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Abstract 

The Topp-Leone Ailamujia (TL-A) distribution is constructed 
as a new two-parameter lifetime model. The proposed model's hazard 
rate function can be a bathtub or a reversed J-shaped. A variety of 
statistical qualities and reliability features of the TL-A distribution 
have been investigated, including the moments, the moment 
generating function, incomplete moments, mean deviation, and the 
curves of Bonferroni and Lorenz. The functions of mean residual life 
and mean inactive time are also taken into account. The maximum 
likelihood procedure is highlighted for estimating the model 
parameters. To check the behaviour of the estimates, Monte Carlo 
simulations are being performed. Last, the novel model's efficiency is 
tested with a set of real data. 

 

Keywords: Burr–Hatke distribution; Hazard Rate Function; 
Moments; Residual Analysis;  Maximum Likelihood Estimation; 
Monte Carlo Simulation. 

 

1. Introduction  

Lifetime distributions are widely applied in biology, 
engineering, and management. The hazard rate of classical models 
such as exponential, gamma, and Weibull distributions exhibit 
monotonically increasing, monotonically decreasing, or constant 
hazard rates, this is a significant issue because many longevity 
systems utilize bathtub forms for their hazard rates. Many recent 
efforts have been undertaken to develop more flexible statistical 
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distributions in modelling life data. Lv and Chen, (2002) presented 
the Ailamujia distribution (AD) as a one-parameter lifetime model. 
This model is flexible and diverse in terms of modelling repair or 
delays time of a system. The function of cumulative distribution (cdf) 
for AD is expressed in the form:  

   ( ; ) 1 1  exp  ;  0, 0,H y y y y           

thus, the relevant probability density function (pdf) is deduced as 
follows: 

 2( ; )  exp  ;  0, 0.h y y y y        

Ailamujia distribution has profited greatly from the efforts of 
several authors. Pan et al. (2009) investigated small-sample interval 
estimation and hypothesis testing. Bing, (2015) has been using Type 
II censoring and three independent priors based on incomplete data to 
implement the Bayesian estimation of the AD. Li (2016) utilized the 
three-loss functions to evaluate the minimax estimate of the 
parameter of  AD under a non-informative prior. Jan et al. (2017) 
proposed and investigated the weighted analogue of the AD. Rather 
and Subramanian (2022) established a new size-biased AD with 
applications in engineering and medicine. Jamel et al. (2021) 
established and exhibited the power version of AD. established and 
exhibited the power version of AD. Recently, Rather et al. (2018) 
studied the exponentiated version of AD in detail, utilizing statistical 
inference and biomedical data applications. 

The necessity to assemble new generators for univariate 
lifetime distributions by introducing one or more shape parameters to 
the baseline model has lately increased. This parameter induction is 
useful in detecting tail features as well as optimizing the goodness-of-
fit of the proposed generating distribution. These structures were 
created by adding one or more parameters to the baseline model's cdf 
to create a fresh family of distributions that are more analytically and 
accommodative. As a result, various classes of continuous 
distributions have been evolved in the literature including Eugene et 
al. (2002) produced the beta-G, Zografos and Balakrishnan (2009) 
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who proposed the gamma-G. Cordeiro and de Castro (2011) built the 
Kumaraswamy-G, Alexander et al. (2012) created the McDonald-G, 
the Weibull-G has been introduced by Bourguignon et al. (2014), and 
several other new families of distributions has been devolved. 

Topp and Leone (1955) suggested the Topp-Leone (TL) 
distribution as an alternative to the Beta distribution. The TL model 
received far less attention before Nadarajaha and Kotoz (2003) 
investigated it. Al-Shomrani et al. (2016) recently defined the Topp-
Leone-G family of distributions, using the TL distribution as a 
generator to create this class. The TL-G family's cdf is formulated as: 

   ( ; , ) ( ; ) 2 ( ; )G y H y H y       

 2
1 ( ; ) , ; 0,H y y R



     
 

      (3) 

where ( ; ) 1 ( ; )H y H y    is a survival function of the baseline 
model that is affected by a parameter vector .  The related pdf is 
obtained as: 

   1 1( ; , ) 2 ( ; ) ( ; ) ( ; ) 2 ( ; )g y h y H y H y H y           
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2 ( ; ) ( ; ) 1 ( ; ) ; 0,h y H y H y


    


   
 

(4) 

 

where, ( ; )h y   and ( ; ) 1 ( ; )H y H y    respectively, are the pdf 
and survival function of the baseline model.  

