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Abstract

This paper introduces a four-parameter competing risks model called the
additive flexible Weibull extension-Lomax distribution. It has a very flexible
hazard rate function accommodates different shapes, the most important
shapes of them are the bathtub and the modified bathtub shapes. Moreover, it
has several new and well-known models as special cases. Some main
properties of the additive flexible Weibull extension-Lomax distribution are
derived. The model parameters, reliability and hazard rate functions are
estimated via the maximum likelihood method based on Type II censored
samples. Also, the asymptotic confidence intervals of the parameters,
reliability function and the hazard rate function are obtained. A simulation
study is carried out to evaluate the performance of the maximum likelihood
estimates. The superiority of the proposed distribution over some known
distributions is demonstrated through some applications on COVID-19 data
in some countries.

Keywords: Competing risks, additive model, flexible Weibull extension
distribution, the additive flexible Weibull extension-Lomax distribution,
modified bathtub hazard shape.

1. Introduction

In reliability studies, lifetime testing, human mortality studies,
engineering modeling, electronic sciences and biological surveys, there are
different types of lifetime data. So, different shapes of lifetime distributions
are required for fitting these types of lifetime data. Researchers have proposed
several extensions and modifications to provide more flexibility than the
existing distributions. Therefore, several methods for constructing, extending
and generalizing lifetime distributions are presented [see Lai (2013)], such as:
the transformations of variables and distribution functions, probability
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integral transforms, compound distributions, finite and infinite mixture
distributions.

Another method for constructing new lifetime distributions is the
competing risks approach, which is based on the concept of the competing
risks. In many life-testing studies, often the failure of the tested item may be
associated to more than one cause or mode of failure. These failure modes in
some sense compete with each other in order to cause the failure of the tested
item. Due to this reason, in the statistical literature this is well known as
competing risks. Moreover, competing risks arise in series systems, in which
the components are arranged in series. Each component has a certain
distribution with certain parameters and these components are statistically
independent of each other, therefore the lifetime of the series system is the
minimum of its components lifetimes. Competing risks often occurred in
reliability studies, demographic, medical and biological sciences and
engineering applications. Furthermore, the competing risks model is also
known as series model, additive model and multi-risk model.

Based on the concept of the competing risks, there are many lifetime
distributions that have been introduced in literature such as: Xie and Lai
(1995) introduced the additive Weibull (AW) distribution. Wang (2000)
presented the additive Burr XII distribution. Bousquet and Bertholon (2006)
proposed a competing risks distribution, called the B distribution. Almalki
and Yuan (2013) derived a new modified Weibull (NMW) distribution by
combining the Weibull distribution with the modified Weibull distribution
presented by
Lai et al. (2003) in a series system. Cordeiro et al. (2013) constructed the
exponential-Weibull. He ef al. (2016) obtained the additive modified Weibull
distribution. Oluyede et al. (2016) introduced the log-logistic Weibull
distribution. Singh (2016) obtained the additive Perks-Weibull distribution.
Mdlongwa et al. (2017) derived the Burr XII modified Weibull distribution.
Tarvirdizade and Ahmadpour (2019) introduced Weibull-Chen distribution.
Shakhatreh et al. (2019) proposed the log-normal modified Weibull
distribution. Osagie and Osemwenkhae (2020) constructed the Lomax-
Weibull (L-W) distribution. Kamal and Ismail (2020) presented the flexible
Weibull extension-Burr XII distribution by combining the flexible Weibull
extension distribution (FWE) obtained by Bebbington ef al. (2007a) and Burr
XII distribution in a series system. Thach and Bris (2021) introduced the
additive Chen-Weibull distribution. Khalil ez al. (2021) presented the flexible
additive Weibull distribution by combining three Weibull distributions.
Makubate et al. (2021) proposed the Lindley-Burr XII distribution. Abba et
al. (2022) mtroduced the flexible additive Chen-Gompertz distribution by
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combining Chen and a special case of Gompertz distributions in a series
system. Recently, Xavier et al (2022) proposed the additive power-
transformed half-logistic model by combining two power-transformed half-
logistic distributions in a series system. More recently, Thach (2022)
presented the three-component additive Weibull distribution.

This paper aims to introduce a new competing risks model, called the
additive flexible Weibull extension-Lomax (AFWE-L) distribution, by
considering a series system with two components functioning independently
in series. The lifetime of the first component, X;, has the FWE distribution
and the lifetime of the second component, X,, has Lomax (L) distribution.
Therefore, the lifetime of the system is X = min{X;, X,} has AFWE-L
distribution with four parameters. Its hazard rate function (hrf) can be
expressed as the sum of the hrfs of the FWE and L distributions, which
shows different hazard shapes, the most important shapes are the bathtub and
the modified bathtub (where the failure initially increases at the beginning for
a short period; maybe due to manufacturing defects, then it is followed by a
bathtub shape).

The FWE distribution is a very flexible extension of Weibull distribution
that was introduced by Bebbington ez al. (2007a) as a member of the class of
distributions which was presented by Gurvich et al. (1997). The reliability

function (rf) and the hrf of the FWE distribution are given, respectively, by:

ax-L
Ri(x;a,B) =e"¢ 7%, x>0; apf >0, (D
and

hi(x;a,B) = (a +§) eax—% x>0; ap >0, 2

where a and  are shape parameters.

The flexibility of the FWE distribution is due to its hrf which has
different shapes: increasing failure rate, increasing failure rate average and
modified bathtub-shaped failure rate. Due to its flexibility, it has many
applications in engineering, life testing experiments, applied statistics,
reliability analysis and clinical studies [see Bebbington et al (2007a),
Bebbington et al. (2007b) and Choquet ef al. (2013)].

The L distribution which is also named Pareto Type II distribution was
pioneered by Lomax (1954) to model business failure data. It is known that it
is a special case of Pearson Type VI distribution and it can be obtained as a
compound of the exponential and gamma distributions. The L distribution
belongs to the family of decreasing hrf. The L distribution has various
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applications in several fields such as income and wealth inequality, actuarial,
medical and biological sciences, engineering, lifetime and reliability analysis.

Its rf and hrf are expressed as:
-6

X
Rz(x;l,9)=(1+z) , x>0,14,0>0, (3)
and
h(-Ae)—9(1+x)_1 S0:10>0 (4)
2x) ) _A A ) X I R49] )

where A is a scale parameter and 8 is a shape parameter.

This paper is organized as follows: The construction of the proposed
model and the graphical description of the pdf, hrf and the reversed hazard
rate function (thrf) of the proposed model are introduced in Section 2. In
Section 3, some main properties of AFWE-L distribution are derived. The
maximum likelihood (ML) estimators of the parameters, rf and hrf and the
asymptotic confidence intervals (ACls) of the parameters, rf and the hrf of
AFWE-L distribution based on Type II censored samples are developed in
Section 4. A simulation study is presented in Section 5 to evaluate the
performance of the ML estimates. In Section 6, applications on COVID-19
data in some countries are performed to demonstrate the superiority of the
proposed distribution over some known distributions.

2. The Model

In this section, the construction of the proposed model based on the hrfs
and rfs of the FWE and L distributions is derived. Also, the graphical
description of the pdf, hrf and rhrf of the proposed model is introduced.

The hrf of AFWE-L distribution with parameter vector ¢ = (a, 8, A, 0)

can be expressed as the sum of the hrfs of FWE and L distributions as
follows:

h(x9) = hy(aB) + hy(x;2,6)

_ ﬁ ax—ﬁ- 6 X\ 7! .
Ser Bt e o

and the rf of AFWE-L distribution can be obtained as

2 ax-L x\
Rixy)= ix)=e=* * =) ; , (6)
(x:) L_l[R X)=e (1+3) x>0;9>0, (6
where
(194 )
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R, (x) and R, (x) are the rfs of FWE and L distributions, respectively.
Consequently, the probability density function (pdf) of AFWE-L distribution
is given by:

F(xw) =h(xw)r(xy)

Hence,
-1 ax-b -6
Few) =[(a+ H)emx 43 (143) | (1+3)
x>0;9>0 (7)

The corresponding cumulative distribution function (cdf) of AFWE-L
distribution is given by:
-6

F(x;£)=1—e—e“"_§(1+%) , x>09>0. (8)

Moreover, the rhrf and the cumulative hazard rate function (chrf) of AFWE-
L distribution are given, respectively, as:

Al
r (x' ﬂ) r (x; ﬂ) . B .
) [(a + %) ek +%(1 +7) ] e (1+3)

) |~ gme™ s (1+ %)_9

)

x>0;9>0 (9)
and

H(xw) = ~IR(xp)= ™% +0m(1+7),

x> 0; ¥ >0.(10)

Plots of pdf, hrf and rhrf of AFWE-L distribution are given, respectively in
Figures 1-3.

