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The methods to construct appropriate new models for lifetime 

data sets are very popular nowadays among the researchers of this 
area where existed models in the literature are unsuitable for some 
situations. Among these methods, mixture distributions which are 
useful in fitting data that is generated by a complex process. Also 
inverted distributions are useful in modeling data that variable is 
inherently the reciprocal of a known variable. The Weibull distribution, 
having the exponential and Rayleigh as special cases, is a very popular 
distribution for modeling lifetime data and for modeling phenomena 
with monotone failure rates. It is one of the best known distributions 
and has wide applications in diverse disciplines. In this paper we 
propose anew distribution, which is a mixture of weibull and its inverse 
(MWIW). The main purpose of this paper is to introduce a new mixture 
of weibull and its inverse distribution as a new model distribution in 
order to be applied efficiently in lifetime. Two cases are considered 
when the mixing proporotion is not related to parameter values and 
when it depends on parameter values. Some properties of the two 
models with some graphs of density, comulative, hazard and survival 
functions are discussed.The model parameters are estimated by the 
method of maximum likelihood estimation. A simulation study is 
carried out to illustrate the theoretical results of the maximum 
likelihood estimation. Finally, applications of the two mixtures are 
illustrated by real data set. 
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1  IntroducƟon: 

In Many applications, the available data can be considered as 
data coming from a mixture population of two or more populations. 
This idea enables us to mix statistical distributions to get a new 
distribution carrying the properties of its components. In cases where 
each of the underlying random variables is continuous, the outcome 
variable will also be continuous and its probability density function is 
sometimes referred to as a mixture density. 

The number of components in a mixture distribution is often 
restricted to being finite, although in some cases the components may 
be countable. Finite mixtures of distributions provide an important tool 
in modelling a wide range of observed phenomena, which do not 
normally yield to modelling through classical distributions like normal, 
gamma, binomial, etc.,. In a finite mixture model, the distribution of 
random quantity of interest is modelled as a mixture of a finite number 
of component distributions in varying proportions. A mixture model is, 
thus, able to model quite complex situations through an appropriate 
choice of its components to represent accurately the local areas of 
support of the true distribution. It can handle situations where a single 
parametric family is unable to provide a satisfactory model for local 
variation in the observed data.  

[?] studied the estimation of the parameters of a mixture of 
normal distribution, and in this article he gives references to modern 
works in mixtures distributions that goes back as far as 1894 due to Karl 
Pearson. 

In life testing reliability and quality control problems, mixed 
failure populations are sometimes encountered. Mixture distributions 
comprise a finite or infinite number of components, possibly of 
different distributional types, that can describe different features of 
data. Some of the references that discussed different types of mixtures 
of distributions are [?], [?] and [?]. 

Recent interest in the study of mixtures distribution started 
when [?] published a paper on estimating the five parameters in a 
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mixture of two normal distributions. Finite mixtures involve a finite 
number of components. It results from the fact that different causes of 
failure of a system or production from different sources could lead to 
different failure distributions, this means that the population under 
study is non-homogenous. The observed distribution is supposed to be 
mixture of ݇ different distributions e.g. you can suppose that your 
data have at ܭ subpopulations.  

,ݕ)݂  (ߣ = ,ݕ)݂	1_݌ (	1_ߣ + ,ݕ)݂	2_݌ (	2_ߣ +
⋯ . ,ݕ)݂	݇_݌+  (	݇_ߣ
  

,ݕ)݂  (ߣ = ∑_(݅ = ,ݕ)	݅_݂	݅_݌	▒݇^(1  (1) (݅_ߣ
 where ݔ > ݇,݋ > 1,0 ≤ ௜݌ ≤ 1, ݅ = 1, . . . ,݇  and ∑௞௜ୀଵ ௜݌ = 1 
where ݇ is the number of components. The parameters ݌ଵ,݌ଶ, . . .  ௞݌,
are called the mixing parameters, where ݌௜ represent the probability 
that a given observation comes from population ݅  with density 
function ଵ݂(. ), ଶ݂(. ), . . . . , ௞݂(. ). The special case where ݇ = 2, eq(1) 
can be written as:  

(ݕ)݂  = ,ݕ)	1_݂݌ (1_ߣ + (1 −
,ݕ)	2_݂(݌  (2) (2_ߣ
 and the cumulative distribution function (CDF) of this mixture 
distribution is given by:  

(ݕ)ܨ  = ,ݕ)	1_ܨ݌ (1_ߣ + (1 −
,ݕ)	2_ܨ(݌  (3) (2_ߣ
 The reliability function at time t is given by  

(ݐ)ܴ  = ,ݐ)	1_ܴ݌ (1_ߣ + (1 − ,ݐ)	2_ܴ(݌  (4) (2_ߣ
  
2 A Mixture of Weibull and Inverse Weibull distribuƟon 

 
2.1  The probability density funcƟon 
 The probability density function of the mixture of Weibull 

distribution(WD) and Inverse Weibull distribution(IWD) has the 
following form  

(ݔ)݂  = (ߚ,ߙ;ݔ)	1_݂ߣ + (1 −
,ܽ;ݔ)	2_݂(ߣ ܾ) (5) 
 where ߣ  and 1 − ߣ  are the mixing proportion, ଵ݂(ߙ,ݔ,  is the (ߚ
pdf of WD and ଶ݂(ݔ,ܽ, ܾ) is the pdf of IWD. The mixture of these 
probability densities is given by;  
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 ݂ ;ݔ) ,ܽ,ߚ,ߙ ܾ, (ߣ = ߚ)^ݔߚ)ߣ) − 	ߚ^ߙ/(((	ߚ^(	ߙ/ݔ)−)^݁	(1 +
((1 − ܾ−)^ݔܾ)(ߣ −  (6) .(	ܾ^ܽ/((	ܾ^(	ݔܽ/1)−)^݁	(1
 By choosing some arbitrary values for parameters, we provide a 
different shapes for the pdf of the MWIW DistribuƟon as figure 1.  

 
 

  
Figure  1: figure of the pdf of MWIW 

  
 
  
2.2  CumulaƟve DistribuƟon FuncƟon: 
 The cumulative distribution function of the mixture of Weibull 

and inverse weibull distribution has the following form,  

,ߚ	ߙ;ݔ)ܨ a, b,ߣ) = (1 − ቀି݁(ߣ
భ
ೌೣቁ

್

+ ߣ ቆ1 − ݁ିቀ
ೣ
ഀቁ

ഁ

ቇ (7) 

 Where(ߚ,ݔ,ܽ, ܾ, ߙ > 0). we provide a different shapes for the cdf of 
the (MWIW) DistribuƟon as Figure 2:  
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Figure  2: figure of the CDF of MWIW 

  
 
  
2.3  Survival FuncƟon: 
 survival Function is also known as reliability function. It defined 

as the probability that the system will continue to survive beyond the 
specific time. It is defined mathematically as;  

(ݔ)ܵ = 1 −  (ݔ)ܨ
  

,ߚ,ߙ;ݔ)ܵ a, b, (ߣ = 1 − ൭(1 − ቀି݁(ߣ
భ
ೌೣቁ

್

+ ߣ ቆ1 − ݁ିቀ
ೣ
ഀቁ

ഁ

ቇ൱ (8) 

