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Abstract 

     In this paper, a new family of discrete alpha power distributions is 

introduced. Some properties including quantiles, mean residual life, 

mean time to failure, R nyi entropy, moments and order statistics are 

obtained. Discrete alpha power Weibull distribution, as a member from 

this family, is studied in detail. Discrete two-parameter Weibull 

distribution, discrete alpha power one parameter Weibull distribution, 

discrete alpha power exponential distribution, discrete one parameter 

Weibull distribution, discrete Rayleigh distribution, discrete 

exponential distribution, discrete alpha power Rayleigh distribution are 

sub models of discrete alpha power Weibull distribution. A simulation 

study is conducted to investigate the precision of the theoretical results 

based on simulated and real data through some measurements of 

accuracy. Three real data sets are analyzed to illustrate the suitability 

and applicability of the proposed model.  

Keywords: Alpha power transformation; Discrete distributions; 

Discrete alpha power family of distributions; Weibull distribution; 

Maximum likelihood estimation. 

   

1. Introduction  

      Generalization for classical distributions has received much 

attention in recent years by many authors to let the extended 

distributions more flexible for modeling real data. In practice the 

motivations for obtaining generalized family are: (a) to make the 

kurtosis more flexible as compared to the baseline model, (b) to 

produce skewness for symmetrical distributions, (c) to construct 

heavy-tailed distributions that are not longer-tailed for modeling real 

data, (d) to generate distributions with symmetric, left-skewed, right-

skewed and reversed-J shaped, (e) to provide consistently better fits 

than other generated models under the same underlying distribution. 

[See Eliwa et al. (2020)]. 
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In the literature, several methods of generating new family of 

statistical distributions were presented; for example, Marshall and 

Olkin (1997), Eugene et al. (2002), Cordeiro and Castro (2011), 

Alzaatreh et al. (2013), Lee et al. (2013) and Jones (2015). 

 

Mahdavi and Kundu (2017) presented a method to add an extra 

parameter to a family of distributions, such an addition of parameters 

makes the resulting distribution richer and more flexible for modeling 

data. The suggested method is called alpha power transformation 

(APT) and it is useful to incorporate skewness to a family of 

distributions. The APT method was applied to many distributions by 

many researchers, such as Nassar et al. (2017), Dey et al. (2017), 

Nadarajah and Okorie (2018), Mead et al. (2019) and Nassar et al. 

(2020) . 

Let  is the cumulative distribution function (cdf) and the APT of 

 for  is 

 

                                  

and the corresponding probability density function (pdf) is 

 
 

where   is the shape parameter.  

 

The survival function (sf); , is given by 

  

                            (3) 

 

     In reliability lifetime modeling, it is common to deal with failure 

data as continuous but practically; failures can happen and are 

observed in a discrete procedure. Some well-known discrete 

distributions have limited applicability to model discrete failure times. 
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Therefore, it is realistic and suitable to generate discrete lifetime 

distribution from the base continuous distribution keeping one or more 

important characters of the continuous distribution. [For more details 

see, Lai (2013) and Chakraborty and Chakravorty (2016)]. Although 

there are several methods where discrete analogue random variable of 

a continuous random variable may be obtained, the general approach 

of discretization of some known continuous distributions have been 

attracting great concern for use as lifetime distributions [see, 

Nakagawa and Osaki (1975), Khan et al. (1989), Bracquemond and 

Gaudoin (2003), Inusah and Kozubowski (2006), Krishna and Pundir 
(2009), Jazi et al. (2010), Gomez-Deniz and Calderin-Ojeda (2011) 

and Nekoukhou et al. (2012) and Chakraborty (2015) ]. 
 

The rest of this paper is organized as follows: in Section 2, a 

discrete alpha power (DAP) family of distributions based on the 

method of APT is introduced and some of its properties are studied. In 

Section 3, some members of the discrete family of distributions are 

presented. Maximum likelihood (ML) estimation for the parameters of 

the distribution is discussed in Section 4. In Section 5, real data set is 

analyzed to demonstrate how the results can be used in practice. 

