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TRONTIUM takes the same uptake and distribution pathways of Ca within plants; hence disturbs 

many secondary metabolites. In humans, it can replace Ca in bones and teeth, making them 

brittle. Thus, remediating Sr-polluted soils has become an obligation to attain a hazard-free 

environment. In this context, Sr is one of the potentially toxic elements that have received little 

attention. Thus, the current study aims at investigating the efficiency of using different chelating 

agents i.e. Na EDTA and DTPA for the chemical extraction of Sr from contaminated soils. To attain 

this aim, three soil types i.e. a clay loam one and two sandy loam soils varying in their CaCO3 content 

were artificially polluted with Sr at three levels (50, 100 and 200 mg Sr kg-1); then left to equilibrate 

for 3 months. Thereafter, Sr was determined within the different soil fractions. In the clayey soil, most 

Sr was bounded with sesquioxide; followed by the exchangeable fraction, while in the other two soils 

(sandy loam ones), most of soil-Sr dominated within the exchangeable form, followed by the 

carbonate bound fraction. The contaminated soils were then subjected to soil leaching via either Na 

EDTA or DTPA and the extractable amount by both methods were comparable, with slight superiority 

for DTPA. Generally, the extraction efficiencies of Sr by these chelating agents were low in the sandy 

loam soils which contained 50 mg Sr kg-1 while increased considerably with increasing the level of 

soil contamination recording approximately 76-88%. Afterward, fractionation of Sr was accomplished 

again where the carbonate and organic bound fractions were the dominant ones; yet the exchangeable 

fraction still represents a substantial percentage. Generally, all fractions prior to soil leaching were 

correlated with each other. The two chelating agents were capable of extracting Sr among the different 

soil fractions except for the sesquioxide bound which was not extractable by Na-EDTA (r2=0.371) yet 

it can be extracted by DTPA (r2=0.413). This result provides more evidence for the feasibility of using 

both EDTA-2Na and DTPA in the chemical extraction of Sr from contaminated soils. 
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1. Introduction 

Strontium is one of the alkaline earth metals 

(Nedobukh and Semenishchev, 2020) that shares 

several chemical characteristics with Ca (Jovanović 

et al., 2021). Thus, Sr is considered a calcium analog 

(Chatterjee et al., 2020; Koshy and Pathak, 2020). It 

takes the same Ca uptake and distribution pathways 

within plants (Jovanović et al., 2021); nevertheless, it 

does not perform nutritional functions (Höllriegl, 

2019). It is mobile within plants (Burger and 

Lichtscheidl, 2019), translocate in high 

concentrations to the aboveground plant parts, and 

disturb many secondary metabolites (Dresler et al., 

2018). This in turn decreases plant growth and 

productivity (El-Shazly et al., 2016). There are two 

main routes for this element to enter the human 

system i.e. via plant ingestion and/or breathing 

vapors or dust containing Sr that dissolve with 

moisture inside the lung and enter the bloodstream 
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quickly (ATSDR, 2004). It replaces Ca in bones and 

teeth (Voronina et al., 2020), making them brittle 

(Koshy and Pathak, 2020) and causes Sr rickets, 

especially in infants (Scott et al., 2020) 

Strontium average concentration in soils is 

approximately 0.035% (Nedobukh and 

Semenishchev, 2020); yet the anthropogenic 

activities particularly milling, burning of coal, and 

applying phosphate fertilizers, increase its levels 

substantially in the surroundings (Höllriegl, 2019). 

This potentially toxic element has received little 

attention (Rinklebe et al., 2019). Unlike organic 

contaminants, PTEs, in general, do not undergo 

biodegradation and persist in soil (Hashim et al., 

2017; Abbas and Bassouny, 2018; Mohamed et al., 

2018; ElShazly et al., 2019 and b; Farid et al, 2019; 

Abbas et al., 2020; Bassouny and Abbas, 2020; 

Bassouny et al., 2020; Negim and Sweed  2020; El-

Ramady et al., 2021; Hussein et al., 2022; Ali et al., 

2023; El-Shwarby et al., 2023; Mekawi et al., 2023). 

In particular, Sr has high electronegativity and can 

form complexes with organic and inorganic ligand 

(Nedobukh and Semenishchev, 2020). These 

complexes are not highly stable (Nedobukh and 

Semenishchev, 2020); and may be leached out of 

soils via dissolving in acid solutions (Zhang et al., 

2010) or chelating agents such as EDTA (Guillén et 

al., 2018; Begum et al., 2020) and DTPA (Margon et 

al., 2013; Hassan et al., 2020). The current study 

aims at investigating the efficiency of using 

`different chelating agents i.e., EDTA and DTPA for 

the chemical extraction process of Sr from artificially 

contaminated soils of different characteristics at three 

levels (50, 100 and 200 mg Sr kg
-1

); then left to 

equilibrate for 3 months. Thereafter, Sr was 

determined within the different soil fractions. 