Plots of the pdf, hrf and rhrf of AFWE-L distribution are provided to
show the flexibility of pdf and hrf of AFWE-L distribution, which allow this
distribution to fit different types of lifetime data. Figure 1 displays AFWE-L
pdf for selected values of the parameters, where one can observe that the pdf
of AFWE-L distribution can be decreasing, unimodal or decreasing-
unimodal. Also, Figure 2 shows AFWE-L distribution hrf for some values of
the parameters. The hrf of AFWE-L distribution represents major shapes
such that increasing, decreasing, bathtub, bi-bathtub and modified bathtub
shapes. Moreover, plots of the rthrf of AFWE-L distribution for different
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values of the parameters are given in Figure 3, which indicates that the rhrf of
AFWE-L can be decreasing or have the reversed shape of the modified
bathtub shape.
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Figure 2: Plots of AFWE-L hrf
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of AFWE-L distribution
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Figure 3: Plots of AFWE-L rhrf

An interpretation of AFWE-L distribution is as following: the lifetime of
a series system with two components functioning independently, the lifetime
of the first component has the FWE distribution, the lifetime of the second
component has L distribution and the lifetime of the series system is the
minimum of the lifetimes of the two components. Also, this new additive
model can be interpreted as the lifetime of an item or an individual which is
subject to two independent failure modes or causes, acting simultaneously on
it and one of these failure modes can cause the failure of this item or this
individual. The lifetime of one of these failure modes has the FWE
distribution and the second has L distribution.

3. Statistical Properties

In this section some main properties of AFWE-L distribution are studied
including: the quantile function, mode, central and non-central moments,
moment generating function, 7" incomplete moment and inequality curves,
mean residual life (MRL) and mean inactivity time (MIT), Rényi entropy
and Tsallis entropy (g-entropy), the order statistics and some new and well-

known sub-models of the proposed distribution.

3.1 The quantile function and the mode

The quantile function of AFWE-L distribution can be obtained by inverting
R(xyp)=1-g, 0<g<l
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So, the quantile function can be obtained by solving the following nonlinear
equation
_B X
e x4+91n(1+7%)+1n(1—q,)=0, 0<g<1 (11)
As special cases of the quantile function are the median of AFWE-L
distribution, denoted by x,,,, the first quartile, denoted by x ,5, and the third

quartile, denoted by x_,5, which can be obtained, respectively, by setting
g =054 =0.25andg = 0.75 into (11).

The mode of AFWE-L distribution is the value of x, which maximize
f (x ; 1,0). So, the mode of AFWE-L distribution can be obtained by solving
the following nonlinear equation numerically,

B\ wo-B\ 28 20( B X\t
(w+) (1) 2 (e 503

-2

_B 0 X
x %0 xo—(9+1)/1—2(1 +7°) = 0. (12)

The mathematical derivative of the mode of AFWE-L distribution is obtained
in Appendix I.

Some numerical values of the first quartile, the median and the third quartile
as special cases of the quantile and the mode for different parameter values
Y = (a, B, A, 0)are listed in Tablel.

Table 1
Some quartiles and the mode of AFWE-L distribution
for different parameter values

a B y) (7] X0.25 Xm X0.75 Mode
3 1.25 3 0.1258 0.3247 0.6490 0.7669

1.5 0.5 4 3 0.2132 0.3623 0.5724 0.2276
1.5 3 4 0.5 0.9546 1.2335 1.4845 1.2930
4 3 4 0.5 0.6917 0.8048 0.8979 0.8425
2 2 3 0.05 0.6655 0.9082 1.0820 0.9227
3 1.25 4 0.15 0.4637 0.5828 0.6991 0.5909
1 0.3 6 0.25 0.2030 0.3866 0.7217 0.1457
0.85 3 2 0.5 0.9465 1.4387 1.9083 1.4846
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3.2 Central and non-central moments

The ™" non-central moment of a random variable X has AFWE-L
distribution is given by:

o o oo

( 1)l+k j+k o] Rk ]
ZZ llkla £ [rar+i=k

i=0 j=0
xB(r+]—k,9—(r+j—k))], r=12,...,(13)

where
B(.,.) is the beta function and 0 < r + j — k < 6. [for more details see
Appendix II].

By substituting = 1 into (13), the mean of AFWE-L distribution can be

obtained as follows:
P X=X (—1)i+k l1+k o) Bk N—k+1
k= Z k!
i=0 j=0 k=
xB(1+]—k9—(1+]—k)) (14)
where

0<1+j-k<8.

The rt" central moment of a random variable X has AFWE-L distribution is:
T

Uy = Z (7;) Dty r=12,.... (15)

=0

Substituting 7 = 2 in (15), the variance of AFWE-L distribution is:
V(X) = pp = pp — pi2. (16)

The coefficient of variation (CV), the coefficient of skewness (CS) and the
coefficient of kurtosis (CK) are given, respectively, by:

cv = @, cs=+3  and ck="% (17)
u Mz l’l'z

where
u and pu, are evaluated using (14) and (16), respectively. 3 and u, can
be calculated, respectively, by setting 7 = 3 and r = 4 into (15).

Numerical results of the first four non-central moments, variance, CV, CS
and CK of AFWE-L distribution for some parameter values are presented in
Tables 2 and 3.
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Table 2
Moments of AFWE-L distribution for different values of @ and 3,
A=125and 8 = 0.5

B Iz I 7 A T cv cs Ck
0.7083 0.5633 0.4689 0.4020 0.0617 0.3506 -1.1354 3.6768
0.7985 0.7290 0.7030 0.7025 0.0915 0.3788 -0.9092 3.1637
3 0.9421 1.0466 1.2477 1.5587 0.1590 0.4232 -0.5983 2.6480
1.2390 1.9410 3.3916 6.3780 0.4060 0.5143 -0.0748 2.2939
1.3191 2.2456 4.3133 8.9877 0.5055 0.5390 0.0489 2.3074
3 1.0570 1.3520 1.8821 2.7724 0.2348 0.4585 -0.3808 2.4212
2 0.8787 0.9375 1.1041 1.3937 0.1653 0.4627 -0.1534 2.4776
1.25 0.7074 0.6188 0.6123 0.6620 0.1184 0.4865 0.1709 2.5913
0.5 0.4648 0.2932 0.2251 0.1979 0.0772 0.5978 0.7958 3.2633
0.3 0.3718 0.2055 0.1454 0.1205 0.0673 0.6975 1.0867 3.8558

Table 3
Moments of AFWE-L distribution for different values of A and 8,
a=05andp =15

0 © 17 17 |7/ 75 cv cs Ck
1.4461 2.7880 6.4991 17.2885 0.6968 0.5773 0.7773 3.2068
1.4024 2.6619 6.1420 16.2198 0.6951 0.5945 0.7926 3.2544
0.5 1.3638 2.5536 5.8419 15.3358 0.6936 0.6107 0.8088 3.2975
1.2981 2.3756 5.3603 13.9423 0.6907 0.6402 0.8423 3.3758
1.2056 2.1379 4.7389 12.1878 0.6846 0.6863 0.9023 3.5035
0.75 @ 0.8046 1.1961 2.4042 5.8130 0.5488 0.9207 1.3744 4.8618
0.5 0.9869 1.6277 3.4818 8.7727 0.6538 0.8194 1.1068 3.9641
0.25 1.2293 2.2417 5.0862 13.3246 0.7306 0.6953 0.8556 3.3528
0.15 1.3481 2.5563 5.9328 15.7767 0.7389 0.6376 0.7782 3.2070
0.05 1.4823 2.9205 6.9292 18.6980 0.7234 0.5738 0.7409 3.1189

It can be noticed from Tables 2 and 3 that:

Forfixedf = 3,4 =1.25and 6 = 0.5

As «a decreases, the first four non-central moments, variance and CV of
AFWE-L distribution increase, and the CS increases and shifts from the
left (negatively) skewed shape to the right (positively) skewed shape.
Moreover, the CK decreases, and the distribution changes from the
leptokurtic shape to the platykurtic shape.

C00 )
N~
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Forfixeda = 0.5,4A = 1.25and 8 = 0.5

As [ decreases, the first four non-central moments and variance of
AFWE-L distribution decrease, the CV and CS increase and shifts from
the left (negatively) skewed shape to the right (positively) skewed shape.
The CK increases, and the distribution changes from the platykurtic
shape to the leptokurtic shape.

For fixeda = 0.5, =1.5and 8 = 0.5

As A decreases, the first four non-central moments and variance of
AFWE-L distribution decrease, the CV and CS increase to be more
skewed to the right. Also, the CK increases and tends to be more
leptokurtosis.