Finally, concluding remarks are given in Section 6.  

 

2. Discrete Alpha Power Family of Distributions: Construction 

and Properties 

In this section, DAP family of distributions is constructed using the 

general approach of discretizing, where the advantage of this method is 

that the sf for the discrete distributions has the same functional form of 

the sf for the continuous distributions. Hence many reliability and 

properties keep on unchanged [see, Roy (2003, 2004)].     

 

2.1 Discrete Alpha Power family of distributions 

If the continuous random variable  has the sf,  

then the probability mass function (pmf) of the discrete ( ) is given 

by 

 
   (4) 
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Considering  is a discrete random variable analogue to a 

continuous random variable. From (3) and (4), the pmf and cdf for 

DAP family are given, respectively, by  

 
         (5)                                                                                                       

and   

 

                                (6)   

2.2 Some properties                         

1. Survival and hazard rate functions 

The sf and the corresponding hazard rate function (hrf) are given 

below  

 
                (7) 

and 

    (8) 

 

2. Reversed and alternative hazard rate function  

The reversed hazard rate function (rhrf) which is known by the 

dual of the hrf; describes the probability of an immediate past failure, 

given that the unit has already failed at time . The rhrf is given by  

      (9) 

 

     The discrete hrf has some notable problems. Therefore, Roy and 

Gupta (1992) provided an excellent alternative definition of a discrete 

hrf; alternative hazard rate function (ahrf); . The hrf and ahrf 

have the same monotonic property, i.e., ahrf is increasing (decreasing) 

if and only if hrf is increasing (decreasing). [For more details see, Xie 

et al. (2002) and Lai (2013, 2014)].  

The alternative hrf is 

 

               (10) 
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The relationship between  and  can be expressed by 

 

 
                      (11) 

                            

3. Quantile function 

The pth quantile function, say , is   

         (12) 

where represents the base line of quantile 

function. 

 Special quantiles may be obtained using (12). For example, if , 

the median of the DAP distribution is  

  

 

4. Mean residual life 

 

The mean residual life (MRL) is the expected remaining life,  

given that the item has survived to time   [see, Kemp (2004)]. It is 

denoted by  and is defined by        

         (13) 

5.   Mean time between failures and mean time to failure  

Mean Time to Failure (MTTF) is the average time between non-

repairable failures and is generally used for items that cannot be 

repaired, such a light bulb or a backup tape. The average time for a 

device or system is expected to function before it fails. It predicts the 

failure rate for products that cannot be repaired.  

The MTTF is given as follows: 

      (14) 

The Mean Time between Failure (MTBF) is used with items that can 

be either repaired or replaced and is given bellow  

  (15) 

The Availability ( ) is considered as being the probability that the 

component is successful at time  , i.e., 
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It's important for organizations to be aware of the difference between 

the three previous concepts, so they don't waste time focusing on how 

long it takes to repair a system when the best option could be to replace 

it with a new one.                                                                                                               

6. R nyi entropy 

An entropy of a random variable  with the pdf  is a measure of 

variation of the uncertainty and it is denoted by . It has been 

applied in a wide variety of fields such as statistical thermodynamics, 

urban and regional planning, business, economics, finance, operations 

research, queueing theory, spectral analysis, image reconstruction, 

biology and manufacturing. It is defined by 

 

  (17)   

The Shannon entropy can be defined by , and it can 

be calculated as a special case of the Rényi entropy when .  