Specifically, we anticipate that Sr remains longer in 

the soil in mobile fractions before being transferred 

to more stable ones (Hypothesis 1). The residual 

fraction of Sr in this short period (90 days after 

pollution) is unstable and therefore the HF/HClO4 

method is not appropriate for determining this 

fraction within this short time (Hypothesis 2). The 

chelating agents particularly EDTA and DTPA 

extracts efficiently Sr from soil (hypothesis 3) and 

the extracted amounts were not only from the soluble 

and exchangeable forms but from different Sr 

fractions in soil (hypothesis 4). 

2. Materials and Methods 

2.1 Soil sampling and analytical methods 

Three surface soil samples (0–30 cm) varying in their 

CaCO3 contents were collected from (S1) Mashtul El 

Souq (30º 21' 27" N and 31º 23' 02" E), Al- 

Sharqiyah Governorate, (S2) Anshas (30º 23' 19" N 

and 31º 26' 52" E), Al- Sharqiyah Governorate   and 

(S3) Ameria industrial area (33º 17' 54" N and 44º 17' 

59" E), Alexandria Governorate. These samples were 

air dried, crushed and finely ground, then sieved to 

pass through a 2 mm sieve. Physicochemical 

characteristics of the investigated soils were 

determined according to Klute (1986) and Sparks et 

al. (1996) and the obtained results are presented in 

Table 1. 

 

 

Table 1. Physicochemical characteristics of the investigated soils. 
 

Property Mashtoul El Souq (S1) Anshass (S2) 

 

Aamria (S3) 

Coarse Sand % 19.00 30.90 31.50 

Fine Sand % 22.20 38.80 33.60 

Clay  % 28.8 9.30 12.60 

Silt % 30.00 21.00 22.30 

Textural Class Clay Loam Sandy loam Sandy loam 

Bulk density (Mg m-3) 1.40 1.52 1.41 

pH ( 1:2.5 ) 7.88 7.79 7.83 

EC (1:5)  dS m-1 2.49 5.89 3.29 

Organic matter content (g kg-1) 18.00 8.60 8.6. 

CaCO3 (g kg-1) 99.00 165.00 231.00 

CEC (cmol Kg-1) 24.32 4.05 10.97 

Sr concentration (mg L-1) 

Total  ND ND ND 

Soluble  ND ND ND 

ND: Not Detected 

https://pubmed.ncbi.nlm.nih.gov/?term=Farid+IM&cauthor_id=31416013
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These soils were then contaminated with strontium 

chloride (extra pure, M.W. 266.62 obtained from 

Alpha Chemika) at three different rates 50 mg 

(Sr50), 100 mg (Sr100) and 200 mg Sr kg
-1

 (Sr), then 

left to equilibrate for 90 days while maintaining soil 

moisture at the field capacity via the gravimetric 

method. Thereafter, Sr was determined within 

different soil fractions. 

2.2. Sequential extraction procedure 

A sequential extraction procedure was followed (pre- 

and post-soil leaching with synthetic chelating 

agents) to determine the distribution of Sr among the 

different soil fractions as outlined by Tessier et al. 

(1979) as follows: (1) water soluble: extracted by 15 

mL of deionized water for 2 hours, (2) 

exchangeable: the residue from step “1” was treated 

by 8 mL of 1 M MgCl2 (pH = 7.0) for an hour, (3) 

carbonate bound: the residue from step “2” was 

treated with 8 mL sodium acetate (CH3COONa)  1 M 

then adjusted to pH = 5.0 and left to equilibrate for 5 

hours, (4) sesquioxide bound: the residue from step 

“3” was extracted by 20mL of 0.04 M hydroxylamine 

hydrochloride (NH2OH.HCl) in 25% (v/v) at 96
o
C 

with agitation for 6 hours, (5) organic bound: the 

residue from step “4” was extracted by both 3 mLof 

0.02M HNO3 and 8 ml of 30% H2O2 (adjusted to pH 

= 2.0 with HNO3), then heated to 85
o
C for 5 hours. 

After cooling, 5 mL of 3.2 M NH4OAc was added 

and the mixture was diluted to 20 mL then agitated 

for 30 minutes and (6) the residual fraction:  the 

residue from step “5” was placed in platinum 

crucible and digested using a mixture of hydrofluoric 

and perchloric acid.  

