
 Here we seek very important task concerning the effect of the compressibility on the stability 
of the hollow jet model which is in hand . 
In the earlier studies of incompressible hollow jet by several authors (Chandrasekhar (1981), 
Drazin & Reid (1980), Cheng (1985), Kendall (1986), Radwan (1991)…. etc.) that give rise 
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to the classical dispersion relation presuppose that the fluid moves incompressible i.e., that the 
divergence of the fluid velocity vanishes. that the compressibility has a stabilizing tendency. 
See also Chen (2003) and Shkadov& Sisoev (1996). 
  
In reality the compressibility effects need careful treatment in each case of different models. 
Here we found that the incompressible fluid results are obtained as 2a → ∞ ( a  is sound 
speed in the fluid). However for finite values of a (i.e. the fluid is compressible) it is expected 
that the growth rate values are larger than in the case of incompressible fluid. The unstable 
region of a compressible fluid is much larger than that of an incompressible fluid in the wave 
number domain of instability. This shows that, in our case of a hollow jet that the 
compressibility has a strong destabilizing tendency for all ( short and long ) wavelengths. 
Any how such discussion and results could be judged and identified via the numerical 
analysis of the general dispersion relation (44) for different values of the different factors of 
the problem. 
 
NUMERICAL ANALYSIS 
 
The dispersion relation (44) has been discussed numerically for all short and long 
wavelengths in which the dimensionless wave number is taken to be 0 < x ≤ 3 and the 
corresponding values of σ or ω in the normal unit ( )3

oRS ρ   where ( ω/2π is the frequency 
of oscillation ) are determined. This has been performed for various values of ( )so HH  and 
α. Then for every couple values of ( ( )so HH ,α), different values of a  is considered where 

( )os RSH µ=  . 
  
The numerical data are collected in tables, see tables  ( 1 ) ⎯ ( 5 )  and presented in graphs,  
see figures  ( 1 ) ⎯ ( 5 ). There are many features of interest in these tables and figures. 
 
Corresponding to  ( ( )so HH ,α) = (0, 0.1) as a = 1,5,10,20 and 30; it is found that the 
unstable domains are  0 < x < 1.36928 , 0 < x < 1.133103 , 0 < x < 1.085419 , 0 < x < 
1.050069  and  0 < x < 1.04138 , while the neighboring stable domains are given by  1.36928 
< x < ∞ ,  1.133103 < x < ∞ , 1.085419< x < ∞ , 1.050069 < x < ∞  and 1.04138 < x < ∞ . The 
critical points at which the transition from stable states to those of instability are occurred at  
xc= 1.36928 , 1.133103 , 1.085419 , 1.050069 and 1.04138 respectively. See figure ( 1 ) and 
table ( 1 ) .  
Corresponding to  ( ( )so HH ,α) = (0.1, 1) as a = 1,5,10,20 and 30; it is found that the 
unstable domains are  0 < x < 1.353 ,  0 < x < 1.12614 , 0 < x < 1.07631 , 0 < x < 1.04187  
and  0 < x < 1.03322 , while the neighboring stable domains are given by  1.353 < x < ∞ ,  
1.12614 < x < ∞ , 1.07631< x < ∞ , 1.04187 < x < ∞  and 1.03322 < x < ∞ . The critical 
points at which the transition from stable states to those of instability are occurred at  xc= 
1.353 , 1.12614 , 1.07631 , 1.04187 and 1.03322 respectively. See figure  (2) and table  ( 2 ). 
 
Corresponding to  ( ( )so HH ,α) = (0.3, 1) as a = 1,5,10,20 and 30; it is found that the model 
at hand is completely stable for all values of a for all short and long wavelengths. This means 
that the stabilizing effect of the magnetic field is predominating the compressibility 
destabilizing influence, and there is no any unstable state any more. See figure (3) and table 
(3). 
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 Corresponding to  ( ( )so HH ,α) = (0.1, 2) as a= 1,5,10,20 and 30; it is found that the 
unstable domains are given by   0 < x < 1.84733 ,  0 < x < 1.334 , 0 < x < 1.272 , 0 < x < 
1.149  and  0 < x < 1.1036 , while the neighboring stable domains are given by  1.84733 < x < 
∞ ,  1.334 < x < ∞ , 1.272< x < ∞ , 1.149 < x < ∞  and 1.1036 < x < ∞ . The critical points at 
which the transition from stable states to those of instability are occurred at  xc= 1.84733 , 
1.334 , 1.272 , 1.149 and 1.1036 respectively. See figure  (4) and table  (4). 
 