      

7. Non-central and central moments  

The non-central moments are obtained as follows:  

                                                          (18)                                                                            

,

                    (19) 

In particular, the mean is given by 

  (20) 

8. Order statistic  

Let ; the cdf of the ith order statistic for a random sample 

, is given by 

            (21)                                                                            

Using the binomial expansion for  and substituting (6) 

in (21),  

where 
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(22) 

Special cases 

Case I: If   in (22) one can obtain the distribution function of the 

first order statistic, as given below  
  

                                                (23)                     

 Case II: If   in (22) the distribution function of the largest order 

statistic is as follows:  
   

            (24)   

Suppose that  is a random sample from the DAP 

distribution. Let  denote the corresponding order 

statistics. [see Arnold et al. (2008)]. Then, the pmf of  , is defined 

by 

.                                                     

(25)                                                                                              

Using the binomial expansion for , then, the pmf in (25) is 

    

                       

          (26) 

 

The pmf of the smallest order statistic is obtained by substituting   

in (24) as given below 

 

  (27)                                                      

and, the pmf of the largest order statistic is obtained by substituting 

 in (24) as follows: 

        (28) 
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Also, one can use (22) to obtain the pmf of the DAP distribution, [see 

Arnold et al. (2008)]. 

3. Some Members of Discrete Family of Distributions 

     In this section the DAP transformation (DAPT) method is applied 

to a specific class of distribution functions such as exponential, 

uniform and Weibull distributions. 

3.1. Discrete alpha power 

exponential distribution 

The cdf and sf of the exponential distribution with parameter  are, 

respectively, 

 
and 

 
 

Let    

Using (5)-(7), the pmf, cdf and sf of the two-parameter DAP 

exponential distribution are, respectively, given by 

   (29) 

                   (30) 

and 

                  (31) 

Note that: If , the distribution with pmf (29) reduces to the 

discrete exponential distribution. 

3.2 Discrete alpha power uniform distribution 

Assuming that  has uniform distribution with parameter . Then the 

cdf and sf of   are, respectively,  

 

 
and 

 
Hence, the pmf, cdf and sf of the discrete alpha power uniform 

distribution using (5)-(7) are, respectively, given by 
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(32) 

 

      (33) 

and 

       (34) 

Note that: If , the distribution with pmf in (32) reduces to a 

discrete uniform distribution. 

4.  Discrete Alpha Power Weibull Distribution 

 

The cdf and sf of the Weibull distribution with scale parameter  and 

shape parameter  are 

  

and               

 
Let    

Then, the pmf and cdf of the discrete alpha power Weibull distribution 

using (5)-(7) are, respectively, given by  

(35) 

and 

     (36) 

4.1 Survival, hazard, alternative and reversed hazard rate 

functions of discrete alpha power Weibull distribution 

The sf, hrf, ahrf and rhrf are  

     (37) 

  (38) 
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  (39) 

and 

 (40) 

4.2 Some sub-models of the discrete alpha power Weibull 

distribution 

Some important special sub-models of the DAPW distribution are 

given in Table 1. 

 

Table 1. Sub-models of the DAPW distribution 

 
 

Model 

 Discrete two parameter Weibull distribution 

 
Discrete alpha power one parameter Weibull 

distribution 

 
 

Discrete alpha power exponential distribution 

 
 

Discrete one parameter Weibull distribution 

 Discrete Rayleigh distribution  

 Discrete exponential distribution 

 Discrete alpha power Rayleigh distribution  

4.3 Graphical description 

Figure 1 displays some plots of pmf of DAPW for selected parameter 

values. Plots of the hrf are given in Figure 2 and ahrf plots of the 

DAPW distribution for selected parameter values are presented in 

Figure 3.  

 

Figure 1 shows that the pmf of DAPW distribution can be unimodel 

and right skewed according to the selected values of the parameters. 

For some values of parameters, the pmf is decreasing over   and 
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the mode is at zero. While for other values of the parameters, it 

indicates that the pmf is increasing on  and reaches the 

maximum at , then decreases to the zero. Plots of pmf, hrf and 

ahrf show that the DAPW distribution exhibits a long right tail 

compared with other commonly used distributions. Thus, it will affect 

long term reliability predictions, producing optimistic predictions of 

rare events occurring in the right tail of the distribution compared with 

other distributions. Also, the DAPW distribution provides a good fit to 

several data in literature. 