Forfixeda = 0.5, =1.5andA = 0.5

As 6 decreases, the first four non-central moments and variance of
AFWE-L distribution increases, and the CV, CS and CK decrease.

3.3 The moment generating function

The moment generating function, denoted by My (t), of a random variable X
has AFWE-L distribution can be obtained as given below:

My (t) = E(e"™) = jw e f (x; g) dx = Z:,_:ﬂ;’

iiiitr( 1k l]': 05] ﬁk [r AT+i=k

r=0i=0 j=0 k=0

0
><Br+]—k9—(r+]—k))] (18)

where

O<r+j-k<86.

3.4 Incomplete moments and inequality curves

The 7" incomplete moment of a random variable X has AFWE-L
distribution is given by:

e (t) = jo txrf (x; g) dx

=—t"R (t; 1,0)

c© o oo

DRRRl

i=0 j=0k=
[A”fle (r+]—k9—(r+]—k))] (19)

oL

N————
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where
-6

-t t
R(t;£)=e <1+Z) ,
IB(%) (r+j—k6—(r+j—k)) is a lower incomplete beta function

and
O<r+j-k<a0.

Lorenz and Bonferroni curves are well known inequality curves that have
been extensively used in different fields such as economics, demography,
insurance, reliability analysis and life testing. These curves are important
applications of the first incomplete moment. Lorenz and Bonferroni curves
are denoted, respectively, by Lr(p) and Br(p) which are defined by:

1 u(q)
L) =+ j of G)dx =5 20)
and
_1 L(p)
B(p) = j of (dx == @1)

where u is obtamed from (14), u(q) is the first incomplete moment which
can be obtained by substituting r =1 and t = g into (19) and q =
Fl(p)for0<p<1.

For AFWE-L distribution, the Lorenz and Bonferroni curves can be obtained,
respectively, by:

L(p)
o o 1 i+k ;j+k . J k/‘lj k+1 . .
—qR(q )+ 220 I, I G T ,0,‘(,/3 IB(q) \(1+) =k 0~ (1+] = k)
- i+k jj+k oj Rk 2j—k+1
Z?OOZ =0 I;.OO( 1) ljl|]|akj|ﬁ Y B(1+]_k,9_(1+]_k))
(22)
and
B(p)
- 1 i+k ;j+k ,j k/‘lj—k+1 ) )
~qR (@) + 520 X0 Xing 2 S B(q, y(1+) = k0~ +j - k)
= itk ijtk 7] QK Jj—k+1 )
pzooozooo I;.OO( 1) ljl|]|akj|ﬁ L B(1+]_k,9_(1 +]_k))
(23)
where

0<1+j-k<8.
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3.5 The mean residual life and the mean inactivity time

The MRL function or the life expectation at age t, denoted by m(t),
which represents the expected additional life length for a system or a unit
which is alive at age t, it is given by:

mit)=EX —-t|X>t) =———— ooR X ) dx
i) v

R(t;l,b
1+%)9 XX = (- 1)l+kl]+ka]ﬁkA] —k+1
_eat‘g ZZZ |k|
i=0 j=0 k=0
xIB(/)(1+]— k6 —(1+j—k), (24)

where

[B(t//l)(1 +j—k0—-(1+j— k)) is an upper incomplete beta and
0<1+j—-k<86.

The MIT or the mean waiting time, also called the mean reversed residual life
function, denoted by M (t), which represents the waiting time elapsed since
the failure of a system or a unit on the condition that this failure had occurred

in (0,t), is given by:
M =FE[(—-X)|X<t]= F\x; d
© = El(t - X)X <] J P (p)ax

F(6v)

t
7)
X2 X (=1)i+k ji+k g ﬁk N—k+1
_ZZZ iljlk!

xIB(t/A)(l +ji—k6—-1+j-K)| (25)

where
IB(%)(I +j—ko60—-(014+j— k)) is a lower incomplete beta function

and
0<1+j-k<86.
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3.6 Entropy measures

In this subsection, entropy measures of AFWE-L distribution are derived.
Entropy is a measure of uncertainty, randomness or variation of a random
variable. One of the most important entropy measures is Rényi entropy
which was proposed by Rényi (1961) as an extension of Shannon entropy
and is defined by:

Is(x) = 1

51nj fo(x)dx, §+1,6>0. (26)

For a random variable X with AFWE-L distribution the Rényi entropy is
given by:

[ee]

5 o o m ) -
15(x;£)=1i51n ZZZZZ( )(D) ( D kl(!rjri;r!z)f kst

m=0 i=0 j=0 k=0 (=0
xa1+lﬁk+(m D yj-k-m+1-5+1g (5~ m)B(] k—2(m-=1)

+1,60+1D)-m—-(G—k-2m-0+1)|,

§#1,6>0, (27)
where
0<j—-k-2m-D+1<66+1)—m.
As § — 1 Rényi entropy tends to Shannon entropy.
Another entropy measure is Tsallis entropy (also called g-entropy) introduced
by Tsallis (1988) is defined by:

Iq(x)=1iqln{1—j fq(x)dx}, q+1,q>0. (28)

For a random variable X has AFWE-L distribution the Tsallis entropy is
given by:

Lo (x:9)
1 n
,1 bl e(q m>B(] k=2m-0D+1,

OO

j+l'Bk+(m—l)

m ( D (m + §)J+kg
Z iljlk!

q(9+1)—m—(j—k—2(m—l)+1))

}, q#*1,q>0, (29)

Q04
N~
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where0 <j—k—-2(m—-D+1<q(@+1)—m.
3.7 The order statistics

Let X3, X5, ..., X, be a random sample from AFWE-L distribution, X;
are 1id. random variables. Let Xy < X3) <...< X,y be the

corresponding order statistics, then the pdf of the k™ order statistic is given
by:

= j+n—k+
fien (x:9) chn, i) [R(w)] " x>0, (30)

j=0

~.

where
n!(—1)/
Ck,n,j = - — — .
jl(k—j—1)!(n—k)!
Substituting (5) and (6) into (30), then the pdf of the k" order statistics of
AFWE-L distribution is:

k-1
fen (x; ﬂ) = Z) Crn,j [(a + i) ax(k)_% + i (1 n ;k)) l
7=

X

_B
X exp {—(j +n—k+1) [eax(k) X (k)

+6In(1+ flk))l} Xgo > 0.  (31)

Special cases

a. The pdf of the smallest order statistics can be obtained when k = 1 as:

e

X

_B x
X exp {—n le“xu) *@W 4+ fln (1 + %)

.X,'(l) > 0. (32)
b. The pdfofthe largest order statistics can be obtained if k = n as:

e

X(n)

__B x
X exp {—(j +1) [e T ln(l + %)l},

.X,'(n) > 0, (33)

€05 )
N~~~
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where

oo (-1)/
T (n—j - 1D
3.8 Some sub-models

There are several distributions that can be obtamed as sub-models of AFWE-
L distribution and are summarized in Table 4.

Table 4
Sub-models of AFWE-L distribution
Parameter The resulting distribution cdf
o b
/1 — OO FWE dlStI’lbuthl’l F(x; a,ﬁ) — 1 _ e—e x,x > O; CZ,,B > O.
x —6

B — oo Lomax distribution F;2,0)=1- (1 + Z) ’

x>0; 4,6 >0.

AFWE- compound exponential (or the p
AFWE- inverted Kumaraswamy Fx;a,8,0)=1— e ¢ TF( 4 x) 0

A=1 _
(6:1) orte Al(:fvgil;eta Typelbwith x>0 a,p,0>0.
| | ocx—E X -1
. _— _ ,—e X d
=1 AFWE- log logistic (1) Fx;a,p,))=1-e (1 + A) )
x>0; apB,A1>0.
ocx—E
A 9__1 and AFWE-standard Lomax Fix;a,p) =1—e¢ *(1+x)71,

x>0; af >0.

4. Maximum Likelihood Estimation

In this subsection, the ML estimators of the parameters, 1f and hrf based on
Type 1I censored samples are derived. Also, ACIs of the parameters, rf and
the hrf are obtained.

