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ABSTRACT 
 
The higher orders instability of a gas cylinder ambient with an incompressible inviscid 
liquid endowed with surface tension is analyzed. The perturbation equations up to 
third order are derived and solved. The surface displacements, the velocity potentials 
and the dispersion relations are derived for each order of axisymmetric perturbation. 
It is found that, up to third order, a transition from instability to stability states occurs 
when the perturbed wavelength equals the circumference of the gas cylinder. The 
stability discussions for the present model have been done and for the nonhollow jet 
as well. The hollow jet instability is much larger than that of the nonhollow model. It is 
found that the maximum temporal amplification prevailing in the hollow jet is much 
higher than that of the full fluid jet. These results are consistent with some data of the 
experimental work of Kendall (1986) phys. Fluids 29, 2086, in the first order 
perturbation. 
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INTRODUCTION 
 
In the last decades some studies have examined the instability of a full jet 
surrounded by a vacuum (see Plateau (1973), Rayleigh (1945), Lamb (1945), Drazin 
& Reid (1980), Chandrasekhar (1981) and Radwan (1995)). Kendall (1986) 
performed an experimental study of the instability of annular jets in application to 
astrophysics. Radwan has discussed the capillary instability of a ((1999), (2001) and 
(2005)) hollow jet under different forces. In separate studies Chandrasekhar (1981) 
determined the dispersion of non-viscous, non-streaming hollow cylinder for small 
axisymmetric perturbations and deduced that the unstable waves frequency ω  grow 
in according with  
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Here ρ  and T  are the liquid mass density and surface tension coefficient, x  ( ka= , 
where k is the ordinary wavenumber) is the non-dimension longitudinal wavenumber, 
a  is the gas jet radius, )(1 xK  and )(xKo  are the modified Bessel functions of second 
kind of the first and zero order, respectively.        
 
The present work investigates the higher orders instability of a hollow jet (a gas 
cylindrical jet embedded in a liquid) due to the interaction of the capillary and inertia 
forces where the liquid inertia is greater than that of the gas.   
 
One has to mention here that the phenomenon of a hollow jet may occur in nature 
when a gas escaping from below a liquid layer. For instances in the crust of the earth 
when a gas escapes from below an oil layer or in the sea during geological drillings 
or when the air is pumped into a fluid layer.  
 
 
 MATHEMATICAL FORMULATION 
 
Consider cylindrical interface of radius a , immersed in an inviscid and 
incompressible liquid extending radially to infinity. A cylindrical polar 
coordinates ),,( zr θ  with z-axis coinciding with the axis of the cylinder will be utilized. 
The curvature pressure due to surface tension cf. Radwan (1989), sP , at the gas-
liquid interface S  is      
 

)( ss nTP •∇−= ,                                                                                                          (1) 
 
where sn ( FF ∇∇= / ) is a unit outward vector pointing from gas to liquid region and 

0);,,( =tzrF θ  describe the surface of liquid element at time t. The distribution of the 
equilibrium oP , is given by   
 

a
TPP go −= .                                                                                                                (2) 
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The second term in the right side of (2) represents the contribution due to surface 
tension while gP  is a gas constant pressure: the hollow cylinder has to be filled by a 
gas of constant pressure to insure the equilibrium state. Clearly gP  must be greater 
than aT /  otherwise the configuration will collapse towards a hollow cylinder of 
smaller radius to reach an equilibrium state.  
 
We next consider perturbation of the equilibrium state using a linearized theory to 
that one in description of the break-up of the hollow cylinder. Since the hollow 
cylinder can be unstable for certain wavelengths for the rotationally symmetric 
modes, so non-axisymmetric modes will not be considered. All physical variables are 
normalized with respect to the characteristic length, a   (the radius of the undisturbed 
column) and the characteristic time )2/1(3 )/( −aT ρ . At the initial state, we impose at the 
gas-liquid surface: rotationally sinusoidal perturbation of longitudinal wavenumber k  
and amplitude oη  where 1<<oη . Next we assumed that the column response only to 
the action of the surface tension, all other effects are assumed to be negligible. We 
also assume that the flow of the fluid is remaining irrotational and axisymmetric as in 
the initial state, since the irrotational motion will persist, see Drazin & Reid (1981). So 
that the motion can be described by the velocity potential );,( tzrφ  which satisfies 
Laplace’s equation       
 

02 =∇ φ ,                                                                                                                     (3) 
 
at the free surface 
 

),(1 tzr η+= .                                                                                                              (4) 
 
Here η  is the non-dimension surface wave amplitude as related to the undisturbed 
state. At 0=t , we impose 
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Equation (3) is subjected to boundary conditions 
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at the free surface (4). The velocity potential φ  and the surface amplitude η  are then 
expanded as a perturbation series in terms of )1(<<oη : 
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By the use of the expansions (9) and (10) for (3) and (5)--(8) then expanding by 
utilizing Taylor series around the undisturbed interface surface ( 1=r ) and equating 
the terms of equal powers oη , one obtains a sequence of sets of equations for nφ  
and nη . 
 