Figures 2 and 3 indicate that although the hrf and ahrf of DAPW 

distribution are decreasing, increasing and upside-down bathtub shapes 

depending on the value of the shape parameters, the hrf is less than  
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                                    Figure 1. Plots of the probability mass 

function of DAPW  

for selected parameter values 
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Figure 2. Plots of the hazard rate function of DAPW 

for selected parameter values 
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Figure 3. Plots of the alternative hazard rate function of DAPW 

for selected parameter values 
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4.4 Quantile function 

The  –th quantile  of  , for , can be obtained as 

 

         (41) 

Hence, the median can be obtained as follows: 

     (42) 

4.5 Mean, variance, skewness, and kurtosis 

The mean ( ) of  distribution is given by 

  (43) 

and the variance is  

 (44)  

The skewness and kurtosis of the  distribution are given, 

respectively, by 

   where   ,     ,  (45) 

The mean, median, variance, skewness and kurtosis of a 

 distribution for different values of  are 

calculated numerically in Table 2 using (42) - (45). From Table 2, one 

can observe that depending on the values of the parameters, the mean 

of the distribution can be smaller or greater than the variance. Hence 

DAPW distribution models are appropriate for modeling both over and 

under dispersed data.  
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Table 2. The mean, median, variance, skewness and kurtosis of 
 

for different values of the parameters 

 
 

Mean Median Variance Skewness Kurtosis 

 

 

 
 

13.0282 

2.3624 

1.3702 

 

5.0000 

2.0000 

1.0000 

 

554.4120 

5.3734 

1.1600 

 

5.1031 

1.5483 

0.7198 

 

53.5341 

6.6486 

3.5277 

 

 

 

 
 

2.9626 

0.9571 

0.6838 

 

1.0000 

1.0000 

1.0000 

 

34.1988 

1.3291 

0.4917 

 

5.1760 

1.6127 

0.7588 

 

54.6764 

6.7605 

3.2931 

 

 

 

 
 

0.5306 

0.2867 

0.2517 

 

0.0000 

0.0000 

0.0000 

 

1.9521 

0.3019 

0.2026 

 

5.6708 

2.0609 

1.3806 

 

62.9851 

7.9757 

3.5556 

 

 

 

 
 

15.6160 

2.7187 

1.5447 

7.0000 

2.0000 

1.0000 

661.1840 

5.8082 

1.1822 

4.9609 

1.4095 

0.6180 

45.8728 

6.1198 

3.4339 

 

 

 
 

3.5877 

1.1256 

0.7911 

1.0000 

1.0000 

0.0000 

140.938 

1.4588 

0.5097 

4.7400 

1.4379 

0.6069 

46.5684 

6.1003 

3.1920 

 

 

 
 

0.6569 

0.3506 

0.3064 

0.0000 

0.0000 

0.0000 

2.3782 

0.3510 

0.2306 

5.1150 

1.7644 

1.0871 

52.2084 

6.608 

2.8132 

 

4.6 Mean residual life 

The MRL of      

                                                             (46)                                                                       
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4.7 Order statistics 

From (22), the cdf of the ith order statistic for a random sample                                                 

  (47)                                                             

From (27) and (28) 

The pmf of the first order statistic  
   

(48) 

                                                                 

The pmf of the largest order statistic                                                                                               

     (49)               

                                    

5. Maximum Likelihood Estimation  

 

This section is devoted to estimate the vector of 

parameters,  sf, hrf and ahrf of the  

distribution, also confidence intervals of the parameters  sf, hrf 

and ahrf are derived.  

Suppose that  is a sample of size n obtained from a life-test 

whose lifetimes have a  ( ) distribution. Then, the likelihood 

function is  

                                                                                     

(50)                                                                                                                    

Substituting (35) and (37) in (50). Hence 

 (51)                                                                                                

                                                 

The ML estimator of  are obtained by maximizing the 

logarithm of the likelihood function, denoted by  which can be written 

in the form: 
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The ML estimators can be obtained setting the partial first derivatives 

of  with respect to , respectively, to zeros. The system of 

non-linear equations can be solved numerically using the Newton-

Raphson method, to obtain the ML estimators . The ML 

estimators   have an asymptotic variance-covariance matrix 

defined by inverting the information matrix.  