4.1 Point estimation

Suppose that X1y < X(3) <...< X is a censored sample of size r from
AFWE-L distribution with parameter vector ¥ = (a, 8,4, 6), then the

likelihood function is given by:
[ (xosw)]

L (g; x) = (ni—|r)' [Uf (x(i);g)

C06 )
N~
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i_xi. 0 D\ !
(n_r)|{ﬂl(a+z> X0 (1)+I(1+%) l}
(1+%)

-6
*®
y [ﬂ (1+29)
=1 - ‘B
_B _B
X exp (—(n — r)eax(r) Xr) — Z e @ x(i>>. (34)

i=1
The natural logarithm of the likelihood function is
¢=mL(yx)

_B 9 -1
x@® X(i) O]
(n_r)|+21n[(a+ m) +/1(1+ /1) l
B x
—HZIn 1+ (” Z “or x(l>—9(n—r)1n(1+%)

i=1

—-0(n-r)

B
—(—r)e " F, (35)
By differentiating the log likelihood function in (35) with respect to the
parameters a, 3, A and 6 as follows:

63 _ - ha (x(l)' ﬂ) - ax(i)—%
Erial e SO
-1 h (x(i);ﬂ) i=1
_B
—(n— r)x(r)eax(r) *m, (36)
0f _ —hg (x(i);f) N zr:ie“m)-%
J = (x(i); ﬂ) =0

— _B
(n T') eaX(r) x(r)’

(37)
x(r)
of - h x(l) l)b Z .X,'(l)
= x
oA & x(z) w /1 (l)
O(n—r x
( ) (,;C) (38)
AZ (1+ (7'))
A
and
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a¢ he X Eb
ad Z O Zl 1 +x(z))
20

=1 x(z) 1!’ =
—(n—7)In (1 + f{)) (39)
where h (x(y; ) is defined in (5),
Oh(x@); B B
Ohxqy; W
hg (x(i); ﬂ) = —(Z(/;) _)

o) "
oh(x; ¥ 0
(i) a(; T (1+x(1))2’
A
and
oh(x; 1
e

The ML estimates of the parameters 1 = (a, 8,4, 8) can be obtained by
equating Equations (36) — (39) to zero and solving numerically.

The ML estimators of R (x; ﬂ) and h (x; ﬂ) can be obtained, using the

invariance property of the ML estimators, by replacing the parameters
Y = (a,B,1,0) in (5) and (6) by their ML estimators, then the ML

estimators of R (x ; 1,0) and h (x ; 1,0) can be given, respectively, as follows:

~ ~ ax—2 X -0
R x; =e ¢ "<1+7) , x>0, (40
(%) : (40)
and

- . 3\ .. B 0 x\"L
h(x;¢)=(&+§>e“x7+i<1+i) ,  x>0. (41)
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4.2 Asymptotic confidence intervals

To obtain confidence intervals for the parameters ¥ = (a, 8,1, 0) of
AFWE-L distribution, the distributions of the ML estimators
1ﬁ = (&,ﬁ,i, @) are needed. Since the ML estimators 1ﬁ = (&,ﬁ,i, @) do
not have closed form, so their exact distribution cannot be obtained.
Therefore, the ACIs can be derived by using the asymptotic distribution of
the ML estimators. The ML estimators are asymptotically normal with mean
(a, B, A, 0) and the asymptotic variance-covariance matrix is given by the
inverse of the asymptotic Fisher information matrix as

/ var(@) cov(a,B) cov(a, 1) cov(af)
j-1 (¢)| _ c’b'v(&,ﬁ) v’&'r(ﬁ) c’b'v(ﬁ,i) c’b'v(ﬁ, @) |
P \c’b’v(&, 1) cov(g 1) wvar(l) cov(l,9) |
cov(a,8) cov(B,8) cov(l,8) var(d)
(42)
where the derivatives of the I;; elements of the asymptotic Fisher
information matrix are given in Appendix III.

Therefore, the (1 — w)100% bounds of the ACIs of the parameters
Y = (a,B,1,0) are as follows:

a+ Z(l_%)w/V7r(&)' B+ Z(l_%) /Uﬁr(ﬁ);

1+ Z(1—%) ’U’Efr(i) and 0 + Z(1—%) ’v’&'r(@), (43)

where Z (1-9) is the (1 — w)100% percentage point of the standard normal
2
distribution.

To obtain the ACIs of the rf and the hrf of AFWE-L distribution,
variances of the ML estimators of the rf and hrf are needed. Therefore, the
delta method discussed in Greene (2018) and used by EL-Sagheer (2018),
Thach and Bris (2021), EL-Sagheer et al. (2021), Buzaridah et al. (2022) and

Thach (2022) can be used to derive the asymptotic variances of R (x ; Q)
and h (x ; Q )
The asymptotic variances of R (x; Q) and h (x; Q) can be given,
respectively, by:

@ (R (x:9)) = €7 ()¢,

€09 O
N~~~
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var (ﬁ (x; Q)) =ni? (ﬂ) n|@, (44)
where B

§=(Ra(xip) Ro(wv) Ri(wy) Ro(xv)),

n= (ha (x: ﬂ) hg (x; ﬂ) ha (’“ E) he (x; E))

For more details about the asymptotic variances of R (x ; 1ﬁ) and h (x ; 1ﬁ)

and

see Appendix IV.
Thus, the (1 — w)100% bounds of the ACIs of the rf and the hrf are:

R (x; Q) + Z(l_%)\/v'ffr (ﬁ (x; Q)) ,

h (x; Q) + Z(l_%)\/v?fr (ﬁ (x; Q)) (45)

5. Simulation Study

and

In this section, a simulation study is conducted to examine the performance
of the ML estimates of the parameters, rf and hrf of AFWE-L distribution
under Type II censoring scheme, as follows:

a. Conducting various simulations for different samples of size (n =
30,60,100,200,500) generated from AFWE-L distribution using
different parameter values:

I: (a =115, =0.3,1=0.15,6 = 0.1),
II: (a = 0.5, =0.251=0.15,6 = 0.1),
and
II: (a =08, =0.51=0.560 =0.5).

b. The simulation study is performed based on two level of censoring
(30%, 0%).

c. The simulation study is conducted using number of replications
NR = 1000 using Mathematica 11.

d. Tables 5 - 7 display The ML averages, the estimated risks (ER), the
relative errors (RE), the variances and the AClIs of the parameters with
their lengths, where the ER and the RE are computed as follows:

AN

ER
NR

C10 O
)
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and
VvER

true value’

Tables 8 - 10 present the ML averages, ER, RE, variances of the rf, hrf
and the ACls at time x, = 0.4.

Concluding remarks:

From Tables 5 - 7, one can observe that the ML averages of the estimates
of the parameters of AFWE-L distribution are close to the population
parameter values as the sample size n increases and as the level of
censoring decreases. Moreover, the ERs, REs and the variances of the
ML estimates of the parameters ¥ = (a, 8,4, 0) decrease, in most

cases, as the sample size increases and as the level of censoring
decreases.

From Tables 8-10, one can conclude that in most cases, as the sample
size increases and as the level of censoring decreases, the ERs, REs and
the variances of the ML estimates of the rf and the hrf decrease.

As the sample size increases and the level of censoring decreases, the
length of the ACls of the parameters, rf and hrf of AFWE-L distribution
become narrower, in most cases.
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30

42

60

70

100

140

200

350

500

parameters of AFWE-L distribution for different samples of size n and

RS

DO R DO R DO RIDOUONRNRDODOUOCNRDDOCNRDODOCNDNRDODOECDNR DOECDR D™

Table 5
ML averages, estimated risks, relative errors, variances and 95% ACIs of the

NR = 1000, (a = 1.15,8 = 0.3,4 = 0.15,0 = 0.1)

Average
1.1051
0.3381
0.1922
0.1076
1.2149
0.2960
0.1752
0.1035
1.0566
0.3359
0.1768
0.0996
1.1787
0.2885
0.1594
0.0929
1.0440
0.3309
0.1671
0.0933
1.1638
0.2880
0.1551
0.0896
1.0174
0.3309
0.1648
0.0907
1.1613
0.2866
0.1410
0.0831
1.0136
0.3279
0.1610
0.0878
1.1543
0.2856
0.1208
0.0736

ER
0.0993
0.0111
0.0283
0.0056
0.0439
0.0028
0.0067
0.0024
0.0721
0.0092
0.0083
0.0035
0.0196
0.0015
0.0054
0.0014
0.0580
0.0025
0.0050
0.0017
0.0112
0.0011
0.0036
0.0011
0.0577
0.0019
0.0050
0.0009
0.0056
0.0007
0.0034
0.0012
0.0574
0.0014
0.0022
0.0005
0.0021
0.0004
0.0032
0.0014

RE Variance
0.2740 0.0973
0.3525 0.0097
1.1216 0.0265
0.7450 0.0055
0.1822 0.0397
0.1759 0.0028
0.5468 0.0061
0.4846 0.0023
0.2335 0.0634
0.3204 0.0080
0.6060 0.0075
0.5916 0.0035
0.1216 0.0187
0.1273 0.0013
0.4913 0.0053
0.3715 0.0013
0.2094 0.0467
0.1650 0.0015
0.4727 0.0047
0.4153 0.0017
0.0922 0.0110
0.1094 0.0009
0.3986 0.0036
0.3359 0.0010
0.2088 0.0401
0.1455 0.0010
0.4729 0.0048
0.3054 0.0009
0.0653 0.0055
0.0855 0.0005
0.3867 0.0033
0.3393 0.0009
0.2083 0.0388
0.1227 0.0006
0.3105 0.0021
0.2267 0.0004
0.0401 0.0021
0.0697 0.0002
0.3759 0.0023
0.3738 0.0007
12 )