Prior to the beginning of each extraction stage, 

resides were shaken with 8mL deionized water for 30 

minutes, centrifuged, and the leaching solutions were 

discarded. All soil extractants were analyzed for Sr 

using Atomic Absorption Spectroscopy (Buck 

210VGA).    

2.3. Soil leaching with Na-EDTA and DTPA  

Other soil portions were treated with either 0.05 M 

Na-EDTA disodium salt (M.W. 372.24, purity 

99.0%, obtained from SuvChem Laboratory 

Chemicals) or DTPA (FW 393.3, Sigma Chemical 

company) solutions (adjusted at pH= 7) at a rate of 

1:10 (w/v) ratio then left to equilibrate for 24 h at 

room temperature while being shaken. Thereafter, 

the extracts by decantation passed through a 0.45 µm 

filter and their content of Sr was determined. 

2.4. Statistical analysis 

Data were subjected to one-way ANOVA and 

Duncan’s text using PASW statistical software 18. 

Figures were plotted via Sigma Plot 10   

3. Results and Discussion 

3.1. Distribution of Sr among the different soil 

fractions prior to soil leaching with synthetic 

chelating agents 

This protocol of soil fractionation was conducted 

prior to soil leaching with Na-EDTA or DTPA and 

the obtained results are presented in Fig 2. In the 

clayey soil, most soil-Sr was bounded with 

sesquioxides; followed by the exchangeable fraction. 

Probably, Sr was initially sorbed on clay particles 

(Smičiklas et al., 2015; Siroux et al., 2021); then 

formed short-range complexes with sesquioxide, 

especially with Al- and Fe-oxides (Chiang et al., 

2010). Nevertheless, the available content of Sr 

(soluble + exchangeable fractions) in the clayey soil 

was still high, comprising from 22-27% of the total 

content in the soil. 

 In the other two soils (sandy loam ones), most of the 

soil-Sr dominated within the exchangeable form, 

followed by the carbonate bounded fraction. In this 

context, the carbonate bounded fraction was 

noticeably higher in the soil with higher content of 

CaCO3, forming crystals as found by Saito et al. 

(2020). The above results justify partially the first 

hypothesis. 
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Fig. 1. Distribution of Sr (mean ± standard deviation) among the different soil fractions prior to soil leaching with 

either EDTA-2Na or DTPA: (A) means+ standard deviation and (B) the percentage from the total content in 

soil. 

 3.2. The residual fraction of soil Sr 

This fraction was determined via HF/HClO4 and the 

obtained results are presented in Fig 2A. This 

fraction was relatively high in highly contaminated 

sandy loam soils (Sr200) while displaying lesser 

values in soils of lower contamination levels i.e., 

Sr50 and Sr 100. In this regard, the order of residual 

Sr in soil that contained relatively low content of 

CaCO3 (165 mg kg
-1

) was Sr200>Sr100> Sr50, while 

in the other soil that contained higher CaCO3 content 

(231 mg kg
-1

) the following sequence was detected: 

Sr200>Sr50> Sr100. There might exist dynamic 

equilibria between the residual fraction and the other 

soil fractions, causing substitutable exchange among 

Sr fractions, especially within Sr50 and Sr100. More 

evidence to support the rapid transformations of Sr 

among the different fractions after a short time 

period of contamination with Sr was noticed by Lee 

et al. (2022) who found that Sr was partially co-

precipitated in soil. Even in the long term, Sr, which 

was dominated within the residual form on the 

topsoil, decreased considerably corresponding to all 

other fractions in deeper soil layers (Lujaniene et 

al., 2002). Based on the above results, the second 

approach becomes acceptable. 

In the clay loam soil, sesquioxide fractions might be 

in dynamic equilibrium with the residual Sr; and this 

might clarify partially why Sr200 exhibited lower 

https://pubmed.ncbi.nlm.nih.gov/?term=Farid+IM&cauthor_id=31416013


 THE EFFICIENCY OF USING NA EDTA AND DTPA TO EXTRACT DIFFERENT FRACTIONS OF SOIL STRONTIUM 

_________________________________________________________________________________________________________________ 

____________________________ 

Egypt. J. Soil Sci. 63, No. 3 (2023) 

281 

residual Sr versus Sr100. Overall, the results of the 

residual fraction of Sr were confusing; therefore, the 

residual Sr was estimated via another method i.e. 