 Where(ݔ, ,ܽ,ߣ ߙ,ܾ > 0). we provide a differnt shapes for the survival 
density for the(MWIW) DistribuƟon as figure(3):  
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Figure  3: figure of the Survival density of MWIW 

  
   
2.4  Hazard funcƟon: 
 Hazard function is defined mathematically as the ratio pdf and 

reliability function and is expressed as;  
 ℎ(ݔ) = ௙(௫)

ௌ(௫)
 

 so the hazard function of the mixture Weibull inverse Weibull is in the 
form:  

ℎ(ߚ,ߙ;ݔ, a, b, (ߣ =

(భషഊ)ቌ್ೣష್షభ೐షቀ
భ
ೌೣቁ

್
ቍ

ೌ್
ା

ഊቌഁೣഁషభ೐షቀ
ೣ
ഀቁ
ഁ
ቍ

ഀഁ

ଵିቌ(ଵିఒ)௘షቀ
భ
ೌೣቁ

್
ାఒ൭ଵି௘షቀ

ೣ
ഀቁ
ഁ
൱ቍ

 (9) 

 Where(ݔ, ,ܽ,ߣ ߙ,ܾ > 0). we provide a possible shapes for the hazard 
densiƟes of the mixture model as figure 4:  
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Figure  4: figure of the hazard density of MWIW 

  
   
2.5  Some StaƟsƟcal ProperƟes: 
 
 
Moments 
 Moments are important in any statistical analysis, especially in 

applications. It can be used to study the most important features and 
characteristics of a distribution. Let ܧௐ(ݔ௥)  and ܧூௐ(ݔ௥) are the 
௧௛ݎ  moments of Weibull and Inverse Weibull distributions, 
respectively. then the ݎ௧௛  moments of two-component mixture of 
distribution. produced by the mixture between ܧௐ(ݔ௥) and ܧூௐ(ݔ௥) 
is define by: 

 
ெௐூௐܧ  = (௥ݔ)ௐܧߣ + (1 − ,(௥ݔ)ூௐܧ(ߣ ݎ = 1,2,3, . . . , ݔ > 0. 

 since,  

(௥ݔ)ௐܧ  = ∫ஶ଴
൭ఉ௫ೝ௘షቀ

ೣ
ഀቁ
ഁ
ቀೣഀቁ

ഁషభ
൱

ఈ
ݔ݀ = ௥Γߙ ቀ1 + ௥

ఉ
ቁ 

 and for ݎ < ܾ 
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(௥ݔ)ூௐܧ  = ∫ஶ଴
௫ೝ൭௕௫షభష್௘షቀ

భ
ೌೣቁ

್
൱

௔್
ݔ݀	 = ܽି௥Γ ቀ1 − ௥

௕
ቁ 

 then  
(௥ݔ)ெௐூௐܧ  = (1 − ௥Γቀ1ିܽ(ߣ − ௥

௕
ቁ + ௥Γߙߣ ቀ1 + ௥

ఉ
ቁ

 (10) 
 Thus, the mean of the pdf of the MWIWD given in (10) is  

ߤ  = (1 − ଵΓቀ1ିܽ(ߣ − ଵ
௕
ቁ + Γߙߣ ቀ1 + ଵ

ఉ
ቁ (11) 

 and the variance of MWIWD is :  
ଶߪ = ቀ(ଵିఒ)

௔మ
Γ(1− ଶ

௕
) + ଶΓ(1ߙߣ + ଶ

ఉ
)ቁ − ቀ(ଵିఒ)

௔
Γ(1− ଵ

௕
) + Γ(1ߙߣ + ଵ

ఉ
)ቁ

ଶ
 (12) 

  
2.6   Maximum likelihood esƟmaƟons of the parameters  

 The estimation of the parameters of Weibull inverse weibull 
mixture distribution is achieved using the method of maximum 
likelihood estimation. Let ݔଵ, ,ଶݔ . . . . ,  ௡ be a random sample from theݔ
Mixture of weibull and inverse weibull Distribution with unknown 
parameter vector  

ࣂ  = ,ܽ,ߚ,ߙ) ܾ,  (ߣ
 The likelihood and its logarithm are given by  

ܮ = ∏௡
௜ୀଵ ቌܾ(1 − ௜ି௕ିଵ݁ݔ௕ିܽ(ߣ

ି൬ భ
ೌೣ೔

൰
್

+
ఉఒ௘షቀ

ೣ೔
ഀ ቁ

ഁ

ቀೣ೔ഀ ቁ
ഁషభ

ఈ
ቍ (13) 

  
ܮ݃݋ܮ = ∑௡

௜ୀଵ log ቀܾ(1− ௜ି௕ିଵ݁ି௔ݔ௕ିܽ(ߣ
ష್௫೔

ష್ + ௜ݔఉିߙߣߚ
ఉିଵ݁ିఈషഁ௫೔

ഁ
ቁ (14) 

 
Differentiating (Log L) partially with respect to each of the parameter 
 and setting the results equal to zero gives the maximum (ߣ,a,b,ߚ,ߙ)
likelihood estimates of the respective parameters. The partial 
derivatives of (Log L) with respect to each parameter or the score 
function is given by:  
డ௅௢௚௅
డఈ

= ∑௡
௜ୀଵ ݇ ∗ ቀߚଶିߙߣଶఉିଵݔ௜

ଶఉିଵ݁ିఈషഁ௫೔
ഁ
− ௜ݔఉିଵିߙߣଶߚ

ఉିଵ݁ିఈషഁ௫೔
ഁ
ቁ (15) 
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ܮ݃݋ܮ߲
ߚ߲ = ෍

௡

௜ୀଵ

݇ ∗ ቆቀିߙߣఉݔ௜
ఉିଵ݁ିఈషഁ௫೔

ഁ
ቁ − ቀିߙߣߚఉlog(ߙ)ݔ௜

ఉିଵ݁ିఈషഁ௫೔
ഁ
ቁ 

+ ቀିߙߣߚఉݔ௜
ఉିଵlog(ݔ௜)݁ିఈ

షഁ௫೔
ഁ
ቁ +

ቆିߙߣߚఉݔ௜
ఉିଵ݁ିఈషഁ௫೔

ഁ
ቀିߙఉlog(ߙ)ݔ௜

ఉ − ௜ݔఉିߙ
ఉlog(ݔ௜)ቁቇ൱ (16) 

  
డ௅௢௚௅
డ௔

= ∑௡
௜ୀଵ ݇ ∗ ቀܾଶ(1− ௜ିଶ௕ିଵ݁ି௔ݔଶ௕ିଵିܽ(ߣ

ష್௫೔
ష್ − ܾଶ(1− ௜ି௕ିଵ݁ି௔ݔ௕ିଵିܽ(ߣ

ష್௫೔
ష್ቁ. (17) 