UL
1.7164
0.5314
0.5114
0.2529
1.6054
0.3991
0.3282
0.1982
1.5500
0.5106
0.3471
0.2156
1.4470
0.3599
0.3027
0.1644
1.4678
0.4067
0.3020
0.1736
1.3697
0.3478
0.2719
0.1522
1.4098
0.3913
0.3008
0.1476
1.3067
0.3295
0.2533
0.1408
1.3994
0.3750
0.2497
0.1252
1.2444
0.3152
0.2153
0.1253

LL
0.4938
0.1448
0.0000
0.0000
0.8244
0.1928
0.0223
0.0087
0.5633
0.1612
0.0066
0.0000
0.9104
0.2171
0.0161
0.0215
0.6203
0.2551
0.0321
0.0130
0.9578
0.2281
0.0384
0.0270
0.6251
0.2706
0.0288
0.0337
1.0159
0.2437
0.0287
0.0254
0.6277
0.2808
0.0723
0.0504
1.0643
0.2559
0.0263
0.0218

Length
1.2226
0.3867
0.5114
0.2529
0.7810
0.2063
0.3059
0.1895
0.9867
0.3494
0.3405
0.2156
0.5366
0.1428
0.2865
0.1429
0.8475
0.1516
0.2698
0.1607
0.4119
0.1197
0.2335
0.1252
0.7847
0.1207
0.2720
0.1140
0.2909
0.0858
0.2246
0.1154
0.7717
0.0942
0.1774
0.0749
0.1801
0.0593
0.1890
0.1036

N—————



30

60

100

200

500

YoXY Ay (39 il (palll Skl

2203 Al — 5yl L el deakal! Al

Table 6

ML averages, estimated risks, relative errors, variances and 95% ACls of'the

parameters of AFWE-L distribution for different samples of size n and

21

30

42

60

70

100

140

200

350

500

NR =1000,(a = 0.5, = 0.25,4 = 0.15,0 = 0.1)

<

DPOLUVR DO ADEOERNYAIDIDON N DO NAR DO RNADEONRNYADOCNRR DO DY™A

Average
0.4911
0.3133
0.2040
0.1190
0.5424
0.2840
0.1798
0.1180
0.4586
0.3038
0.2055
0.1152
0.5253
0.2608
0.1709
0.1015
0.4549
0.3052
0.2007
0.1124
0.5217
0.2557
0.1681
0.0979
0.4476
0.2975
0.1967
0.1085
0.5160
0.2491
0.1638
0.0904
0.4403
0.2963
0.1881
0.1030
0.5132
0.2462
0.1614
0.0875

ER
0.0294
0.0161
0.0314
0.0099
0.0127
0.0101
0.0199
0.0097
0.0171
0.0084
0.0225
0.0078
0.0055
0.0040
0.0159
0.0065
0.0134
0.0068
0.0145
0.0048
0.0037
0.0034
0.0168
0.0084
0.0122
0.0033
0.0107
0.0023
0.0018
0.0010
0.0113
0.0032
0.0122
0.0028
0.0072
0.0015
0.0010
0.0006
0.0202
0.0042

RE Variance
0.3432 0.0294
0.5073 0.0121
1.1819 0.0285
0.9968 0.0096
0.2252 0.0109
0.4011 0.0089
0.9396 0.0190
0.9867 0.0094
0.2618 0.0154
0.3659 0.0055
1.0006 0.0195
0.8840 0.0076
0.1480 0.0048
0.2539 0.0039
0.8399 0.0154
0.8073 0.0065
0.2317 0.0114
0.3288 0.0037
0.8014 0.0119
0.6951 0.0047
0.1221 0.0033
0.2321 0.0033
0.8646 0.0165
0.9176 0.0084
0.2205 0.0094
0.2284 0.0010
0.6899 0.0085
0.4789 0.0022
0.0838 0.0015
0.1248 0.0010
0.7085 0.0111
0.5622 0.0031
0.2212 0.0087
0.2116 0.0007
0.5653 0.0057
0.3828 0.0015
0.0641 0.0009
0.0959 0.0006
0.9465 0.0200
0.6509 0.0041
13 )

UL
0.8269
0.5287
0.5350
0.3108
0.7469
0.4689
0.4498
0.3081
0.7080
0.4488
0.4788
0.2859
0.6616
0.3834
0.4144
0.2597
0.6640
0.4246
0.4143
0.2464
0.6335
0.3689
0.4198
0.2777
0.6377
0.3597
0.3777
0.2009
0.5919
0.3102
0.3703
0.1989
0.6229
0.3466
0.3366
0.1778
0.5704
0.2926
0.4387
0.2127

LL
0.1552
0.0979
0.0000
0.0000
0.3379
0.0991
0.0000
0.0000
0.2153
0.1587
0.0000
0.0000
0.3890
0.1381
0.0000
0.0000
0.2458
0.1859
0.0000
0.0000
0.4100
0.1426
0.0000
0.0000
0.2574
0.2352
0.0157
0.0161
0.4401
0.1880
0.0000
0.0000
0.2578
0.2460
0.0396
0.0282
0.4560
0.1998
0.0000
0.0000

Length
0.6717
0.4308
0.5350
0.3108
0.4090
0.3698
0.4498
0.3081
0.4867
0.2901
0.4788
0.2859
0.2726
0.2452
0.4144
0.2597
0.4182
0.2387
0.4143
0.2464
0.2236
0.2263
0.4198
0.2777
0.3802
0.1245
0.3620
0.1848
0.1518
0.1222
0.3703
0.1989
0.3652
0.1006
0.2970
0.1496
0.1144
0.0928
0.4387
0.2127
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parameters of AFWE-L distribution for different samples of size n and
NR = 1000, (e = 0.8, = 0.5, =0.5,0 = 0.5)

21

30

42

60

70

100

140

200

350

500

RS

PO R DO VNR DODEOECRDNRYRDODOCNRDODOCNVNR DOCNDNRYIRDODOCRNR DOCNVNKR DNV D™ RK

Average

0.7220
0.4186
0.5490
0.5033
0.8029
0.3785
0.5115
0.4964
0.6906
0.4128
0.5291
0.4798
0.7898
0.3791
0.4756
0.4628
0.6811
0.4095
0.5217
0.4695
0.7866
0.3740
0.4536
0.4353
0.6762
0.4081
0.5217
0.4657
0.7804
0.3698
0.4331
0.4113
0.6677
0.4063
0.5198
0.4622
0.7770
0.3695
0.4307
0.4052

ER
0.0519
0.0200
0.0865
0.0835
0.0343
0.0254
0.0592
0.0724
0.0431
0.0125
0.0429
0.0287
0.0079
0.0203
0.0239
0.0283
0.0386
0.0105
0.0148
0.0138
0.0045
0.0177
0.0141
0.0134
0.0349
0.0097
0.0050
0.0041
0.0026
0.0175
0.0087
0.0104
0.0243
0.0096
0.0028
0.0025
0.0014
0.0172
0.0064
0.0098

Table 7
ML averages, estimated risks, relative errors, variances and 95% ACls of'the

RE Variance
0.2848 0.0458
0.2829 0.0134
0.5882 0.0841
0.5778 0.0835
0.2315 0.0343
0.3189 0.0107
0.4865 0.0590
0.5382 0.0724
0.2595 0.0311
0.2238 0.0049
0.4143 0.0421
0.3391 0.0283
0.1108 0.0078
0.2850 0.0057
0.3089 0.0233
0.3365 0.0269
0.2456 0.0245
0.2047 0.0023
0.2432 0.0143
0.2349 0.0129
0.0834 0.0043
0.2658 0.0018
0.2377 0.0120
0.2318 0.0092
0.2335 0.0196
0.1971 0.0013
0.1419 0.0046
0.1283 0.0029
0.0641 0.0022
0.2647 0.0006
0.1864 0.0042
0.2040 0.0025
0.2314 0.0168
0.1960 0.0008
0.1051 0.0024
0.1006 0.0011
0.0472 0.0009
0.2625 0.0002
0.1596 0.0016
0.1975 0.0008
14 )

UL
1.1415
0.6454
1.1174
1.0695
1.1659
0.5808
0.9878
1.0238
1.0364
0.5502
0.9311
0.8097
0.9623
0.5270
0.7745
0.7843
0.9877
0.5035
0.7562
0.6918
0.9147
0.4569
0.6682
0.6236
0.9504
0.4780
0.6541
0.5721
0.8732
0.4161
0.5601
0.5102
0.9215
0.4608
0.6152
0.5273
0.8358
0.3961
0.5080
0.4592