Also, the ML estimators of the sf, hrf and ahrf can be derived using the 

invariance property of the ML estimators based on (37)-(39), 

respectively. 

The asymptotic variance-covariance matrix of the estimators 

 are obtained depending on the inverse asymptotic Fisher 

information matrix  using the second derivatives of the logarithm of 

the likelihood function. 

 

The asymptotic Fisher information matrix can be written as follows: 

 

 
where   
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6. Numerical Illustration 

 

     This section aims to investigate the precision of the theoretical 

results based on simulated and real data through some measurements 

of accuracy; to study the precision and variation of the ML estimates. 

 

6.1 Simulation 

      In this subsection, a simulation study is conducted to illustrate the 

performance of the presented ML estimates based on generated data 

from the DAPW distribution. The ML averages of the parameters, sf, 

hrf and ahrf based on complete sample and Type II censoring are 

computed. Moreover, credible intervals of the parameters, sf, hrf and 

ahrf are calculated. The simulation study is performed using 

Mathematica 9.  

     Table 3 shows the averages, relative absolute biases (RABs), 

Relative errors (REs), variances, sf, hrf and ahrf estimates, also 95% 

confidence intervals where the initial values for the parameters are  

,  under two levels of   percentage of 

uncensored observations Type II censoring 80% and 100%. Table 4 

and 5 displays the same computational results under complete sample, 

but for different true parameter values from the DAPW distribution for 

different samples of size where (n=50 and 100) and number of 

replications, NR = 1000.  

The RABs, REs, ERs and variances of the ML estimates of the 

parameters, sf, hrf and ahrf are computed as follows: 

1) Averages =  

2) ABs (estimate) =  , 

3) Es =  , 

4) Variances (estimate) =  
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Table 3. ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence intervals of the 

parameters from DAPW distribution for different sample sizes n, censoring size r,  

and the number of replications NR= 1000 ( ,  

n r Parameters Averages RABs REs Variances UL LL Length 

100 

100 

80 

 

 

 

 

 

 
       

100 

100 

 

 

 

 

 

 
       

200 

200 

160 

 

 

 

 

 

 
       

200 

200 
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Table 4. ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence 

 intervals of the parameters from DAPW distribution for sample sizes n=50, for different values of the  

parameters,  and the number of replications NR= 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n r Parameters Averages RABs REs Variances UL LL Length 

50 

 

 

 
 

 

 

 

 

 

 
       

50 

 

 

 
 

 

 

 

 

 

 
       

50 

 

 

 
 

 

 

 

 

 

 
       

50 
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Table 5. 

ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence 

 intervals of the parameters from DAPW distribution for sample sizes n =100, 

 for different values of the parameters,  and the number of replications NR= 1000  

n r Parameters Averages RABs REs UL LL Length 

10

0 

 

 

 
 

 

 

 

 

 

 
 

      

10

0 
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10

0 

 

 

 
 

 

 

 

 

 

 
      

10

0 
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6.2 Application  

In this section, the flexibility of the DAPW distribution is illustrated 

through using three real data sets.  

 

Application 1: 

      

The first application is the vinyl chloride data obtained from clean 

upgrading, monitoring wells in mg/L; this data set was used by 

Bhaumik et al. (2009). The data is:  

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 

5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.10, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 

0.4, 0.2. 

Application 2: 

 

The second data set contains fifty observations of lifetime presented by 

Aarset (1987).  

The data set is  0.1,  0.2,  1,  1,  1,  1,  1,  2,  3,  6, 7,  1,  1,  12,  18,  18,  

18,  18,  18,  21,  32, 36,  40,  45,  46,  47,  50,  55,  60,  63,  63, 67,  

67,  67,  67,  72,  75,  79,  82,  82,  83,  84,  84,  84,  85,  85,  85,  85,  

85,  86,  86. 
Application 3: 

 

     The third data set is given by Murthy et al. (2004). It refers to the 

time between failures for 30 repairable objects. The data is 1.43, 0.11, 

0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 1.97, 0.74, 1.23, 0.94, 4.36, 