  
ܮ݃݋ܮ߲
߲ܾ = ෍

௡

௜ୀଵ

݇

∗ ቀ(1− ௜ି௕ିଵ݁ି௔ݔ௕ିܽ(ߣ
ష್௫೔

ష್ − ܾ(1

− ௜ି௕ିଵ݁ି௔ݔ(ܽ)௕logିܽ(ߣ
ష್௫೔

ష್ − 
 								ܾ(1 − ௔ି݁(௜ݔ)௜ି௕ିଵlogݔ௕ିܽ(ߣ

ష್௫೔
ష್

+ ܾ(1 −
௜ି௕ିଵ݁ି௔ݔ௕ିܽ(ߣ

ష್௫೔
ష್
ቀܽି௕log(ܽ)ݔ௜ି௕ + ܽି௕ݔ௜ି௕log(ݔ௜)ቁ൰. (18) 

  
డ௅௢௚௅
డఒ

= ∑௡௜ୀଵ ݇ ∗ ቀିߙߚఉݔ௜
ఉିଵ݁ିఈషഁ௫೔

ഁ
− ܾܽି௕ݔ௜ି௕ିଵ݁ି௔

ష್௫೔
ష್
ቁ. (19) 

 where  
 
 ݇ = ଵ

௕(ଵିఒ)௔ష್௫೔
ష್షభ௘షೌ

ష್ೣ೔
ష್
ାఉఒఈషഁ௫೔

ഁషభ௘షഀ
షഁೣ೔

ഁ 

 
 Hence, the MLE will obtained by solving this nonlinear system of 
equations. Solving this system of nonlinear equations is complicated, 
we can therefore use computational software to solve the equations 
numerically.  
2.7 Maximum likelihood esƟmaƟons of the reliability and the hazard  

 The invariance property of MLEs enables us to obtain the MLEs 
of rf and hrf by replacing the parameters by their MLEs in(12) and (13) 
respectively as follows:  

෠ܴ(ݔ) = 1 − ቌ(1 − መ)݁ିቀߣ
భ
ෝೌೣቁ

෡್

+ መߣ ቆ1 − ݁ିቀ
ೣ
ෝഀቁ

෡ഁ

ቇቍ (20) 

 and  
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ℎ෠(ݔ) =

(భషഊ෡)ቌ෡್ೣష෡್షభ೐
షቀ భෝೌೣቁ

್
ቍ

ೌ್
ା
ഊቌഁೣഁషభ೐

షቀೣഀቁ
ഁ
ቍ

ഀഁ

ଵି൮(ଵିఒ෡)௘షቀ
భ
ෝೌೣቁ

෡್

ାఒ෡ቌଵି௘షቀ
ೣ
ෝഀቁ

෡ഁ

ቍ൲

 (21) 

 where ߠ = መߚ,ොߙ) , ොܽ, ෠ܾ, ߠ መ) are the MLEs ofߣ = ,ܽ,ߚ,ߙ) ܾ,  .(ߣ
 
2.8  Fisher InformaƟon Matrix 
 The observed Fisher information matrix ܫ௜௝(ߠ) for the MLEs 

of the parameters ߠ  is the 5*5 symmetric matrix of the negaƟve 
second partial derivatives of log-LF, given by (18) with respect to the 
parameters . That is  

(௜௝ߠ)௡ܫ  = ܧ− ൤డ
మ௟௡௙(௫;ఏ)
డఏ೔డఏೕ

൨ , ݅, ݆ = 1,2, . . ,5 

 The inverse of ܫ௜௝(ߠ) is the estimate V of the asymptotic variance 
covariance matrix of ߠ෠. That is  

ܸ = ଵି[(ߠ)௜௝ܫ] = ௜௝ߪ = ෠௜ߠ)ݒ݋ܿ ,(෠௝ߠ, ݅, ݆ = 1,2, . . ,5 (22) 
 The observed Fisher information matrix enables us to construct 
confidence intervals for the parameters, where ܸ(ߠ෠௜) = ௜௜ߪ  the ݅௧௛ 
diagonal element of the matrix V, given by (22).  

2.9  A numerical IllustraƟon 
 This section aims to investigate the precision of the theoretical 

results of estimation on basis of simulated and real data  
2.9.1  A simulaƟon study 
 a simulation study is conducted to study the performance of 

the presented ML estimates on the basis of generated data from the 
MWIW distribution.A simulation study are performed using 
MathemaƟca 9 for illustraƟng the obtained results. 

The steps of the simulation procedure is as follows: 
 1. Specify iniƟal values for the parameters ߠ. 
 2. Specify the sample size n. 
 3. Random samples of size n are generated from the MWIW 

distribution. 
 4.Get the MLE for the parameter based on the samples. 
 5. Repeat all the previous steps N Ɵmes where N represents a fixed 

number of simulated samples. 
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 6. Calculate the Mean, variance, bias and relaƟve bias for the 
estimated parameters. 

 7. calculate the mean square error (MSE) and the root mean square 
error for each estimator. 

 
   SimulaƟon results of ML esƟmates are displayed in Table[1] and [2], 
where N = 1000 is the number of repeƟƟons, (n=30, 80 , 120), are the 
sample sizes and with different initial values for the parameters (ߚ ,ߙ, 
a , b and ߣ). From the table, it is observed that the MSE and the Bias 
for the estimates ߚ ,ߙ, a, b and ߣ are decreasing when the sample 
size n is increasing. 

  
Table  1: averages, biases, relaƟve biases, mean square error, root 

mean square error and variances of ML estimators from MWIW 
distribuƟon for different sizes n and replicaƟons NR=1000(1.5=ߚ ,2=ߙ 

, a=0.6 , b=1.2, 0.8=ߣ) 
  

  n Parameter  Average   Variance  Bias	ଶ   RAB   MES   RootMSE 
 0.086   0.293   0.007   0.005   0.292   1.985   ߙ   
 0.016   0.127   0.030   0.002   0.125   1.545   ߚ  
30   a   0.681   0.210   0.006   0.135   0.217   0.074 
  b   1.690   0.820   0.240   0.408   1.061   1.126 
 0.005   0.071   0.034   0.0007   0.071   0.772   ߣ  
 0.018   0.134   0.004   0.0045   0.129   1.932   ߙ   
 0.002   0.045   0.007   0.001   0.045   1.510   ߚ  
80   a   0.577   0.056   0.005   0.037   0.056   0.003 
  b   1.454   0.29   0.064   0.212   0.36   0.132 
 0.002   0.043   0.057   0.0005   0.042   0.754   ߣ  
 0.004   0.064   0.003   0.004   0.060   1.933   ߙ   
 0.0004   0.021   0.006   0.0006   0.021   1.525   ߚ  
120  a   0.547   0.037   0.002   0.008   0.040   0.0016 
  b   1.38   0.169   0.035   0.17   0.205   0.042 
 0.0004   0.020   0.028   0.0002   0.019   0.777   ߣ  
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Table  2: averages, biases, relaƟve biases, mean square error, root 
mean square error and variances of ML estimators from MWIW 

distribuƟon for different sizes n and replicaƟons NR=1000(2=ߚ ,1.2=ߙ 
, a=0.6 , b=1.2, 0.6=ߣ) 

  
  
n  

Parameter  Average   Variance  Bias	ଶ   RBias   MES   RMSE 

 0.017   0.131   0.153   0.034   0.114   1.015   ߙ   

 0.158   0.397   0.086   0.030   0.397   1.824   ߚ  

30   a   0.780  0.128   0.034   0.308   0.163   0.026 
  b   1.63   0.275   0.186   0.360   0.462   0.213 
 0.021   0.143   0.367   0.048   0.096   0.383   ߣ  
 0.007   0.088   0.149   0.032   0.056   1.020   ߙ   