LL
0.3025
0.1918
0.0000
0.0000
0.4400
0.1762
0.0353
0.0000
0.3447
0.2754
0.1270
0.1499
0.6173
0.2312
0.1766
0.1412
0.3745
0.3156
0.2872
0.2472
0.6586
0.2911
0.2391
0.2469
0.4021
0.3382
0.3894
0.3594
0.6876
0.3235
0.3060
0.3125
0.4139
0.3513
0.4244
0.3971
0.7182
0.3428
0.3533
0.3512

Length
0.8391
0.4536
1.1174
1.0695
0.7259
0.4046
0.9525
1.0238
0.6916
0.2747
0.8041
0.6598
0.3450
0.2958
0.5979
0.6431
0.6133
0.1878
0.4690
0.4446
0.2561
0.1658
0.4291
0.3768
0.5483
0.1398
0.2647
0.2127
0.1856
0.0925
0.2542
0.1977
0.5076
0.1094
0.1909
0.1302
0.1176
0.0533
0.1548
0.1081
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Table 8
ML averages, estimated risks, relative errors, variances and 95% ACls of'the
rf and the hrf of AFWE-L distribution for different samples of size n and
NR = 1000, (a¢ = 1.15,8 = 03,4 = 0.15,0 = 0.1,x, = 0.4)

n r | rfandhrf Average ER RE Variance UL LL Length

R (xo;ﬂ) 0.4517  0.0051 0.1723 @ 0.0038 = 0.5728 0.3305 0.2424

“ h (xo;ﬂ) 1.8342 | 0.5425 0.4566 @ 0.4937  3.2114 0.4570 2.7544

%0 R (xo;ﬂ) 0.4071 ' 0.0021 0.1094 0.0020 @ 0.4947 0.3196 0.1751
30 h (xo;ﬂ) 1.5923 | 0.1119 0.2074 0.1115  2.2467 § 0.9378 | 1.3089

R (xo;ﬂ) 0.4581 ' 0.0039 0.1505 0.0021 @ 0.5479 0.3683 0.1796

+2 h (xo;ﬂ) 1.8082 | 0.4848 0.4316 0.4468 3.1183 0.4981 2.6203

°0 R (xo;ﬂ) 0.4089 @ 0.0009 0.0731 0.0009 @ 0.4669 0.3508 0.1161
°0 h (xo;ﬂ) 1.5352 | 0.0547 0.1450 0.0486  1.9673 1.1031 0.8642

R (xo;ﬂ) 0.4591 @ 0.0032 0.1367 @ 0.0013  0.5306 0.3876 0.1430

70 h (xo;ﬂ) 1.7627 | 0.0806 0.1760 0.0583  2.2358 1.2897 @ 0.9461

100 R (xo;ﬂ) 0.4113 ' 0.0007 0.0614 0.0006 0.4606 0.3620 0.0986
100 h (xo;ﬂ) 1.5257 | 0.0411 0.1257  0.0335  1.8841  1.1672 | 0.7170

R (xo;ﬂ) 0.4634 ' 0.0032 0.1364 0.0009 @ 0.5230 0.4037 0.1193

140 h (xo;ﬂ) 1.7563 | 0.0568 @ 0.1477  0.0363 = 2.1296 @ 1.3829 | 0.7468

200 R (xo;ﬂ) 0.4117 = 0.0003 0.0442 0.0003  0.4468 0.3765 0.0703
200 h (xo;ﬂ) 1.5091 | 0.0290 0.1056 0.0182  1.7734 1.2449 0.5285

R (xo;ﬂ) 0.4625 ' 0.0029 0.1294 0.0007 0.5138 0.4112 0.1026

350 h (xo;f) 1.7332 | 0.0361 0.1177 0.0217  2.0218 1.4447 0.5771

500 R (xo;ﬂ) 0.4136 ' 0.0001 0.0286 0.0001 @ 0.4365 0.3906 0.0459
500 h (xo;ﬂ) 1.4905 | 0.0252  0.0985 @ 0.0102  1.6882  1.2927 0.3954
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Table 9
ML averages, estimated risks, relative errors, variances and 95% ACls of'the

rf and the hrf of AFWE-L distribution for different samples of size n and
NR = 1000, (e« = 0.5,8 = 0.25,1 = 0.15,6 = 0.1,x, = 0.4)

r rf and hrf | Average ER RE
R(xs) 05012 00047 0.1492

2 h(xy) 16132 06751 0.6550
R(xsp) 04716 00024 0.1079

30 h(xs¥) 14716 04666 05445
R(xsp) 05031 00036 0.1315

+2 h(xs¥) 15364 03065 0.4413
R(x) 04664 00011 0.0715

°0 h(xey) 13107 01841 03421
R(xp) 05054 00032 0.1244

70 h(xy) 15387 02490 03978
R(xop) 04656 00008 0.0632

100 h(xsy) 12752 01546 03134
R(xsp) 05029 00026 0.1118

140 h(xsp) 14852 0.0879 02364
R(xop) 04641 00004 0.0421

200 h(xy) 12275 00408 0.1610
R(xp) 05045 00026 0.1119

350 h(xs¥) 14700 00682 02081
R(xop) 04637 00002 0.0317

200 h(xy) 12047 00274 0.1319
716 )

Variance
0.0027
0.5454
0.0022
0.4194
0.0015
0.2270
0.0010
0.1810
0.0009
0.1683
0.0008
0.0008
0.0005
0.0347
0.0003
0.0401
0.0003
0.0219
0.0002
0.0249

UL
0.6025
3.0620
0.5637
2.7412
0.5779
2.4702
0.5275
2.1445
0.5629
2.3427
0.5194
2.0448
0.5455
1.8502
0.4989
1.6198
0.5401
1.7600
0.4886
1.5141

LL
0.3999
0.1645
0.3796
0.2026
0.4284
0.6027
0.4053
0.4770
0.4479
0.7349
0.4118
0.5056
0.4603
1.1202
0.4292
0.8353
0.4689
1.1795
0.4388
0.8953

Length
0.2026
2.8975
0.1842
2.5385
0.1495
1.8676
0.1221
1.6676
0.1150
1.6079
0.1076
1.5392
0.0852
0.7300
0.0697
0.7845
0.0712
0.5801
0.0498
0.6188



YYY digd g pdally (el 2dadl 23N Anely — 5yl CoLSD ¢ Lkl dcatal) AL

Table 10
ML averages, estimated risks, relative errors, variances and 95% ACls of'the
rf and the hrf of AFWE-L distribution for different samples of size n and
NR =1000,(a¢ = 0.8, = 0.5,2=0.5,0 = 0.5,x, = 0.4)
n r rf and hrf Average ER RE Variance UL LL Length

R(xo;ﬂ) 0.4704 | 0.0036 0.1187 0.0025 0.5692  0.3717 0.1698

21 h (xo;ﬂ) 2.6328 | 09767 0.3087 0.6589 4.2177 1.0479 @ 3.1698

30 R (xo;ﬂ) 0.4381  0.0058 | 0.1520 0.0017 0.5187 @ 0.3574 @ 0.1613
30 h (xo;ﬂ) 2.3984 | 1.1910 0.3409 0.5470 3.8481 0.9488 2.8993

R (xo;ﬂ) 0.4752  0.0022 | 0.0925 0.0014 0.5491 0.4013 0.1478

2 h (xo;ﬂ) 2.5664 | 0.6280 | 0.2476 0.2254 3.4969 1.6359 1.8610

%0 R (xo;ﬂ) 0.4415  0.0045 | 0.1341 0.0008 0.4981 0.3850 @ 0.1131
%0 h (xo;ﬂ) 2.3880 | 0.9760 0.3086 0.3151 3.4882 1.2878 @ 2.2004

R (xo;ﬂ) 0.4768  0.0015 | 0.0771 0.0009 0.5339  0.4197 @ 0.1141

70 h (xo;ﬂ) 2.5322  0.5460 | 0.2308 0.0988 3.1484 19163 1.2319

100 R (xo;ﬂ) 0.4428 | 0.0040 0.1261 0.0005 0.4853 0.4004 0.0849
100 h (xo;ﬂ) 2.3374 | 0.8374 | 0.2859 0.0917 29309 1.7498 1.1871

R (xo;ﬂ) 0.4777 | 0.0013 0.0703 0.0006 0.5273  0.4281 @ 0.0992

149 h (xo;ﬂ) 2.5170 | 0.5187 | 0.2250 0.0510 29594 2.0746  0.8848

200 R (xo;ﬂ) 0.4441  0.0036 0.1196 0.0002 0.4726 @ 0.4155 @ 0.0571
200 h (xo;ﬂ) 2.2917 | 0.8521 0.2884 0.0253 2.6033 1.9801 0.6232