Some of the TL-distributions have been investigated and 
analyzed, including the TL-exponential reported by Al-Shomrani et 
al. (2016), the TL-generalized inverted exponential derived by Al-
Saiary and Bakoban (2020), and the Tl-Gompertz evaluated by Nzei 
et al. (2020). In this work, we propose and investigate the Topp 
Leone-Ailamujia (TL-A) distribution, as a new extension of the 
Ailamujia distribution. The rate of failure for the TL-A distribution 
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demonstrates a bathtub and a unimodal pattern, which is the primary 
motivation for adopting this model. 

The remainder of the paper is structured as follows. The 
Topp-Leone Ailamujia distribution is introduced in Section 2. 
Section 3 examine a variety of mathematical aspects of the TL-A 
distribution including: the rth moment, moment generating function, 
the sth incomplete moment, conditional moments, mean deviation, 
mean residual life, mean inactivity times and the entropy. Section 4 
goes on estimation and simulation; maximum likelihood method has 
been used to estimate the distribution parameters. The numerical 
simulations for maximum likelihood estimates are utilized to study 
the behavior of the estimate. Section 5 uses a real-life data set to 
demonstrate the TL-A model's utility. Finally, Section 6 discusses 
some findings.  

2. The Topp Leone-Ailamujia Distribution 

In this section, we will define the Topp Leone-Ailamujia (TL-
A) distribution by taking ( ; )H y   to be the cdf of Ailamujia 
distribution with the parameter  . The recommended model's cdf 
and pdf respectively, are generated using Eqs. (1&2) in Eqs. (3&4) as 
indicated below: 

 2 2( ; , ) 1 1 , 0; , 0,yG y y e y


                 (5) 

 
 
and  

   
122 2 2( ; , ) 2 1 1 1  .y yg y y y e y e


      


        (6) 

Applying the generalized binomial theorem, for any real number   
that is a positive integer, we have: 

 
0

1  ,   k

k k
 





 
   

 
 for 0  .                                          (7) 
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The cdf and pdf of TL-A( ,  ) distribution can be reformulated 
using Eq.(7) as:  

,
, 0

( ; , ) ; 






  k i y
i k

i k
G y y e                                             (8) 

where,  ,

2
1 .




  
     

  

i k
i k

i
i k

  

and 
1 2( 1)

,
, 0

( ; , ) ; 


  



  k i y
i k

i k
g y y e                                     (9) 

where,  2
,

1 2 1
2 1 .


      

     
  

ik
i k

i
i k

 

 

 
Figure (1)  The TL-A density function plots 

 
The representations of the TL-A density function for various model 
attribute values are shown in Figure (1) The suggested model's pdf is 
slanted to right, monotonically decreasing, and unimodal. 
 

The hazard rate (hr) function is used to illustrate the population's 
current failure rate. It is also significant in reliability assessment and 
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socioeconomics, as well as in developing a model when dealing with 
longevity data. The hr of the TL-A( ,  ) distribution is: 

   

 

122 2 2

2 2

( ; , )( ; , )
1 ( ; , )

2 1 1 1  
.

1 1 1


 




  
 

   




 






    
    

y y

y

g yr y
G y

y y e y e

y e

  (10) 

 

The patterns of the hazard rate function are shown in Figure (2) for a 
variety of distribution parameter values. The TL-A distribution's hr is 
shaped like a bathtub or upside-down bathtub shaped (unimodal). 

 

Figure (2) The plots of hazard rate function for the TL-A distribution 
 

3. Statistical Properties  

The basic statistical properties of the TL-A model, such as the 
rth moment, moment generating function, the sth incomplete moment, 
conditional moments, mean deviation, mean residual life, mean 
inactivity times and the entropy, are deduced in this section. 
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3.1. The rth moment 
Central tendency and dispersion measurements are the most 

common methods for describing the characteristics of a probability 
distribution. Mainly two measurements are expected value and 
variance. Skewness and kurtosis are two further features that can be 
highlighted. A moment is a mathematical quantity that includes all of 
these measures.  