 0.031   0.177   0.084   0.028   0.148   1.832   ߚ  
80   a   0.739   0.036   0.019   0.233   0.056   0.003 
  b   1.448   0.061   0.062   0.207   0.123   0.015 
 0.011   0.103   0.361   0.047   0.054   0.379   ߣ  
 0.006   0.080   0.107   0.016   0.046   1.071   ߙ   
 0.021   0.164   0.002   0.0001   0.116   1.995   ߚ  
120  a   0.727   0.036   0.016   0.212   0.052   0.002 
  b   1.422   0.043   0.049   0.185   0.092   0.008 
 0.007   0.089   0.331   0.039   0.049   0.412   ߣ  
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Table  3: averages, biases, relaƟve biases, mean square error, root 
mean square error and variances of ML estimators from MWIW 

distribuƟon for different sizes n and replicaƟons NR=1000(2.9=ߙ, 
 (0.8=ߣ ,a=0.5 , b=5.7 , 2.3=ߚ

  
  n Paramete

r 
 Average  Variance  Bias	ଶ   RBias   MES   RMSE 

 0.0076   0.0875   0.0012   0.0001   0.087   2.903   ߙ   
 0.096   0.309   0.101   0.053   0.256   2.530   ߚ  
30   a   0.505  0.004   0.0002   0.010   0.005   0.0002 
  b   5.508   13.879   0.037   0.033   13.916   193.658 
 0.002   0.046   0.082   0.004   0.042   0.864   ߣ  
 0.0032   0.057   0.001   0.0002   0.057   2.899   ߙ   
 0.016   0.1299   0.060   0.0192   0.111   2.438   ߚ  
80   a   0.506   0.0073   0.0004   0.013   0.0072   0.00005 
  b   5.789   9.814   0.0079   0.017   9.820   96.481 
   0.029   0.801   ߣ  

0.000002 
 0.0006   0.0029   0.00085 

 0.001   0.0319   0.0011  0.00011   0.0308   2.861   ߙ   
 0.0052   0.0725   0.029   0.0044   0.0680   2.362   ߚ  
120  a   0.508   0.0028   0.00006  0.0161   0.0029   

0.000008 
  b   5.904   5.939   0.0867   0.0516   6.021   36.311 
 0.00037   0.0193   0.0014  0.000001   0.0193   0.791   ߣ  

     
Concluding remarks 
 It is noticed, from Tables, that the ML averages are very close 

to the initial values of the parameters as the sample size increases. 
Also, Rbias and MES are decreasing when the sample size is increasing. 
This is indicative of the fact that the estimates are consistent and 
approaches the population parameter values as the sample size 
increases. 

 
2.9.2  ApplicaƟon to a real data set 
 In this section, we use a real data set reported in ([?]), to show 

that the MWIW distribution could be used, to estimate it’s parameter 
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and apply the kolmogorov-smirnov test and chi-square goodness of fit 
test for the distribution. The data represented the failure times of the 
windshields on a specific model of aircrafts. These failures do not result 
in damage to the aircraft but do result in replacement of the 
windshield. The data is reproduced in Table ??: (The unit for 
measurement is 1000 h)   

Table  4: data 
  

0.04  1.652  2.300  3.376  0.301  1.652  2.324  3.443 
0.309  1.77  2.85  3.467  0.7  1.866  2.481  3.48 
0.610  1.876  2.610  3.578  0.650  1.899  2.625  3.595 
0.720  1.9  2.632  3.699  0.840  1.912  2.646  3.779 
0.943  1.914  2.661  3.924  1.070  1.981  2.688  4.035 
1.124  2.010  2.823  4.121  1.248  2.038  2.890  4.167 
1.281  2.085  2.902  4.240  1.281  2.089  2.934  4.255 
1.303  2.097  2.962  4.278  1.432  2.135  2.964  4.305 
1.480  2.154  3.000  4.376  1.505  2.190  3.103  4.449 
1.506  2.194  3.114  4.485  1.568  2.223  3.117  4.570 
1.615  2.224  3.166  4.602  1.619  2.229  3.344  4.663 

 
  After forming the likelihood function and the normal 

equation, the normal equations ware solved using Mathematica 
software to estimate the parameters (ߚ,ߙ,ܽ, ܾ, (ߣ . The following 
results were obtained (ߙ = ߚ,2.9 = 2.3,ܽ = .5, ܾ = 5.7, ߣ = .8) . To 
assess the results, the empirical and fitted Survival functions from the 
MWIWD and the windsheild data were drawn together as shown in 
figure (5). it seems from the figure that the fit is a good one.  
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Figure  5: Empirical and fiƩed survival funcƟons from the MWIW 

distribution and windsheild data 
  

   
2.10  Goodness of fit Test 
  
2.10.1  The Kolmogorove-Smirnov Test: 
 The Kolmogorov–Smirnov goodness of fit test is applied to 

check the validity of the fitted model. It is based on the empirical 
cumulative distribution function. The Kolmogorove-Smirnov(K-S) 
statistic (ܦ௡) is based on the largest vertical difference between the 
CDF of the MWIW distribution F(x) and the empirical CDF of the Data 
 It is defined as .(ݔ)௡ܨ

 
௡ܦ = sup|(ݔ)ܨ −  |(ݔ)௡ܨ

 .଴: The data follow the MWIW distributionܪ 
 .ଵ: The data do not follow the MWIW distributionܪ
The hypothesis regarding the distributional form is rejected at 

the chosen significance level (ߙ) if the test statistic ,ܦ௡, is greater than 
the critical value obtained from a table. 

 

 
K − SStatistic 				p − Value
0.052 				0.968  

 
The Kolmogorove-Smirnov test for testing the fitting of the 
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MWIW to the given data through the Mathematica package produced 
those result,ܦ௡ = 0.052, and the Critical value at 0.05=ߙ is ( 0.968). 
Therefore the null hypothesis will be accepted that the data came from 
the mixture of weibull and inverse weibull distribution. 

Again, the p-value of (0.968) is much larger than 0.05 leading to 
the acceptance (non rejection) of the null hypothesis that the data 
came from the Mixture Weibull and inverse Weibull distribution.  