 Corresponding to  ( ( )so HH ,α) = (0.1, 3) as a = 1,5,10,20 and 30; it is found tha the 
unstable domains are  0 < x < 2.6997 ,  0 < x < 1.75392 , 0 < x < 1.51354 , 0 < x < 1.336269 
and  0 < x < 1.28833 , while the neighboring stable domains are given by  2.6997 < x < ∞ ,  
1.75392 < x <∞ , 1.51354 < x < ∞ , 1.336269 < x < ∞  and 1.28833 < x < ∞ . The critical 
points at which the transition from stable states to those of instability are occurred at  xc= 
2.6997, 1.72392 , 1.51354 , 1.336269 and 1.28833 respectively. See figure  (5) and table  (5) . 
 
From the foregoing discussion we may conclude the following results. 
 
1- The unstable domains are decreasing with increasing the values of compressibility 
parameter a. This means that the analytic result that the compressibility is stabilizing and 
verified numerically. 
 
2-  The magnetic field parameter α is stabilizing. 
 
3- The magnetic field is strong stabilizing whatever its smallest value. 
 
4- The capillary force destabilizing effect may be suppressed by the stabilizing effect of the 
magnetic field and compressibility, and moreover stability sets in. 
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1 5 10 20 30 a 
x σ* 

0.1 0.044306 0.066265 0.084976 0.126554 0.201214 
0.2 0.087892 0.13092 0.167511 0.247905 0.384195 
0.3 0.13 0.192263 0.245102 0.358985 0.535677 
0.4 0.169735 0.248495 0.315062 0.454929 0.649015 
0.5 0.206785 0.297595 0.37444 0.53099 0.722378 
0.6 0.239604 0.337165 0.41975 0.582271 0.755831 
0.7 0.267301 0.364184 0.446598 0.602968 0.748438 
0.8 0.289524 0.3745 0.448642 0.584748 0.695334 
0.9 0.301529 0.361497 0.415143 0.511877 0.581421 
1 0.303891 0.312261 0.320587 0.336659 0.347728 
   ω* 

1.1 0.291853 0.183633 0.13245 0.336192 0.413774 
  ω*    

1.2 0.258438 0.261044 0.445926 0.651673 0.736311 
1.3 0.185329 0.464747 0.671841 0.910042 0.998151 

 ω*     
1.4 0.12339 0.646598 0.886071 1.152957 1.240371 
1.5 0.291952 0.826442 1.099945 1.390446 1.474449 
1.6 0.423332 1.009733 1.317232 1.626416 1.705356 
1.7 0.548571 1.198649 1.539425 1.862726 1.935691 
1.8 0.674062 1.394177 1.767119 2.10039 2.166979 
1.9 0.802303 1.596778 2.000487 2.340015 2.400175 
2 0.937195 1.806632 2.2395 2.581993 2.635893 

2.1 1.071415 2.023769 2.484017 2.826595 2.874559 
2.2 1.213371 2.248121 2.733847 3.074022 3.116456 
2.3 1.360654 2.479573 2.988774 3.324425 3.36177 
2.4 1.513433 2.717966 3.248584 3.577932 3.610665 
2.5 1.671816 2.963123 3.513047 3.834619 3.863211 
2.6 1.835879 3.214856 3.781984 4.094582 4.119466 
2.7 2.005659 3.472967 4.055194 4.357866 4.379475 
2.8 2.181185 3.737245 4.332505 4.624532 4.643242 
2.9 2.362473 4.007493 4.613762 4.89463 4.910774 
3 2.54952 4.283527 4.898826 5.168162 5.182075 
xc 1.36928 1.133103 1.085419 1.050069 1.04138  

 
Table (1) 

Values of the temporal amplification σ* (or the oscillation    frequency ω*)  
for Ho/ Hs = 0.0, α = 0.1.  
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1 5 10 20 30 a 
x σ* 

0.1 0.044045 0.065803 0.084321 0.125539 0.199549 
0.2 0.087464 0.13 0.166259 0.245892 0.380959 
0.3 0.129383 0.190893 0.243175 0.355921 0.530952 
0.4 0.169086 0.246617 0.31241 0.450766 0.642853 
0.5 0.205694 0.295161 0.370985 0.525623 0.714794 
0.6 0.238265 0.334081 0.415367 0.575517 0.746693 
0.7 0.265669 0.360319 0.441044 0.594508 0.737435 
0.8 0.286557 0.369594 0.44152 0.573925 0.681689 
0.9 0.299149 0.355092 0.405512 0.496991 0.563028 
1 0.300965 0.303101 0.30527 0.309564 0.312615 
   ω* 

1.1 0.288167 0.164165 0.170068 0.364678 0.443182 
  ω*    

1.2 0.253476 0.275928 0.460576 0.66864 0.75452 
1.3 0.177116 0.474647 0.683096 0.923553 1.012591 