R (xo;ﬂ) 0.4781 | 0.0010 0.0636 0.0004 0.5188  0.4373 | 0.0814

350 h (xo;ﬂ) 24986 | 0.5243 | 0.2262 0.0311 2.8443  2.1530 @ 0.6913

°00 R (xo;ﬂ) 0.4456  0.0033 | 0.1142 0.0001 0.4624 0.4289 0.0334
°00 h (xo;ﬂ) 2.2832 | 0.8500 | 0.2880 0.0077 24552  2.1112  0.3440

6. Applications

This section is devoted to exhibit the applicability and flexibility of
AFWE-L distribution for data modeling. Three applications on COVID-19
data in some countries is used to demonstrate the superiority of AFWE-L
distribution over some known distributions namely, L-W, NMW, AW, FWE
and L distributions. ML estimates of the parameters, rf and the hrf based on
two level of Type II censoring (30%, 0%) and their standard errors (SE),
Kolmogorov-Smirnov (K-S) statistic and its corresponding p-value, the
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—2log likelihood statistic (—2L), Akaike information criterion (AIC),
Bayesian information criterion (BIC) and corrected Akaike information
criterion (CAIC) are used to compare the fit of the competitor distributions,
where

AIC =2m — 2L, BIC = mIn(n) — 2L

m(m + 1))

n—m-—1

and
CAIC = AIC + 2(

where

L is the natural logarithm of the value of the likelihood function evaluated at
the ML estimates,

n is the number of the observations and m is the number of the estimated
parameters.

The best distribution corresponds to the lowest values of AIC, BIC and
CAIC, also the highest p-value.

6.1 Application 1

This application is given by Mubarak and Almetwally (2021). The
application represents COVID-19 data which belong to the United Kingdom
of 76 days, from 15 April to 30 June 2020. The data are formed of drought
mortality rates. The data are: 0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303,
0.1652, 0.2079, 0.2395, 0.2751, 0.2845, 0.2992, 0.3188, 0.3317, 0.3446,
0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690, 0.4954, 0.5139,
0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438,
1.0602, 1.1305, 1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709,
1.6017, 1.6083, 1.6324, 1.6998, 1.8164, 1.8392, 1.8721, 1.9844, 2.1360,
2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715, 3.7840, 3.9042,
4.1969, 4.3451, 44627, 4.6477, 53664, 5.4500, 5.7522, 6.4241, 7.0657,
7.4456, 8.2307, 9.6315, 10.1870, 11.1429, 11.2019 and 11.4584.

Figure 4 displays the plot of the empirical scaled TTT-transform of COVID-
19 data of the United Kingdom, which implies that this data has a modified
bathtub hazard function, boxplot and the histogram of the data. One can
notice that this data is right-skewed. P-P plot, Q-Q plot and the fitted AFWE-
L distribution plots indicate that AFWE-L distribution provides a better fit to
this data.

Table 11 displays the K-S statistic and its corresponding p-value, —2.L
statistic, AIC, BIC and CAIC and Table 12 presents the ML estimates of the

18
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parameters, rf and hrf along with their SEs, under 0% and 30% levels of Type
II censoring, for COVID-19 data of the United Kingdom.

The empirical scaled TT T-transform plot Boxplot
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Figure 4: The empirical scaled TTT-transform plot, boxplot, histogram,
P-P plot, Q-Q plot and the fitted pdf for COVID-19 data of the United
Kingdom.




YoXY Ay (39 il (palll Skl

2203 Al — 5yl L el deakal! Al

Model

AFWE-L

L-W

NMW

AW

K-S

0.0790

0.1316

0.1184

0.1579

0.1447

0.1447

P-value

0.9735

0.5291

0.6643

0.3012

0.4050

0.4057

Table 11
K-S statistics, P-values,—2.L, AIC, BIC and CAIC of'the fitted models
for COVID-19 data of the United Kingdom

2L

280.4346

285.7349

338.8597

415.7225

334.5277

297.1085

Table 12

AIC

288.4346

293.7349

348.8597

4237225

3385277

301.1085

BIC

297.7575

303.0579

360.5134

433.0455

343.1892

305.7700

CAIC

288.9980

294.2983

349.7169

424.2859

338.6921

301.2729

ML estimates and their relevant SEs of the fitted models

for COVID-19 data of the United Kingdom

Level of censoring Y, rfand hrf
a
B
A
0% 0
R (x; 1,0)
(x:v)
a
B
A
30% 0

-
—~
RalIRS:
< |=
—

6.2 Application 2

MLE
0.1034
0.5030
0.2190
0.0434

0.7107

2.4842

0.0985
0.6212
0.6901
0.1553

0.7474

3.3368

SE
4.5277e-5
3.945e-5
4.1068e-4
8.7687e-5

4.2349e-5

1.8367e-4

2.7943e-5
0.0023
0.0084
0.0020

7.5962e-4

0.0165

This application is provided by Mubarak and Almetwally (2021). The
application represents COVID-19 data which belong to Japan of 38 days,
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from 4 September to 12 October 2020. The data is formed of drought
mortality rates. The data are: 0.1596, 0.2733, 0.1142, 0.0851, 0.1976, 0.2243,
0.1810, 0.0828, 0.1504, 0.2169, 0.0404, 0.1208, 0.1334, 0.1589, 0.1184,
0.1698, 0.0648, 0.1027, 0.0511, 0.1019, 0.1520, 0.1006, 0.0624, 0.0372,
0.1112, 0.0859, 0.0854, 0.0847, 0.1443, 0.0836, 0.0238, 0.0355,0.0353,

0.0937, 0.0349, 0.0924, 0.0344 and 0.0228.

The empirical scaled TTT-transform plot Boxplot
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Figure 5: The empirical scaled TTT-transform plot, boxplot, histogram,
P-P plot, Q-Q plot and the fitted pdf for COVID-19 data of Japan.
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Figure 5 shows the plot of the empirical scaled TTT-transform of COVID-19
data of Japan, which indicates that this data has an increasing hazard function,
the boxplot implies that this data is right skewed, the histogram of the data
shows that this data is unimodal. The P-P plot, Q-Q plot and the fitted
AFWE-L distribution plots indicate that AFWE-L distribution gives better fit

for this data.

Tables 13 presents the K-S statistic and its corresponding p-value, —2.L
statistic, AIC, BIC and CAIC and Table 14 presents the ML estimates of the
parameters, rf and hrf along with their SEs, under 0% and 30% levels of Type
II censoring, for COVID-19 data of Japan.

Table 13

K-S statistics, P-values,—2.L, AIC, BIC and CAIC of'the fitted models
for COVID-19 data of Japan

K-S
0.1316
0.1579
0.1842
0.2105
0.3684
0.2632

P-value
0.9033
0.7379
0.5453
0.3727
0.0109
0.1445

2L
-95.2786
-82.0023
-78.0422
-65.0143
-58.9937
-77.4367

Table 14

AIC
-87.2786
-74.0023
-68.0422
-57.0143
-54.9937
-73.4367

BIC
-80.7283
-67.4519
-59.8543
-50.4640
-51.7185
-70.1615

ML estimates and their relevant SEs of the fitted models
for COVID-19 data of Japan

Level of censoring

0%

30%

ﬂ, rf and hrf

D ™R

ke:

~—

Ry

IS |
~—

R

D ™R

=)
~—~

&
[
~—

MLE

14.4886
0.7426
0.2609
2.2023

0.1825

26.0360

17.2038
0.7113
0.2473
1.9928

0.1260

SE

0.0664
0.0065
0.0030
0.0283

7.9325e-

0.3424

0.1964
0.0080
0.0037
0.0318

0.0010

CAIC
-86.0665
-72.7902
-66.1692
-55.8022
-54.6508
-73.0938
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h (x; 1,[)) 18.8154 0.2120

6.3 Application 3

This application is given by Liu ef al. (2021). In this application the survival
times of patients suffering from the COVID-19 epidemic in China are
considered. The data represent the survival times of patients from the time
admitted to the hospital until death. Among them, a group of 53 COVID-19
patients were found in critical condition in hospital from January to February
2020. Among them, 37 patients (70%) were men and 16 women (30%), 40
patients (75%) were diagnosed with chronic diseases, especially including
high blood pressure, and diabetes, 47 patients (88%) had common clinical
symptoms of the flu, 42 patients (81%) were coughing, 37 (69%) were short
of breath, and 28 patients (53%) had fatigue. 50 (95%) patients had bilateral
pneumonia showed by the chest computed tomographic scans.