0.40, 1.74, 4.73, 2.23, 0.45, 1.86, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 

0.63, 1.23, 1.24, and 1.17. 
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 P-plot for the first data set               QQ-plot for the first data set   
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                                     TTT-plot for the first data set 

 

Figure 4: PP-plot, QQ-plot and TTT-plot of the 

DAPW distribution for the first data set 
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 PP-plot for the second data set       QQ-plot for the second data set   
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                      TTT-plot for the second data set 

 

 

Figure 5: PP-plot, QQ-plot and TTT-plot of the 

DAPW distribution for the second data set 
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 PP-plot for the third data set          QQ-plot for the third data set 
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                                    TTT-plot for the third data set 

 

 

Figure 6: PP-plot, QQ-plot and TTT-plot of the 

DAPW distribution for the third data set 
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Table 6. Parameter estimates and goodness of fit for  

various models fitted for the second data 

 

Models Estimates SEs 
p-

value 
AIC BIC AICC HQIC 

 

 

 

 

0.31 

0.26 

0.25 

0.65 171.95    

 
 

 

0.24 

0.28 
0.10     

 
 

 

0.24 

0.26 
0.29     

 
 

 

0.24 

0.26 
0.05     

 

Table 7. Parameter estimates and goodness of fit for various  

models fitted for the third data 

Models Estimates SEs p-value AIC BIC AICC HQIC 

 

 

 

 

0.19 

0.21 

0.23 

0.59 182.97    

 

 

 

 

0.37 

0.25 

 

0.59 

 

 

 

 

 

 

 

 
 

 

 

 

0.47 

0.22 

 

0.07 

 

 

 

 

 

 

 

 

 

 

 

 

0.22 

0.22 
0.06    

 

 
 

Kolmogorov-Smirnov (K-S) goodness of fit test is applied to 

check the validity of the fitted model. The p-values are 0.1069, 0.65 

and 0.59, respectively. It shows that DAPW fits the data very well. 

Figures 4-6 present the PP and QQ plots and TTT plot for the 

three real data sets, which indicates that the DAPW distribution 

provides better fit to the data sets.  The TTT plot for the first and 
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second real data sets which are displayed in Figures 4 and 5 provide 

evidence that the first and second data sets possesses bathtub hrf, but 

the TTT plot of the third real data set in Figure 6 indicates that the hrf 

is decreasing function. 

The proposed distribution: DAPW distribution is compared to 

other distributions which are considered sub-models DAPW 

distribution such as discrete alpha power one parameter Weibull 

(DAPWO) distribution, discrete alpha power Rayleigh (DAPR) 

distribution and discrete alpha power exponential distribution (DAPE). 

To verify which distribution fits better to the real data sets, the 

values of the Akaike Information Criterion (AIC), Akaike Information 

Criterion with correction (AICC), Bayesian Information Criterion 

(BIC) and Hannon-Quinn Information Criterion (HQIC) are calculated 

for second and third real data sets. The best distribution corresponds to 

the lowest values of AIC, AICC, BIC and HQIC, also the highest p-

value,  

where    AIC = −2 log L + 2k, AICC = AIC +  ,     BIC = −2 log 

L + k log n    and  

HQIC = −2 log L + 2k log (log (n)), where k is the number of the 

parameters and n is the sample size and L is the maximized value of 

the likelihood function for the estimated model. Tables 6 and 7 display 

the values of p-value, AIC, AICC, BIC and HQIC for the first and third 

data sets. 

7. Conclusion  

In this paper, a family of discrete distributions is proposed. 

Generalizations of discrete uniform, discrete exponential, discrete 

Rayleigh and discrete Weibull are obtained using this family. Also, 

many other discrete distributions can be obtained as sub models. As 

a particular case, discrete alpha power Weibull distribution is 

introduced. Some of its properties are studied. The ML estimators 

for the model parameters are derived. The discrete alpha power 

Weibull distribution appears to be more suitable for modeling real 

data sets and is a better alternative to some distributions. 
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