 ω*     
1.4 0.136638 0.654813 0.895779 1.164646 1.252749 
1.5 0.298647 0.833775 1.108738 1.400968 1.485486 
1.6 0.428602 1.016504 1.325398 1.63609 1.715401 
1.7 0.553173 1.205027 1.547123 1.871751 1.945024 
1.8 0.678233 1.400264 1.774455 2.108886 2.175721 
1.9 0.806226 1.602623 2.007528 2.348084 2.408429 
2 0.938243 1.812308 2.246293 2.589693 2.643738 

2.1 1.074988 2.029286 2.490594 2.833976 2.882053 
2.2 1.21684 2.253513 2.740234 3.081087 3.123644 
2.3 1.364001 2.484848 2.994991 3.331276 3.368694 
2.4 1.516707 2.723142 3.254643 3.58455 3.617347 
2.5 1.675052 2.968208 3.518977 3.841042 3.869625 
2.6 1.839049 3.21986 3.787783 4.100817 4.125736 
2.7 2.008781 3.477887 4.060874 4.363932 4.385567 
2.8 2.184262 3.742098 4.338064 4.630443 4.649172 
2.9 2.365523 4.012281 4.619221 4.900388 4.916554 
3 2.552548 4.288251 4.904182 5.17379 5.187991 
xc 1.35300 1.12614 1.07631 1.04187 1.03322 

 
 

Table (2) 
Values of the temporal amplification σ* (or the oscillation    frequency ω*) 

for Ho/ Hs = 0.1, α = 1. 
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1 5 10 20 30 a 
x ω* 

0.1 0.302704 0.308794 0.315737 0.336419 0.388201 
0.2 0.605302 0.617237 0.630793 0.670559 0.763643 
0.3 0.907695 0.925095 0.944495 1.00035 1.118168 
0.4 1.209773 1.231666 1.256185 1.324047 1.449655 
0.5 1.51143 1.536945 1.565241 1.640366 1.760224 
0.6 1.812567 1.840516 1.871096 1.948461 2.053801 
0.7 2.113055 2.142032 2.1732 2.247986 2.334395 
0.8 2.412851 2.441176 2.471141 2.538838 2.605218 
0.9 2.711789 2.737634 2.764435 2.821294 2.868606 
1 3.009794 3.031117 3.052769 3.095721 3.126148 

1.1 3.306751 3.32134 3.335821 3.362618 3.378846 
1.2 3.602555 3.608047 3.613364 3.622513 3.627272 
1.3 3.897114 3.890977 3.88519 3.875926 3.87177 
1.4 4.190322 4.16988 4.151181 4.1233 4.11253 
1.5 4.482053 4.444547 4.411224 4.365066 4.349598 
1.6 4.772232 4.714764 4.665276 4.601554 4.582979 
1.7 5.060751 4.980341 4.913298 4.833084 4.81265 
1.8 5.347495 5.241088 5.155298 5.059852 5.038561 
1.9 5.632362 5.496845 5.391299 5.282045 5.260637 
2 5.91526 5.74746 5.621343 5.499791 5.478814 

2.1 6.196079 5.992796 5.845477 5.713178 5.693022 
2.2 6.47472 6.232728 6.063769 5.922255 5.903186 
2.3 6.751074 6.46714 6.276281 6.127055 6.109223 
2.4 7.025048 6.695924 6.483078 6.327582 6.311085 
2.5 7.296533 6.918996 6.684235 6.523826 6.508679 
2.6 7.565421 7.136267 6.879797 6.715743 6.70194 
2.7 7.831628 7.347666 7.069844 6.903311 6.881012 
2.8 8.095036 7.553119 7.254412 7.086459 7.075168 
2.9 8.355543 7.752567 7.433546 7.265143 7.255033 
3 8.61306 7.948792 7.607286 7.439281 7.430249 

 
Table (3) 

Values of the oscillation frequency ω* for Ho/ Hs =0.3 , α = 1. 
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1 5 10 20 30 a 
x σ* 

0.1 0.059582 0.077253 0.093691 0.132337 0.204494 
0.2 0.118701 0.153118 0.185176 0.259715 0.391139 
0.3 0.176761 0.226168 0.272195 0.377333 0.547083 
0.4 0.233165 0.294907 0.352392 0.480645 0.666018 
0.5 0.287367 0.357729 0.423261 0.565367 0.746586 
0.6 0.338748 0.412832 0.48198 0.627256 0.789487 
0.7 0.386639 0.458138 0.525205 0.661695 0.794921 
0.8 0.430325 0.49108 0.548726 0.662741 0.760422 
0.9 0.468967 0.50834 0.546553 0.620878 0.677547 
1 0.501627 0.505183 0.508793 0.515946 0.521018 

1.1 0.527171 0.473878 0.414005 0.269141 0.110091 
    ω* 

1.2 0.544197 0.398748 0.161648 0.450999 0.568168 
   ω*   

1.3 0.550908 0.224967 0.432643 0.753571 0.858914 
  ω*    

1.4 0.54494 0.329909 0.691788 1.013287 1.112425 
1.5 0.522638 0.572678 0.92617 1.259087 1.35178 
1.6 0.478059 0.78457 1.155076 1.499497 1.58514 
1.7 0.399249 0.990252 1.384597 1.738102 1.816387 
1.8 0.248435 1.196746 1.617062 1.976821 2.04765 