2.10.2  Chi-Square Goodness of Fit Test: 
 A goodness-of-fit statistic tests the following hypothesis: 
 ,଴ : the data comes from MWIW distributionܪ
 .ଵ: the data did not come from MWIW distributionܪ
Pearson and deviance test statistics which is the sum of 

differences between observed and expected outcome frequencies; 
each squared and divided by the expectation:  

 ߯ଶ = ∑௡௜ୀଵ
(ை೔ିா಺)మ

ா೔
 

 where: 
ܱ௜ = an observed frequency for bin i 
 ௜ = an expected (theoretical) frequency for bin i, asserted byܧ

the null hypothesis. 
The expected frequency is calculated by:  
௜ܧ  = )ܨ) ௨ܻ) − )ܨ ଵܻ))ܰ 

 where: 
F = the cumulative Distribution function for the distribution 

being tested. 
௨ܻ= the upper limit for class i, 
ଵܻ = the lower limit for class i, and 

N = the sample size 
The data was classified in 11 class intervals of length 0.5 starƟng 

from 0 to 5 as shown in table 
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  class interval.  ܱ௜. ܧ௜.  (ܱ௜ − ூ)ଶܧ

௜ܧ
 

 0.0 -  3  1.253  2.43 
0.5 -   2  4.804  1.63  
1.0 -   8  8.6725  0.052  
1.5 -   15  15.066  0.002 
2.0 -   16   15.199  0.042 
2.5 -   12  12.576  0.026 
3.0 -  11  9.892  0.124 
3.5 -  5  7.089  0.616 
4.0 -   9  4.551   4.350 
4.5   3   2.603  0.060 
 Sum       9.341 

  
Table  5: Chi-square goodness of fit test 

   The Calculated statistic value of Chi-square test (9.341) is 
less than the tabulated statistic value ܺ(଴.ଽହ,ସ)

ଶ  =11.075 and the 
corresponding p-value =0.963 is greater than 0.05. Therefore the null 
hypothesis does not reject that the data came from the Mixture of 
weibull and inverse Weibull distribution.  

2.10.3  The InformaƟon Matrix 
 Fisher information is a key concept in the theory of statistical 

inference and is defined in the following manner: 
Let ݔ = ,ଵݔ) … , (௡ݔ  be a random sample, and let ݂(ߠ;ݔ) 

denote the probability density function for some model of the data. 
which has parameter vector ߠ = ,ଵߠ) …  . (௞ߠ,

Then the Fisher information matrix ܫ௡(ߠ) of sample size n is 
given by the (k*k) a symmetric matrix whose ݆݅௧௛ element is given by 
the covariance between first partial derivatives of the log-likelihood,  

(௜௝ߠ)௡ܫ  = ݒ݋ܥ ൤డ௙(௫;ఏ)
ఏ೔

, డ௙(௫;ఏ)
ఏೕ

൨ 

 An alternative, but equivalent, definition for the Fisher information 
matrix is based on the expected values of the second partial 
derivatives, and is given by  

(௜௝ߠ)௡ܫ  = ܧ− ൤డ
మ௟௡௙(௫;ఏ)
డఏ೔డఏೕ

൨ 
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 Strictly, this definition corresponds to the expected Fisher 
information. In other word the Fisher information matrix can be 
expressed in terms of the second derivative of the log likelihood 
function under the regularity conditions. for windshield data Fisher 
information matrix can be obtained as follow: 

 
(௜௝ߠ)௡ܫ  =

(0.03730.02850.01070.08470.00370.02850.08340.0181 −
0.08490.00870.01070.01810.01090.08670.00650.0847 −
0.08490.08676.0520 − 0.28100.00370.00870.0065 −
0.28100.0010) 
 the variances of the estimates are generally small, with ( ෠ܾ)having the 
largest variance (6.05).  

2.11  Related DistribuƟon(special cases) 
 1.   In equaƟon(6) and (7),puƫng b=1 we get Mixture of 

Weibull and Inverse Exponential(MWIE)) distribution. Then its 
pdf,cdf,hazard and survival function are respectively given by  

;ݔ)݂ ,ܽ,ߚ,ߙ (ߣ = (ଵିఒ)௘ష
భ
ೌೣ

௔௫మ
+

ఒ൭ఉ௘షቀ
ೣ
ഀቁ
ഁ
ቀೣഀቁ

ഁషభ
൱

ఈ
 (23) 

  

,ܽ,ߚ,ߙ;ݔ)ܨ (ߣ = (1 − ି݁(ߣ
భ
ೌೣ + ߣ ቆ1 − ݁ିቀ

ೣ
ഀቁ

ഁ

ቇ (24) 

  
 ℎ(ߚ,ߙ;ݔ,ܽ, (ߣ =

(భషഊ)೐ష
భ
ೌೣ

ೌೣమ
ା

ഊቌഁ೐షቀ
ೣ
ഀቁ
ഁ
ቀೣഀቁ

ഁషభ
ቍ

ഀ

ଵିቌ(ଵିఒ)௘ష
భ
ೌೣାఒ൭ଵି௘షቀ

ೣ
ഀቁ
ഁ
൱ቍ

 (25) 

 and  

,ܽ,ߙ;ݔ)ܵ ܾ, (ߣ = 1 − ൭(1 − ି݁(ߣ
భ
ೌೣ + ߣ ቆ1 − ݁ିቀ

ೣ
ഀቁ

ഁ

ቇ൱ (26) 

    2.   In equaƟon(6) and (7), puƫng ߚ = 1, we get Mixture of 
Exponential and Inverse Weibull(MEIW) distribution. Then its pdf, cdf, 
hazard and survival function are respectively given by:  
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;ݔ)݂ ,ܽ,ߙ ܾ, (ߣ =
(ଵିఒ)൭௕௫ష್షభ௘షቀ

భ
ೌೣቁ

್
൱

௔್
+ ఒ௘ష

ೣ
ഀ

ఈ
 (27) 

  

,ܽ,ߙ;ݔ)ܨ ܾ, (ߣ = (1 − ቀି݁(ߣ
భ
ೌೣቁ

್

+ ߣ ቀ1 − ݁ି
ೣ
ഀቁ (28) 

  
 ℎ(ߙ;ݔ,ܽ, ܾ, (ߣ =

(భషഊ)ቌ್ೣష್షభ೐షቀ
భ
ೌೣቁ

್
ቍ

ೌ್
ାഊ೐

షೣഀ
ഀ

ଵିቌ(ଵିఒ)௘షቀ
భ
ೌೣቁ

್
ାఒ൬ଵି௘ష

ೣ
ഀ൰ቍ

 (29) 

 and  

,ܽ,ߙ;ݔ)ܵ ܾ, (ߣ = 1 − ൭(1 − ቀି݁(ߣ
భ
ೌೣቁ

್

+ ߣ ቀ1 − ݁ି
ೣ
ഀቁ൱ (30) 

  
3.  In equaƟon(6) and (7),  Puƫng ( b= ߚ  = 1), we get a 

Mixture of Exponential and Inverse Exponential (MEIE) distribution. 
Then its pdf,cdf,hazard and survival function are respectively given by  

;ݔ)݂ ,ܽ,ߙ (ߣ = (ଵିఒ)௘ష
భ
ೌೣ

௔௫మ
+ ఒ௘ష

ೣ
ഀ

ఈ
 (31) 

;ݔ)ܨ  ,ܽ,ߙ (ߣ = (1 − ି݁(ߣ
భ
ೌೣ + ߣ ቀ1 − ݁ି

ೣ
ഀቁ(32) 

  

ℎ(ߙ;ݔ,ܽ, (ߣ =
(భషഊ)೐ష

భ
ೌೣ

ೌೣమ
ାഊ೐

షೣഀ
ഀ

ଵି൭(ଵିఒ)௘ష
భ
ೌೣାఒ൬ଵି௘ష

ೣ
ഀ൰൱

     (33) 

 and  

,ܽ,ߙ;ݔ)ܵ (ߣ = 1 − ቆ(1 − ି݁(ߣ
భ
ೌೣ + ߣ ቀ1 − ݁ି

ೣ
ഀቁቇ (34) 

 4.  In equaƟon(6) and (7)),  Puƫng ( b= ߚ = 2), we get Mixture of 
Rayleigh and Inverse Rayleigh (MRIR) distribution. 

5.  In equaƟon(6) and (7),  Puƫng ( ߚ = 2), we get Mixture 
of Rayleigh and Inverse Weibull (MRIW) distribution. 

6.  In equaƟon((6) and (7)),  Puƫng ( b= 2), we get Mixture of 
Weibull and Inverse Rayleigh (MWIR) distribution. 
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3. Mixtures with mixing proportion a function in the parameters 
 In some applications, the mixing proportion may depend on 

one or more of the parameter of the distribution. While this doesn’t 
effect the general formula of the distribution, it has it’s effect on the 
estimation of the parameter and the fitted of the distribution to data. 
In our mixture we used that technique to get anew mixture model 
called New Mixture of Weibull and Inverse Weibull (NMWIW) 
distribution.  