For the random variable Y with a TL-A distribution, the rth moment 
about the origin is determined as follows: 

0

( ) ( )r
r

ry E Y y g y dy


       

By substituting Eq. (9) into the previous equation, we get: 

1 2( 1)
,

, 0 0

( ) r k i y
i k

i
r

k

y e dyy 


   



     

 
 

 
2 1

2( 1)
, 1

, 0
0

2 ( 1)
2 ( 1)

2( 1)

r k
i y

i k r k
i k

y i
e d y i

i






  

 
 






 






  

 , 2
, 0

( 2) ; 1,2,3,...
2( 1)

i k r k
i k

r k r
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   (

where, 1

0
( ) exp[ ]  u u du

    is the gamma function. as a special 

case of the above equation, the mean of TL-A distribution is given 
by: 

 , 3
, 0

1
( 3)

2( 1)
i k k

i k

k
i










 



     (

The TL-A random variable’s central moments are specified by:  

 
0

) ( )(
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n rn
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 , , 3
0

( 3) ,
2( 1)

n

i k n k
r

k
i


 



 



   (

where,  , , ,
, 0

.n r
i k n i k

i k

n
r

 






 
   

 
  

 The variance (Var) of the TL-A distribution is given from Eq. (13) 
for 2.n   Utilizing Eq. (11), the skewness (Ske) and kurtosis (Kur) 
metrics can be computed by the following relationships: 

3 1 2 1
3

3
2

3 2( )( ) ,
( )

Ske y
Var y

    


   
      

and 

  
2 4

4 1 3 2
2

1 14 6 ( 3(
( ) .

)
)

)
(

Kur y
Var y

         


   
 

Table (1) presents the values of these measures for some selected 
values of the distribution parameters. As the value of parameter   
increases while the value of parameter  decreases. The mean and 
variance of the TL-A distribution rise, but skewness and kurtosis 
decrease. 

Table (1) The mean, variance, skewness and kurtosis for  

the TL-A distribution 

      ( )y   ( )Var y   ( )Ske y   ( )Kur y   

0.5 5 0.170112 0.023650 1.601120 6.52357 

1 3.5 0.357143 0.056122 1.260870 5.33058 

1.5 2 0.753518 0.178726 1.141790 5.01119 

3 1 1.965050 0.724575 1.030940 4.77877 

6 0.5 4.858080 2.832560 0.991012 4.73435 
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3.2. The moment generating function  
The moment-generating function should be considered as an 

alternative method for expressing a random variable's probability 
distribution. This alternate formulation is quite valuable since it provides 
somewhat superior analytic controllability than density or cumulative 
distribution functions. Likewise, Eq. (9) can be used to construct the 
moment generating function of Y as follow: 

0

( )  ( )t Y t y

Y
M t E e e g y dy



      

 2( 1)1
,

, 0 0

i t yk
i k

i k

y e dy


  



    

 , 2
, 0

( 2) ; 2( 1) .
2( 1)

i k k
i k

k t i
i t










 

  
 

       (

 

3.3. The sth incomplete moment  
The Lorenz l(p) and Bonferroni b(p) curves can be obtained using 

the first incomplete moment. These economic inequality measures can 
assist other disciplines such as reliability, biology, and insurance. The sth 
lower incomplete moment for TL-A distribution is calculated as: 

0

( ) | ( ) ,
t

s s
s t E Y Y t y g y dy        

 
 , 2

, 0

2, 2 ( 1)

2( 1)
i k s k

i k

s k i t

i

 





 



  




   (

where 1

0
ex( , [ ]) p

t m dm u ut u   denotes the lower incomplete 

gamma function. 
Setting 1s   in Eq. (15), the first order of lower incomplete monent 
is: 

 
 ,

1 , 3
0

3, 2 ( 1)
.

2( 1
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) i k k
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i t
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Using Eqs. (12 & 16), the Lorenz and Bonferroni curves have been 

calcautleted from these relations: 
0

1

1( ) ( )
q

l p y g y dy


  and 

1
0

1( ) ( )
q

b p y g y dy
p 

  , where ( )p G y  and
 

 1( ) inf : ( )q G p y G y p   . 

3.4. The conditional moments 
The conditional moments of the first order is most commonly 

used to calculate the mean deviation about the mean (or the median) 
and the mean residual life function.  For the TL-A distribution, the 
conditional moments are as follows: 

( ) ,
( )

s s tE Y
G

t
t

Y 
    

and,  

( ) ( )


  s
s

t

t y g y dy   

 
 , 2

, 0

2, 2 ( 1)
,

2( 1)







 


  






 i k s k

i k

s k i t
i

                               (17) 

where 1 exp[( ) ], m

t
m udt u u

    gives the upper incomplete 

gamma function. From the above equation with 1,s   the first upper 
incompete moment is given by: 