First order 

01
2 =∇ φ ,                                                                                                                  (11) 

0,1,1 =− tr ηφ ,             at 1=r ,                                                                                   (12) 
0,11,1 =++ zzt ηηφ ,     at 1=r ,                                                                                    (13) 
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Second order  
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Third order 
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The problem is solved in each order, starting with the lowest one. The system of the 
first perturbation equations (11)--(15) is solved and are consistent with the classical 
results of Chandrasekhar (1981) and Radwan (1989):   
 

)cos()cosh( 11 kztωη = ,                                                                                               (26) 
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where 
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The solution of the second order perturbation eouations is solved on utilizing the 
system of equation (16)--(20). Assuming that the second order perturbation of the 
dimensionless surface wave amplitude );(2 tzη  is of the form 
 

)()2cos()();( 2222 tDkztBtz +=η .                                                                                (28) 
 
Here )(22 tB  is an arbitrary function of time to be determined, while )(2 tD  is (required 
to insure a conservation of mass at 0>t  such that η  satisfies (19)) given by 
 

]2cosh1[
8
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Using the z-dependence for the Laplacian equation (16) then, apart from the singular 
solution, 2φ  is determined   
 

)(2cos)2()( 222 tFkzkrKtA o +=φ ,                                                                               (30) 
 
where )(2 tA  and )(2 tF  are some functions of time. By using equations (26)--(30) for 
equation (17) and equating the coefficients of kz2cos  and those which are 
independent of z; we find that )(2 tA  is given by  
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where dot over the variables indicates the differentiation with respect to the argument 
and 22P  is defined by   
 

4/)21(122 akKP −= ω .                                                                                                (32) 
 
By substitution of equations (26)--(32) into equation (18) and identify the coefficients 
of the trigonometric functions which occurred there, yields  
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such that 
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Moreover, the identification of the coefficients which are independent of z in the 
expression resulting from the substitution of (26)--(32) into (18) degenerates to   
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and 
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where bK  is defined as  
 

)2(/)2( 1 kKkKK ob = .                                                                                               (40) 
 
By substituting from equations (36), (29) and (28) into equation (19), the coefficient 

22a  is given as  
 

)( 222222 cba +−= .                                                                                                      (41) 
 
 Following the same analysis as that of second order; the solution 
corresponding to the third order perturbation can be obtained by the use of the first 
and second orders and the system of equations (21)…(25). In view of (28), the third 
order amplitude ),(3 tzη  can be assumed of the form 
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where 0)(3 =tD  in order to satisfy the conservation of mass and that (42) satisfies 
(24). Using the z-dependence (see (42)), solving (21) and applying the kinematics 
boundary condition (22) (under the present circumstances) we see that ),,(3 tzrφ  
must be   
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which is a finite solution as r tends to infinity.   
 
The use of the continuity condition (23) of the normal component of the total stress 
tensor across the boundary surface at the equilibrium position )1( =r  gives    
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where 
 

)3(/)3( 1 kKkKK oc = ,                                                                                                (46) 
 
and where ib33  )4,.....,1,0( =i ; 31P  and 33P  are given in the appendix. 
 
Clearly from the dispersion relations (45) and (39) for the third and second order 
perturbations, the cut-off wavenumber remains unity as is found as in the linearized 
theory of Chandrasekhar (1981). 
 
 
DISCUSSIONS AND CONCLUSION 
 
Here we have obtained the capillary instability criteria of a gas jet (of negligible 
inertia) immersed in a liquid for the orders third, second and first. These criteria are 
found to be the same in all orders of perturbations. We mean that the cut-off 
wavenumber i. e. the point at which a transition from oscillation to instability states 
occurred, is the same (i. e. 1=k ) in the linear and nonlinear perturbations. This 
occurs as the perturbed wavelength is equal to the circumference of the gas cylinder. 
This behavior is also the same even in the case of full liquid jet ambient with a gas of 
totally negligible influence. Also we found here the gas constant pressure of the gas 
cylinder has no direct influence on the stability of the hollow jet but just to cope with 
the negative pressure due to the curvature of the gas-liquid interface in the 
unperturbed state to maintain and keep the existence of the model.    
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The analytical and numerical analyses of the stability criteria have been shown that 
the stability domain is 10 << k  and that of stability is being ∞<≤ k1  where 1=k  
corresponds to )0( =ω  the marginal stability. The maximum mode of instability is 
found to be 0.8201 (at k=0.484) which is in fact too much larger than that of the full 
liquid jet in vacuum that found to be 0.3433 (at k=0.697) (see Chandrasekhar’s figure 
3, p 541. It is found that the hollow cylinder is also much more stable than the 
nonhollow jet not only in the axisymmetric domain ∞<< k1  but also even in the non-
axisymmetric domain  ∞<< k0  see Radwan (1989) for linear analysis. 
 
Using the properties and behaviour of the Bessel functions (cf. Abramowitz and 
Stegun (1970)) as k  is too much less than unity i. e. for very long wavelengths, we 
get  
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2
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where )(lnγ  is the Eulerian constant. Moreover, as 0→k , we get  
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We deduce that the temporal amplification tends to zero with vertical tangent as 

0→k , in contrast for the full liquid jet in vacuum the temporal amplification 
approaches zero linearly as 0→k . 
 
In general case for any value of k , the temporal amplification pervaded in the hollow 
case is much higher than that pervading in the nonhollow liquid jet, see Kendall 
(1986) (p. 2086). 
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APPENDIX 
 
The coefficients ib33  ( 4,....,2,1,0=i ); 31b  and 33b  which are carried in equations (44) 
and (43) are given explicitly as following.  
 
First ib33  ( 4,....,2,1,0=i ) are 
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where ib33  ( 4,....,2,1,0=i ) will be written down later on while 21 , SS and ib33  
( 4,....,2,1,0=i ) are defined as 
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and  
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The coefficients )(31 tP  and )(33 tP  are given by  
 

)3sinh()sinh()sinh( 13132312131131 tPtSPtSPP ω++= ,                                                   (A.12) 
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where the coefficients ib31  and ib33  (with .4,3,2,1=i ) are defined by   
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