3.1  The probability density funcƟon 
 In the following, we shall consider the case where the mixing 

proportion ߣ= ఈ
ఈା௔

 ,and (1-ߣ)= ௔
ఈା௔

 , then the New Mixture of Weibull 
and Inverse Weibull distribution (NWIWD) would be as follow:  

(ݔ)݂  = ఈ
ఈା௔ ଵ݂(ߙ,ݔ, (ߚ + ௔

ఈା௔ ଶ݂(ݔ,ܽ, ܾ) (35) 
 Where ଵ݂(ߚ,ߙ,ݔ) is the pdf of WD and ଶ݂(ݔ,ܽ, ܾ) is the pdf of IWD. 
The mixture of these probability densities is given by;  

;ݔ)݂ ,ܽ,ߚ,ߙ ܾ) =
௔൭௕௫ష್షభ௘షቀ

భ
ೌೣቁ

್
൱

(௔ାఈ)௔್
+

ఈ൭ఉ௫ഁషభ௘షቀ
ೣ
ഀቁ
ഁ
൱

(௔ାఈ)ఈഁ
 (36) 

 Different values for parameters result in different shapes for the pdf 
of the NWIW DistribuƟon as figure (6).  
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Figure  6: figure of the pdf of NWIW 

  
 
  
3.2  CumulaƟve DistribuƟon FuncƟon: 
 The cumulative distribution function of the New Wiebull 

inverse weibull distribution has the following form,  

,ߚ	ߙ;ݔ)ܨ a, b, ) = ௔௘షቀ
భ
ೌೣቁ

್

௔ାఈ
+

ఈ൭ଵି௘షቀ
ೣ
ഀቁ
ഁ
൱

௔ାఈ
 (37) 

 Where(ߚ,ݔ,ܽ, ܾ, ߙ > 0). Possible shapes for the cdf of the (NWIW) 
Distribution as Figure (7):  
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Figure  7: figure of the CDF of NWIW 

  
 
  
3.3  Survival FuncƟon: 
 survival Function is also known as reliability function. It defined 

as the probability that the system will continue to survive beyond the 
specific time. It is defined mathematically as;  

(ݔ)ܵ  = 1 −  (ݔ)ܨ
  

,ܽ,ߚ,ߙ;ݔ)ܵ ܾ) = 1 −൮௔௘షቀ
భ
ೌೣቁ

್

௔ାఈ
+

ఈ൭ଵି௘షቀ
ೣ
ഀቁ
ഁ
൱

௔ାఈ
൲ (38) 

 Where ,ݔ) ,ܽ,ߣ ߙ,ܾ > 0).  we provide a possible shapes for the 
survival density for the(NWIW) DistribuƟon as figure(8):  
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Figure  8: figure of the Survival density of NWIW 

  
   
3.4  Hazard funcƟon: 
 Hazard function is defined mathematically as the ratio pdf and 

reliability function and is expressed as;  
 ℎ(ݔ) = ௙(௫)

ௌ(௫)
 

 so the hazard function of the New Weibull inverse Weibull is in the 
form:  

 ℎ(ߚ,ߙ;ݔ,ܽ, ܾ) =
ೌቌ್ೣష್షభ೐షቀ

భ
ೌೣቁ

್
ቍ

(ೌశഀ)ೌ್
ା

ഀቌഁೣഁషభ೐షቀ
ೣ
ഀቁ
ഁ
ቍ

(ೌశഀ)ഀഁ

ଵି

⎝

⎜⎜
⎛ೌ೐షቀ

భ
ೌೣቁ

್

ೌశഀ ା

ഀቌభష೐
షቀೣഀቁ

ഁ
ቍ

ೌశഀ

⎠

⎟⎟
⎞

 (39) 

 Where(ݔ, ,ܽ,ߣ ߙ,ܾ > 0). we provide a possible shapes for the hazard 
densiƟes of the New weibull inverse weibull DistribuƟon as figure (9):  
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Figure  9: figure of the hazard density of NWIW 

  
   
3.5  StaƟsƟcal ProperƟes: 
  
Moments 
  
ேௐூௐܧ  = ( ఈ

ఈା௔
(௥ݔ)ௐܧ( + ( ௔

ఈା௔
,(௥ݔ)ூௐܧ( ݎ = 1,2,3, . . . , ݔ > 0. 

 then  

ேௐூௐܧ  =
ఈೝశభ୻ቀଵାೝഁቁା௔

భషೝ୻ቀଵିೝ್ቁ

ఈା௔
 (40) 

 Thus, the mean of the pdf of the NMWIW given in (36) is  

ߤ  =
ఈమ୻ቀଵାభഁቁା୻ቀଵି

భ
್ቁ

ఈା௔
 (41) 

 and the variance of NMWIW is :  

ଶߪ  = ቆ
ఈయ୻ቀଵାమഁቁା௔

షభ୻ቀଵିమ್ቁ

ఈା௔
ቇ −

ቆ
ఈమ୻ቀଵାభഁቁା୻ቀଵି

భ
್ቁ

ఈା௔
ቇ
ଶ

 (42) 

 
The mode for the NMWIW distribution can be calculated by 
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differentiating f(x) with respect to x as follows  

(ݔ)݂  =
௔൭௕௫ష್షభ௘షቀ

భ
ೌೣቁ

್
൱

(௔ାఈ)௔್
+

ఈ൭ఉ௫ഁషభ௘షቀ
ೣ
ഀቁ
ഁ
൱

(௔ାఈ)ఈഁ
 

 
 

 డ௙(௫)
డ௫

=
௕మ௔ష್௫ష್షయ௘షቀ

భ
ೌೣቁ

್
ቀ భೌೣቁ

್షభ

௔ାఈ
+

(ି௕ିଵ)௕௔భష್௫ష್షమ௘షቀ
భ
ೌೣቁ

್

௔ାఈ
− 

 
ఉమఈషഁ௫ഁషభ௘షቀ

ೣ
ഀቁ
ഁ
ቀೣഀቁ

ഁషభ

௔ାఈ
+ (ఉିଵ)ఉఈభషഁ௫ഁషమ௘షቀ

ೣ
ഀቁ
ഁ

௔ାఈ
 

 
By equating the previous with zero, we get the mode of the 

NWIWD. and the median of the NMWIW distributon can be obtained 
by solving that non linear equation  