 
 ,

1 , 3
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3, 2 ( 1)
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2( 1
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) i k k
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i t
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t
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   (

3.5. The mean deviation  
The overall amount of variations from the mean and median 

refers to the amount of scattering in a population to some level. The 
mean deviation about the mean is given by: 
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0

( ) ( )D E y y g y dy  


        

0

[ ] ( ) [ ] ( )y g y dy y g y dy




 


      

1( ) 2 ( ) 2 2 ( ) 2 ( ) 2 2 ( )D G y g y dy G


        


         (

 

Substituting Eqs. (8 &16) into Eq. (19), yields: 

 
 

1
, , 3

, 0 , 0

3, 2 ( 1)
( ) 2 2 2 .

2( 1)
k i

i k i k k
i k i k

k i
D e
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    (

Now, the mean deviation about the median is defined by: 

0

( ) ( )D m E y m y m g y dy


        

12 ( ) 2 ( )
m

y g y dy m  


       

 
 , 3

, 0

3, 2 ( 1)
2 .

2( 1)
i k k

i k

k i m
i











  
   


   (

3.6. The mean residual life 
Major applications of the mean residual life (MRL) exist in 

the fields of  biology, insurance, service quality control and social 
science. A product or device's MRL is the expected length of time it 
will last after achieving age t. The MRL of TL-A distribution is 
derived as: 

1( )1( )  ( ) ; 0
( ) ( )t

tMR t y g y dy t t t
G t G t



       (

Inserting Eq. (18) into Eq. (22), yields: 
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k
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i t
G t i

R t t
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3.7. The mean inactivity times 
A well-known reliability measure with applications in 

forensics and reliability theory is the mean inactivity time (MIT) 
function. In terms of the TL-A distribution, the MIT of a random 
variable Y is calculated as follows: 

1

0

( )1( )  ( ) ; 0
( ) ( )

t tMT t t y g y dy t t
G t G t


       (

Using Eq. (16) into Eq. (24), we have: 

 
 , 3

, 0

3, 2 ( 1)
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2
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( 1
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i k

M
t

k i t
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T t t
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   (

Table (2) presents the numeric values of the MRL and MIT for the 
proposed model at point 1t   and a fixed value of the parameter 

2,  with various parameter selections ( , ).   As the parameters 
and   increase, the MRL decreases while the MIT increases. Figure 
(3) depicts the activity of the MRL and the MIT for various values of 
distribution parameters. The MRL (left side) is decreasing, whereas 
the MIT (right side) is rising. 

Table (2) The MRL and MIT function for the TL-A distribution  

                   2t   MR   MT   
0.5 7 0.076349 1.878490 

1 5 0.109504 1.750000 

2.5 3.5 0.161834 1.473550 

4 1.5 0.439874 0.737483 

5.5 1 0.833005 0.411506 

6.5 0.5 2.9850800 0.217965 
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Figure (3) The Plots of MRL and MIT functions for the TL-A 
distribution 

 

3.8. Entropy 
A measure of the variation in uncertainty is the entropy. The 

more uncertainty in the data is indicated by a high value for entropy. 
An explanation of the Rényi entropy (Rényi & others, 1961) for TL-
A distribution is derived as: 

1 log ( ) ; 0, 1
1

R g y dy
  







  
   

     
( 1)22 2 2

0

2 1 1 1  1 log
1

         





 
 
 


     







y yy y e dyy e  

Applying the generalized binomial theorem which is given by Eq. (7), 
yields: 
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2 ( 1)
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2 1 .
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i k

    
      

     
  

 

4. Estimation and Simulation   

Out all the several techniques for estimating the parameters 
that have been reported in the literature, the maximum likelihood 
approach (MLEs) is the technique that is most frequently used. The 
MLEs have attributional properties and can be used to create 
confidence intervals and test statistics. The unknown parameters of 
the TL-A distribution are estimated in this section using the MLEs 
technique. Also, we will use Monte Carlo simulation to demonstrate 
the behavior of estimates. 

4.1. Maximum likelihood estimation 
Suppose 1 2, . ,, .. ny y y  be a random sample of size n drawn 

from the TL-A distribution with pdf (6). Thus, the log-likelihood 
function of the suggested model indicates: 

 

2

1 1 1

2

1

Log 2 Log Log[(1 )] 2

( 1) Log 1 1 e .