The data are: 0.054, 0.064, 0.704, 0.816, 0.235, 0.976, 0.865, 0.364, 0.479,
0.568, 0.352, 0.978, 0.787, 0.976, 0.087, 0.548, 0.796, 0.458, 0.087, 0.437,
0.421, 1.978, 1.756, 2.089, 2.643, 2.869, 3.867, 3.890, 3.543, 3.079, 3.646,
3.348, 4.093, 4.092, 4.190, 4.237, 5.028, 5.083, 6.174, 6.743, 7.274, 7.058,
8.273,9.324, 10.827, 11.282, 13.324, 14.278, 15.287, 16.978, 17.209, 19.092
and 20.083.

Figure 6 presents the plot of the empirical scaled TTT-transform of COVID-
19 data of China, which indicates that this data has a bathtub hazard function,
boxplot and the histogram of the data show that this data is right-skewed. The
P-P plot, Q-Q plot and the fitted AFWE-L distribution plots implies that
AFWE-L distribution presents better fit for this data.

Tables 15 displays the K-S statistic and its corresponding p-value, —2.L
statistic, AIC, BIC and CAIC and Table 16 presents the ML estimates of the
parameters, 1f and hrf of AFWE-L distribution along with their SEs, under
0% and 30% levels of Type II censoring, for COVID-19 data of China.
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Figure 6: The empirical scaled TTT-transform plot, Boxplot, P-P plot,
Q-Q plot and the histogram and the fitted AFWE-L distribution for COVID-
19 data of the China
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Model

AFWE-L

L-W

NMW

AW

K-S statistics, P-values,—2.L, AIC, BIC and CAIC of'the fitted models

K-S

0.0943

0.1509

0.2264

0.1132

0.1132

0.2453

Table 15

for COVID-19 data of China

P-value

0.9747

0.5861

0.1317

0.8898

0.8907

0.0815

2L

268.5411

279.0068

302.7820

313.3504

279.2810

295.8015

Table 16

AIC

276.5411

287.0068

312.7820

321.3504

283.2810

299.8015

BIC

284.4223

294.8880

322.6334

329.2316

287.2216

303.7420

ML estimates and their relevant SEs of the fitted models
for COVID-19 data of China

Level of censoring

0%

30%

ﬂ, rf and hrf

MLE

0.0526
3.6678
0.3888
0.2198

0.8559

23.2526

0.0465
3.5952
0.4269
0.2291

0.8594

22.7908

SE

CAIC

277.3745

287.8401

314.0586

322.1838

283.5210

300.0415

5.0006e-5

0.0063
0.0021

5.7627e-4

1.4027e-4

0.0395

9.5686e-5

0.0111
0.0020

5.7361e-4

1.0782e-4

0.0695
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Concluding remarks:

e AFWE-L distribution has the lowest K-S values and the highest p-values
for the three applications. Thus, it provides the best fit for these data
compared to the other competitors of distributions.

e  Moreover, the AFWE-L distribution has the smallest values of the —2.L
statistic, AIC, BIC and CAIC, which imply that the proposed model is
the best among the other competitors of distributions (L-W, NMW, AW,
FWE and L).

e The ML estimates of the parameters, rf and hrf of AFWE-L distribution
have smaller SEs for the case of the complete samples (0% level of
censoring) comparing to the case of censored samples (30% level of
censoring). This returns to the amount of lost information through the
censoring.

7. Conclusion

In this paper, a new four-parameter competing risks model, called AFWE-L
distribution is introduced by combining the FWE distribution and the L
distribution in a series system. AFWE-L distribution has high flexibility and
diversity in the shapes of the pdf as well as the hrf. Several statistical
properties of the proposed model are derived. The ML method is used to
estimate the model parameters, rf and hrf based on Type II censored samples.
Moreover, simulation study is conducted to evaluate the performance of the
ML estimates of AFWE-L distribution parameters, rf and hrf. AFWE-L
distribution is the best fitting among many known distributions to three real
applications on COVID-19 data in some countries.
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9. Appendix
I. The mode

The mode of AFWE-L distribution can be obtained by differentiating the pdf
in (7) with respect to x and equating to zero as follows:

f(xo;ﬂ) = 0.

Since
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) =h(xyp)R(xp) = n(xp)e L),

where H (x;1p ) is the chrf defined in (10), then,

f () = (w0) {524 (o) R ()}

+[szh ()R (x:). (a1
where
s (w) =n (o),
and

s (60) =h (s )

Hence, (A1) can be written as

fuy)=[a(xw)-n(xw)|r(xv), (A2)

where

2 —
()= [(es £ et 204D

(i) = <“+£2) o) 4 ij (1+3)”
2

X
_79(“%)(1 +A)‘1eax—§.

Therefore, equating (A2) to zero, one can obtain the following nonlinear
equation

B\ wo-B\ 28 20( B %o\t
(w+3) (1) -+ 2 (e 5) 03]
-2

_B ] X
x e ¥ xo—(9+1)/1—2(1+7°) = 0. (A3)

Equation (A3) is a nonlinear equation, which can be solved numerically to
obtain the mode of AFWE-L distribution.

II. The " non-central moment

Since

Uy =warf(x;£)dx= —'[OooxrdR(x;ﬂ).
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Using integration by parts, then

@ @ txx— x\ "0
Uy = jo rx" 1R (x; ﬂ) dx = —[o rx""le~® (1 +/1) dx .
ocx—é
Since the power series expansion ofe™¢ ~ *is as follows:

N B) (1%
4 .L wrsellers )(I_FA) ax,

iax

_iB
By using the power series expansion of e'** and e x, then

e}

© oo ( 1)1+k ijt+k 0(] ﬂk ket x\ 0

eSS O I [ 143) .
i=0 j=0 k=0 0

Using integration by substitution, then,

P2 = _1)i+k jitk g gk .
D S
ay. i'jlk!

XxB(r+j—k68—(+j—k)],

O<r+j-k<a0.
III. The asymptotic Fisher information matrix

The asymptotic Fisher information of AFWE-L distribution is given by
I(w) =[] iLj=1234, (A4

where

0%t _ zr: h (x(i);ﬂ) hoa (x(i);ﬂ) —h (x(i);ﬂ)

1= "52 o h2 (x(i);ﬂ)

r

B B
axip——— aAxX()—7—
+ Z x(zi)e D70 (n— r)x(zr)e @ m,
i=1

L= — 02¢ _ _zr: h (X(i);ﬂ) hap (x(i);ﬂ) — hé (x(i);ﬂ)
12 dadp — h2 (x(i);ﬂ)

c X~ ‘)‘x()_i
-2 G — (n = r)e ™ e,

i=1
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Ly = —

I = -

23 — 7

Ly = —

I35 = —

[34 = —

and

44 — T

where

0%¢ zr: he (x(i); ﬂ) h; (x(i); ﬂ)

0a0l Lt 12 (xgyy)

0%t zr: he (x(i);ﬂ) hg (x(i);ﬂ)

0000 & p2 (xq; )

e Z (h (x0i ) hgs (i) = 1§ (o £)>

2
op = h* (xay; )
T
B
4 Lz %)~ x()+("2 r) KO Ry
= Xt

02%¢ _ r hﬁ (x(i);ﬂ)hl (X(i);ﬂ)
oA & w(xpiy)

92¢ _ i hﬁ (x(i);ﬂ) hg (X(i); ﬂ)

o6 L h2 (x(i);ﬂ)

S Bt

G h? (s )
+ izr: xo (2+3) L0 —n*o (z+7)
S R e S
0%t _i( (x(l) Q) hog (x(i);g) hj (x(l) ﬂ))
0100 . 2 (x(i); g)

r

1 X (1) n—7r)  xp
FUD T o

az,g 3 zr: hg (x(i);ﬂ)
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0%h (xq); G o
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2
X
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2
0!
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hap (xai ) =

. _ d h(X(l) lp) ah)L (X(i);ﬂ) 3 20
haa (x(i)’ﬂ) - 9212 = EY = /13 (1 A %)3,
and
) - 2 2

IV. The delta method

Using the delta method, the asymptotic variances of R (x ; 1ﬁ) and h (x ; 1ﬁ)
can be derived , respectively, by:

(R (x0)) = €1 (v)¢].

var (fl (x; Q)) =npl! (ﬂ) n|@,

where

§=(Re(x:9) Rs(xw) Ra(xy) Ro(x3))is the first partial
differentiation of the rf with respect to , 5, A and 6 and

n= (ha (x; ﬂ) hg (x; ﬂ) h; (x; ﬂ) hg (x; ﬂ)) is the first partial
differentiation of the rf with respect to , 5, A and 6, where

Rq (x; E) Z (x; ﬂ) “ "eax_g.

= —xe%e
oa
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