 ω*     
1.9 0.262044 1.407018 1.853591 2.214 2.280221 
2 0.485994 1.622433 2.0947 2.458233 2.514917 

2.1 0.667428 1.843665 2.340528 2.702047 2.752283 
2.2 0.837437 2.071111 2.591092 2.948391 2.992686 
2.3 1.004356 2.304897 2.846317 3.197499 3.236371 
2.4 1.171734 2.545036 3.106081 3.449536 3.483533 
2.5 1.341413 2.791469 3.370237 3.704646 3.734274 
2.6 1.514464 3.044142 3.63864 3.962928 3.988671 
2.7 1.691567 3.302878 3.911138 4.224476 4.246775 
2.8 1.873126 3.567548 4.187589 4.489343 4.508625 
2.9 2.05949 3.837981 4.467852 4.757604 4.774233 
3 2.250844 4.114013 4.751831 5.029274 5.04359 
xc 1.84733 1.334 1.272 1.149 1.10361  

 
Table (4) 

Values of the temporal amplification σ* (or the oscillation    frequency ω*) 
for Ho/ Hs = 0.1, α = 2. 
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1 5 10 20 30 a 
x σ* 

0.1 0.086493 0.097468 0.11327 0.14757 0.216035 
0.2 0.172624 0.198446 0.224718 0.290666 0.414934 
0.3 0.258019 0.294968 0.332492 0.425006 0.584543 
0.4 0.342301 0.388214 0.434718 0.546681 0.719354 
0.5 0.4251 0.477032 0.529501 0.652173 0.818933 
0.6 0.506034 0.560205 0.614809 0.738336 0.885167 
0.7 0.584671 0.636428 0.688518 0.802229 0.92012 
0.8 0.660621 0.704294 0.748238 0.840797 0.924651 
0.9 0.733417 0.762194 0.791221 0.850347 0.897437 
1 0.802608 0.808295 0.81407 0.825524 0.833607 

1.1 0.867692 0.840375 0.81225 0.757087 0.721412 
1.2 0.928127 0.855652 0.779038 0.624944 0.527257 

     ω* 
1.3 0.983326 0.850382 0.702816 0.356403 0.191565 

    ω*  
1.4 1.032642 0.819151 0.55752 0.47244 0.654599 
1.5 1.075346 0.753072 0.218518 0.815714 0.950053 

   ω*   
1.6 1.110603 0.63456 0.552024 1.097497 1.210174 
1.7 1.137462 0.410663 0.869299 1.358418 1.455974 

  ω*    
1.8 1.154786 0.379579 1.146194 1.61013 1.69542 
1.9 1.161189 0.738072 1.409677 1.857671 1.932403 
2 1.154946 1.021088 1.668463 2.10364 2.169097 

2.1 1.133821 1.283328 1.926372 2.34964 2.406829 
2.2 1.094751 1.538467 2.185328 2.596594 2.646466 
2.3 1.033276 1.792097 2.446361 2.845177 2.88856 
2.4 0.937497 2.046981 2.71005 3.09586 3.133508 
2.5 0.808554 2.30463 2.976715 3.348985 3.381582 
2.6 0.599667 2.565913 3.246521 3.604802 3.63296 

 ω*     
2.7 0.01005 2.831334 3.519574 3.863496 3.887789 
2.8 0.656917 3.10118 3.795866 4.125239 4.146143 
2.9 0.969897 3.375604 4.075426 4.390137 4.408095 
3 1.238556 3.654668 4.352126 4.658272 4.673682 
xc 2.6997 1.75392 1.51354 1.336269 1.28833 

 
Table (5) 

Values of the temporal amplification σ* (or the oscillation    frequency ω*)  
for Ho/ Hs = 0.1, α = 3. 
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Figure (3.1) : Relation between the dimensionless wavenumber x 
and the temporal amplification σ* (or the oscillation frequency ω*) 

for Ho/ Hs = 0.1, α = 1.
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Figure (3.3) : Relation between the dimensionless wavenumber x 
and the temporal amplification σ* (or the oscillation frequency ω*) 

for Ho/ Hs = 0.1, α = 2, U*= 0.
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Figure (3.4): Relation between the dimensionlesswavenumber x 
and the temporal amplification σ* (or the oscillation frequency ω*) 

for Ho/ Hs = 0.1, α = 3, U*= 0.
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Figure (3.2) : Relation between the dimensionless
 wavenumber x and the oscillation frequency ω*

for Ho/ Hs = 0.3, α = 1, U*= 0.
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