[ ] [ ]

( ) i

n n n

i i i
i i i

n
y

i
i

l n y y y

y 

   

 

  





    

      

  


  (26)

By differentiating Eq. (26) with respect to parameters  and  , 
respectively, one can construct the likelihood equations for the 
purposed model as: 

2 2

1

Log 1 e (1 ) ,i

n
y

i
i

l n y 
 





          (27)

and  
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  (28)

By equating the system of nonlinear equations (27-28) to zero and 
solving them concurrently, the MLEs of parameters   and   can be 
acquired. Because these equations are nonlinear, we should solve 
them using analytical techniques such as Newton-Raphson.  

4.2. Mont Carlo simulation 
The effectiveness of the MLEs of the parameters of TL-A 

distribution is investigated using Monte-Carlo simulation. MLE 
accuracy is discussed using bias term and mean square error (MSE). 
Using Eq (5), different samples of size 25, 50, 75, and 100 are 
generated, this simulation study is being evaluated using 1000 
replicates, we consider the following cases:  
Case I: The true values of the distribution parameters   and   are: 

0.5   and 2.    
Case II: The values of   and   are: 3   and 0.75.   
The average MSEs and biases of the simulated estimates ( , )i   

 
 

are calculated using the following relationships:  

2
1

1   ( )( ) ii
MSE  




 
   and  

1
.(1( )   )ii

Bias   



 
  

Tables (3-4) show the average values of MSE and the bias term for 
the simulated parameters. These tables clearly show that as sample 
size increases, MSEs and biases decrease. Furthermore, for large 
samples, the estimated value of parameter is close to the parametric 
values. 
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Table (3) The simulation results for the Case I  

n  


 ( )MSE   ( )Bias   


 ( )MSE   ( )Bias   

30 0.54808 0.021901 0.048077 2.13964 0.229899 0.139639 
40 0.53555 0.014170 0.035545 2.10099 0.15308 0.100987 
50 0.52748 0.010595 0.027475 2.07729 0.121251 0.077292 
75 0.51558 0.006237 0.01558 2.04823 0.076914 0.048226 
100 0.51240 0.004369 0.012403 2.03701 0.058677 0.037014 
150 0.50847 0.002812 0.008465 2.02662 0.036508 0.026617 
175 0.50715 0.002399 0.007150 2.02133 0.031071 0.021327 
200 0.50624 0.002113 0.006238 2.01885 0.027346 0.018850 

 
Table (4) The simulation results for the Case I  

n  


 ( )MSE   ( )Bias   


 ( )MSE   ( )Bias   

30 3.53651 2.35888 0.536515 0.78146 0.014358 0.031456 
40 3.38133 1.46840 0.381335 0.77210 0.010040 0.022101 
50 3.32773 1.08446 0.327735 0.76914 0.008399 0.019142 
75 3.17431 0.573069 0.174314 0.76086 0.005339 0.010857 
100 3.13061 0.363478 0.130611 0.75872 0.003588 0.008715 
150 3.11464 0.274776 0.114642 0.75764 0.002680 0.007642 
175 3.09989 0.214687 0.099887 0.75728 0.002237 0.007277 
200 3.08706 0.179063 0.087061 0.75625 0.001841 0.006249 
 

 

5. Applications  

In this section, we investigate a real data set to show how the TL-A 
distribution can be used. Nassar and Nada (Nassar & Nada, 2011) 
examined a data set containing the actual tax information, from 
January 2006 to November 2010, the data represents Egypt's monthly 
actual tax income (in 1000 million Egyptian pounds). The data are as 
follows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 
21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 
8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 
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18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 
6.8, 8.9, 7.1, 10.8. 

To demonstrate the TL-A distribution's flexibility; the goodness of fit 
criterion for the proposed model is compared to the fit of the 
following lifetime distributions: gamma (GM), generalized Rayleigh 
(GR) by Kundu and Raqab (2005), Weibull (W) by Weibull (1951), 
power Ailamujia (PA) and Ailamujia (A). 

The MLE technique is used to estimate the distribution parameters 
for all fitted models [Table (5)]. The following information criterion 
(IC) metrics are employed for each model: Akaike's IC (AIC), 
Bayesian IC (BIC) and Hannan-Quinn IC (HQIC). Also, the 
Anderson-Darling (AD), Cramér-Von Mises (CV), and the 
Kolmogorov Smirnov (KS) statistics and their p-values. In particular, 
the best model for fitting the data is the one with smaller value for 
these metrics and a higher p-value for the K-S statistic. The estimated 
density and estimated survival are also depicted. 