 ௔௘షቀ
భ
ೌೣቁ

್

௔ାఈ
+

ఈ൭ଵି௘షቀ
ೣ
ഀቁ
ഁ
൱

௔ାఈ
= 0.5 

  
3.6  Maximum likelihood esƟmaƟons for the parameters 
 Let ݔଵ, ,ଶݔ . . . . ,  ௡ be a random sample from the New Mixtureݔ

of weibull and inverse weibull Distribution with unknown parameter 
vector  

ߠ  = ,ܽ,ߚ,ߙ) ܾ)் 
 

The log-likelihood function for ߠ  is obtained from f(x) as 
follows:  

ܮ = ∏௡
௜ୀଵ ቌ

௕௔భష್௫೔
ష್షభ௘

ష൬ భ
ೌೣ೔

൰
್

௔ାఈ
+

ఉ௘షቀ
ೣ೔
ഀ ቁ

ഁ

ቀೣ೔ഀ ቁ
ഁషభ

௔ାఈ
ቍ (43) 

  

ܮ݃݋ܮ  = ∑௡௜ୀଵ log൭௕௔
భష್௫೔

ష್షభ௘షೌ
ష್ೣ೔

ష್

௔ାఈ
+ ఉఈభషഁ௫೔

ഁషభ௘షഀ
షഁೣ೔

ഁ

௔ାఈ
൱

 (44) 
 So, differentiating (Log L) partially with respect to each of the 
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parameter (ߙ ,a,ߚ ,b) and setting the results equal to zero gives the 
maximum likelihood estimates of the respective parameters. The 
partial derivatives of (Log L) with respect to each parameter or the 
score function is given by:  
ܮ݃݋ܮ߲
ߙ߲

= ෍
௡

௜ୀଵ

ܶ ∗ ൭−
ܾܽଵି௕ݔ௜ି௕ିଵ݁ି௔

ష್௫೔
ష್

(ܽ + ଶ(ߙ
+
௜ݔଶఉିߙଶߚ

ଶఉିଵ݁ିఈషഁ௫೔
ഁ

ܽ + ߙ
+ 

(ଵିఉ)ఉఈషഁ௫೔
ഁషభ௘షഀ

షഁೣ೔
ഁ

௔ାఈ
− ఉఈభషഁ௫೔

ഁషభ௘షഀ
షഁೣ೔

ഁ

(௔ାఈ)మ
൱. (45) 

  
 
 డ௅௢௚௅

డఉ
= ∑௡௜ୀଵ ܶ ∗

ቌ
ఉఈభషഁ௫೔

ഁషభ௘షഀ
షഁೣ೔

ഁ
൬ఈషഁ୪୭୥(ఈ)௫೔

ഁିఈషഁ௫೔
ഁ୪୭୥(௫೔)൰

௔ାఈ
+ 

ఉఈభషഁ௫೔
ഁషభ௘షഀ

షഁೣ೔
ഁ
୪୭୥(௫೔)

௔ାఈ
−

ఉఈభషഁ௫೔
ഁషభ௘షഀ

షഁೣ೔
ഁ
୪୭୥(ఈ)

௔ାఈ
+

ఈభషഁ௫೔
ഁషభ௘షഀ

షഁೣ೔
ഁ

௔ାఈ
൱ (46) 

  
 

 డ௅௢௚௅
డ௕

= ∑௡௜ୀଵ ܶ ∗ ቆ
௔భష್௫೔

ష್షభ௘షೌ
ష್ೣ೔

ష್

௔ାఈ
+

௕௔భష್௫೔
ష್షభ௘షೌ

ష್ೣ೔
ష್
ቀ௔ష್୪୭୥(௔)௫೔

ష್ା௔ష್௫೔
ష್୪୭୥(௫೔)ቁ

௔ାఈ
− 

௕௔భష್୪୭୥(௔)௫೔
ష್షభ௘షೌ

ష್ೣ೔
ష್

௔ାఈ
− ௕௔భష್௫೔

ష್షభ୪୭୥(௫೔)௘షೌ
ష್ೣ೔

ష್

௔ାఈ
ቇ (47) 

  
 

 డ௅௢௚௅
డ௔

= ∑௡௜ୀଵ ܶ ∗ ቆ
௕మ௔షమ್௫೔

షమ್షభ௘షೌ
ష್ೣ೔

ష್

௔ାఈ
+

(ଵି௕)௕௔ష್௫೔
ష್షభ௘షೌ

ష್ೣ೔
ష್

௔ାఈ
− 

௕௔భష್௫೔
ష್షభ௘షೌ

ష್ೣ೔
ష್

(௔ାఈ)మ
− ఉఈభషഁ௫೔

ഁషభ௘షഀ
షഁೣ೔

ഁ

(௔ାఈ)మ
൱ (48) 

 Since  
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 ܶ = ଵ

್ೣ೔
ష್షభ೐షೌ

ష್ೣ೔
ష್

ೌభష್

ೌశഀ ା
ഁഀభషഁೣ೔

ഁషభ೐
షഀషഁೣ೔

ഁ

ೌశഀ

 

 Hence, the MLE is obtained by solving this nonlinear system of 
equations. Solving this system of nonlinear equations is complicated, 
we can therefore use statistical software to solve the equations 
numerically. 

 
3.7  A SimulaƟon study 
 In this subsection, a simulation study is presented to illustrate 

the application of the various theoretical results developed in the 
previous section on the basis of generated data from A new Mixture of 
Weibull and Inverse Weibul (NMWIW) distribution, for different 
sample sizes (n=30, 60 and 120) and using number of replicaƟons 
NR=1500. The computaƟons are performed using MathemaƟca 9. 

The results of the simulaƟon study are given in Table 5. 
  

Table  6: averages, biases, relaƟve biases, mean square error, root 
mean square error and variances of ML estimators from NMWIW 

distribuƟon for different sizes n and replicaƟons NR=1500(2=ߚ ,1.5=ߙ 
, a=1.2 and b=2) 

  
  n Parameter  Average  Variance  Bias	ଶ   RBias   MES   RMSE 
 0.062   0.249   0.086   0.0168   0.233   1.629   ߙ   
 1.735   1.317   0.092   0.034   1.132   1.815   ߚ  
30   a   0.795   0.162   0.167   0.341   0.330   0.103 
  b   1.706   0.361  0.085   0.146   0.447   0.199 
 0.032   0.181   0.061   0.008   0.173   1.592   ߙ   
 1.225   1.121   0.062   0.015   1.086   1.874   ߚ  
60   a   0.833   0.696   0.134   0.303   0.831   0.691 
  b   1.737   0.321   0.068   0.131   0.391   0.152 
 0.026   0.162   0.057   0.007   0.155   1.586   ߙ   
 0.964   0.928   0.003   0.004   0.966   1.993   ߚ  
120  a   0.895   0.177   0.092   0.253   0.270   0.073 
  b   1.756   0.306   0.057   0.119   0.364   0.132 
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Concluding remarks 
 It is noticed, from Tables, that the ML averages are very close 

to the initial values of the parameters as the sample size increases. 
Also, Rbias, MSE and RMES are decreasing when the sample size is 
increasing. This is indicative of the fact that the estimates are 
consistent and approaches the population parameter values as the 
sample size increases.  

3.8  ApplicaƟon to real data 
 In this section, we use a real data set reported in ([?]), to show 

that the NMWIW distribution could be used. to estimate it’s parameter 
and apply the goodness of fit test for the distribution.The data consist 
of measurements made on patients with malignant melanoma. Each 
patient had their tumour removed by surgery at the Department of 
Plastic Surgery, University Hospital of Odense, Denmark during the 
period 1962 to 1977. The surgery consisted of complete removal of the 
tumour together with about 2.5cm of the surrounding skin. Among the 
measurements taken were the thickness of the tumour and whether it 
was ulcerated or not. These are thought to be important prognostic 
variables in that patients with a thick and/or ulcerated tumour have an 
increased chance of death from melanoma. Patients were followed 
unƟl the end of 1977.The data is reproduced as follow. 

 
0.027778, 0.51389, 0.56667, 0.58333, 0.64444, 0.64444, 0.77500,  
0.81944, 0.98611, 1.07222, 1.18333, 1.30278, 1.36944, 1.46944,  
1.72500, 1.74722, 1.83056, 1.85278, 1.99444, 2.08889, 2.16389, 2.20278, 
2.29444, 2.31389, 2.68611, 2.71389, 2.72778, 2.93056, 2.95000, 2.98611,  
3.21111, 3.41111, 3.47778, 3.53056, 3.64444, 4.18333, 4.18889,  
4.21111, 4.23611, 4.50278, 4.63056, 4.79444, 4.84722, 4.94167,  
4.96389, 5.03333, 5.10833, 5.15000, 5.16667, 5.33333, 5.35278, 5.43056, 
5.47222, 5.58611, 5.63333, 5.66111, 5.71944, 5.76389, 5.85556,  
5.86667, 6.18611, 6.26667, 6.28889, 6.63056, 6.67500, 6.73889, 6.85278,  
6.92500, 7.00278, 7.06111, 7.10833, 7.12500, 7.40556, 7.43333, 8.45,  
8.96667, 9.15833, 9.25000, 9.27222, 9.40000, 9.41111, 9.60833, 10.4889,  
10.4889, 10.7556, 10.8583, 11.4556, 12.1944, 12.4417, 12.4778 

 
After forming the likelihood function and the normal equation, 

the normal equations ware solved using Mathematica software to 
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estimate the parameters (ߚ,ߙ,ܽ, ܾ) . The following results were 
obtained (ߙ = ߚ,5.6 = 1.5,ܽ = 0.4, ܾ = 1.4) . To assess the results, 
the empirical and fitted survival functions from the NMWIWD and 
malignant melanoma data were drawn together as shown in figure 
(10). it seems from the figure that the fit is a good one.  

 

   
Figure  10: Empirical and fiƩed survival functions from the NWIW 

distribution and malignant melanoma data 
  

   
3.8.1  Goodness of fit Test 
  
The Kolmogorove-Smirnov Test: 
 The Kolmogorov–Smirnov goodness of fit test is applied to 

check the validity of the fitted model.It is based on the empirical 
cumulative distribution function. The Kolmogorove-Smirnov statistic 
 is based on the largest vertical difference between the CDF of the (௡ܦ)
MWIW distribution F(x) and the empirical CDF of the Data ܨ௡(ݔ). It is 
defined as 
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௡ܦ  = sup|(ݔ)ܨ −  |(ݔ)௡ܨ
 

 .଴: The data follow the NMWIW distributionܪ 
 .ଵ: The data do not follow the NMWIW distributionܪ
The hypothesis regarding the distributional form is rejected at 

the chosen significance level (ߙ) if the test statistic ,ܦ௡, is greater than 
the critical value obtained from a table. 

 

 
K − SStatistic 				p − Value
0.092 0.410 . .. 

 
The Kolmogorove-Smirnov test for testing the fitting of the 

NMWIW to the given data through the Mathematica package produced 
those result,ܦ௡ = 0.092, and the Critical value at 0.05=ߙ is ( 0.41). 
Therefore the null hypothesis will be accepted that the data came from 
the mixture of Anew weibull and inverse weibull distribution. 

 
Chi-Square Goodness of Fit Test: 
 A goodness-of-fit statistic tests the following hypothesis: 
 ଴ : the data comes from Anew mixture of weibull and inverseܪ

weibull distribution. 
 ଵ: the data did not come from Anew mixture of weibull andܪ

inverse weibull distribution. 
 
 ߯ଶ = ∑௡௜ୀଵ

(ை೔ିா಺)మ

ா೔
 

 where: 
ܱ௜ = an observed frequency for bin i 
 ௜ = an expected (theoretical) frequency for bin i, asserted byܧ

the null hypothesis. 
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The data was classified in 13 class intervals as shown in table(6)   
  class 
interval.  

 ܱ௜. ܧ௜.  (ܱ௜ − ூ)ଶܧ

௜ܧ
 

0 - 9 5.662 1.967 
1 - 10 11.095 0.108 
2 - 11 12.249 0.126 
3 - 5 11.744 3.873 
4 - 10 10.568 0.030 
5 - 15 9.061 3.891 
6 - 8 7.459 0.0391 
7 - 6 5.926 0.0009 
8 - 2 4.561 1.438 
9 - 6 3.412 1.961 

10 - 4 2.488 0.917 
11-13 4 3.009 0.326 
Sum   14.681 

 
  

Table  7: Chi-square goodness of fit test 
   The Calculated statistic value of Chi-square test statistic 

14.681 is less than the tabulated staƟsƟc value ߯(଴.ଽହ,଼)
ଶ =15.5073. 

Therefore the null hypothesis does not reject that the data came from 
Anew Mixture of weibull and inverse Weibull distribution. 

 
The Information Matrix 
 The fisher information matrix can be expressed in terms of the 

second derivative of the log likelihood function under the regularity 
conditions.  

(௜௝ߠ)௡ܫ  = ݒ݋ܥ ൤డ௙(௫;ఏ)
ఏ೔

, డ௙(௫;ఏ)
ఏೕ

൨ 

 
 

(௜௝ߠ)௡ܫ  = ܧ− ൤డ
మ௟௡௙(௫;ఏ)
డఏ೔డఏೕ

൨ 

 For the data from patients with malignant melanoma ,the fisher 
information matrix can be obtained as follow: 
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(௜௝ߠ)௡ܫ  =

⎝

⎜
⎛

0.183 0.015 0.011 0.136
0.015 0.018 −0.002 0.025
0.011 −0.002 0.016 0.185
0.136 0.025 0.185 0.537

⎠

⎟
⎞

 

 the variances of the estimates are generally small, with ( ෠ܾ)having the 
largest variance (0.537).  

Summery and Conclusion 
 Recently, many researchers hope to derive new distributions 

that better represent the real set(s) of data. There are many ideas that 
have been suggested in this regard. One of the most important of these 
ideas was the mixture of distributions. In this paper, two cases of 
mixture between two different distribution are investigated.The 
examples showes that the proposed distributions are flexible and can 
be fitted to a variety of data and the maximum likelihood estimations 
are good with the small bias and small mean square error. This asserts 
that the proposed distribution could be very usefull in fitting data.  

 