Table (5) The MLE of the estimated parameters for the tax data  

Model Parameters Estimate  

TL - A( , )   1.96497 


 0.125684 


 
 (0.45099)  (0.0145518)  
GM( , )   3.67824   3.667 


 

 (0.64885)  (0.693112)  
GR( , )   0.0644648   1.03096   
 (0.00569)  )0.184452(  
W( , )   0.0653337   1.84037   
 )0.00491428(  )0.171157(  
PA( , )   1.30231   0.0636523 


 

 )0.118822(  )0.0222917(  
A( )  - 0.148278 


 

 - )0.0136501(  

Tables (6-7) compares the fit of the TL-A distribution to other 
models. Figure (4) depicts the estimated density and estimated 
survival plots for the proposed model. According to these tables and 
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figure, the proposed model outperforms all other distributions in 
terms of fit. As a result, the TL-A distribution could be regarded as 
the best data fitting model. 

 

 
Figure (4):  (a) The estimated pdf and (b) The estimated sf for tax data 

 
Table (6) The AIC, BIC, HQC of each model for tax data  

Model AIC BIC HQC 

TL - A( , )   389.369 393.524 390.991 

GM( , )   390.164 394.319 391.786 

GR( , )   399.393 403.548 401.015 

W( , )   398.581 402.736 400.203 

PA( , )   393.109 397.264 394.731 

A( )  398.193 400.270 399.004 
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Table (7) The values of AD, CV, K-S and their p-value of each 
model for tax data  

Model AD CV K-S P-value 

TL - A( , )   1.2357 0.206047 0.131677 0.257948 

GM( , )   1.24717 0.204723 0.133632 0.242722 

GR( , )   2.31655 0.400026 0.176353 0.0509594 

W( , )   1.86497 0.282737 0.143165 0.177978 

PA( , )   1.4109 0.218055 0.134641 0.235132 

A( )  2.33705 0.346263 0.167479 0.073043 

 
 

 
6. Conclusions  

In this article, we suggest and explore the Topp Leone-
Ailamujia (TL-A) distribution, as a new extension of the Ailamujia 
distribution. The proposed model is more adaptable than the 
Ailamujia distribution because it includes bathtub and reversed J-
shaped failure rates. The TL-A distribution's mathematical quantities, 
such as the rth moment, moment generating function, sth incomplete 
moment, conditional moments, mean deviation, mean residual life, 
mean inactivity times, and entropy, are clearly explained. The 
maximum likelihood method is used to estimate the TL-A 
parameters, Also, the simulation study is done to investigate the 
behavior of the estimate. The TL-A distribution fits a set of real data 
better than some well-known competing models. 
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  كریمة احمد السید

ة جامع - عمالدارة والأكلیة الإ - ستاذ مساعد بقسم ادارة الاعمالأ
  الرحمنالأمیرة نورة بنت عبد

  المملكة العربیة السعودیة

جمھوریة  - زھرجامعھ الأ -  كلیة التجارة  -  حصاءمدرس بقسم الإ
  مصر العربیة

 

 الملخص

   توزیع  ودراسة  اقتراح  تم  البحثیة  الورقة  ھذه -Topp Leoneفي
Ailamujia    لتوزیع  جدید  باستخدام  Ailamujiaكامتداد  اشتقاقھ  تم وقدم

عائلة توب لین. یتمیز التوزیع الجدید بأنھ أكثر مرونة من التوزیع الأصلي، تم 
دراسة العدید من الخصائص الریاضیة لنموذج المقترح كذلك تم دراسة بعض 
 معالم   لتقدیر  الأعظم  الأماكن  طریقة  باستخدام  قمنا  الموثوقیة. خصائص

لدراسة سلوك   Mont Carloمحاكاة  تخدام أسلوبالتوزیع الجدید. كما تم اس
 لمقارنة   وذلك  الحقیقة  البیانات  من  عینة  استخدام  تم ً  أخیرا  المقدرة، المعالم
التوزیع الجدید مع بعض توزیعات الحیاة الكلاسیكیة وقد أثبت التوزیع الجدید 
 في   المستخدمة  التوزیعات  من  أفضل  الحیاة  بیانات  نمذجة  على المرونة

 رنة. المقا

معدل الخطر ؛  دالة؛  Burr–Hatkeتوزیع  الكلمات المفتاحیة:
 .Mont Carlo؛ محاكاة تقدیر الامكان الاعظم؛  تحلیل البواقى؛ العزوم 