subtracting the different Sr fractions from the total 

content in soil then a regression relation was 

conducted between the measured and the estimated 

residual Sr values (Fig 2B). The calculated “r
2
” value 

was low indicating an insignificant relationship 

between the estimated and the measured quantities of 

residual soil-Sr. Probably, this methodology is not 

suitable for determining the residual Sr fraction in 

soil within the short period of contamination because 

of the rapid exchange of Sr among the different Sr 

fractions. 
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Fig. 2. The residual fraction of Sr in soil (mean± standard deviation): (A) measurable amount by HF 

digestion (means± stand dev.) (B) in relation with the estimated residual fraction in soil (subtracting 

the different Sr fractions from the total content in soil). Similar letters indicate no significant 

variations among treatments. 
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3.3. Chemical extraction of Sr from the 

contaminated soils via EDTA versus DTPA 

The extracted amounts of Sr from soil via either 

EDTA or DTPA seemed to be comparable, with a 

little superiority for DTPA. Probably, DTPA 

increased the dissociation rate of Sr-bearing minerals 

comparable to EDTA (de Pasquali et al., 2019). 

Based on these results, the extraction efficiency (EF) 

values were calculated as a percent of the total 

content in soil according to Xu et al. (2009). 

Generally, the EF values were higher in sandy loam 

soils versus the clayey ones. Probably, Sr underwent 

surface complexation (Berns et al., 2018) on clay 

minerals (Mulyutin et al., 2012) and this process 

was fast (Smičiklas et al., 2015). A point to note is 

that the extraction efficiency of Sr with these 

chelating agents was low in Sr 50. Probably, these 

chelating agents have relatively low capabilities to 

bind with soil Sr while preferring to chelate with 

other soil cations (de Pasquali et al., 2019). 

Nerveless, the EF values increased considerably in 

the sandy loam soils with increasing the level of soil 

contamination recording approximately 76-88% EF 

in both Sr100 and Sr200. In another trial to separate 

Sr from contaminated resins, these two chelating 

agents recorded up to 100% Sr removal efficiency by 

Surrao et al. (2019). Overall, these results confirm 

partially the third hypothesis, especially in light 

textured soils. 
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Fig. 3. Chemical extraction of Sr from artificially contaminated soils (mean ± standard deviation) via 

either EDTA or DTPA (means± st dev, A) and the calculated removal efficiency of this procedures 

(B). Similar letters indicate no significant variations among treatments. 
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3.4. Correlation coefficients between different Sr 

fractions and their chemically extractable amounts 

via Na-EDTA and DTPA 

Soluble Sr in soil was correlated significantly with 

the corresponding exchangeable form and these two 

fractions were bounded with the other fractions 

(Table 2). Mostly, Sr ions were sorbed onto low-

affinity sorption sites (Bouzidi et al., 2019) and this 

process dominated slowly before reaching 

equilibrium (Shi et al., 2021). The only insignificant 

correlation among the different Sr fractions was 

found between the sesquioxide bound Sr and the 

organic bound fraction. On the other hand, the two 

chelating agents were capable of extracting Sr among 

the different soil fractions except for the sesquioxide 

bounded fraction which was not extractable by Na-

EDTA (r
2
=0.371) yet it can be extracted by DTPA 

(r
2
=0.413). This result provides more evidence for 

the feasibility of using DTPA in soil leaching of Sr 

from contaminated soils and therefore authenticates 

the fourth hypothesis.  

 

Table 2. Coefficients of determination (r
2
) calculated for the equilibrium among different Sr fractions in 

artificially contaminated soils (prior to soil leaching with synthetic chelating agents) in relation with 

the extractable amounts of Sr via soil leaching with either EDTA or DTPA. 

 

Na-EDTA 

Extractable 

Sr 

DTPA 

Extractable Sr 

Soluble 

Sr Exch- Sr 

Carbonate 

bounded Sr 

Sesquioxide 

bounded Sr 

Organic 

bounded Sr 

Na-EDTA extractable Sr        

EDTA extractable Sr 0.997**       

Soluble Sr 0.764** 0.773**      

Exchangeable Sr 0.936** 0.953** 0.778**     

Carbonate bounded Sr 0.877** 0.890** 0.609** 0.945**    

Sesquioxide bounded Sr 0.371 0.413* 0.369 0.648** 0.719**   

Organic bounded Sr 0.883** 0.890** 0.645** 0.810** 0.754** 0.205  

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

 

3.5. Distribution of Sr among the different soil 

fractions after soil leaching with synthetic chelating 

agents 

After soil leaching with the investigated synthetic 

chelating agents (Na EDTA and DTPA), 

considerable decline occurred in all Sr fractions; 

thereafter, Sr was re-distributed again among the 

different soil fractions as presented in Fig 5. In this 

concern, the sesquioxide, carbonate and organic 

bound fractions were the dominant ones after soil 

leaching; yet the exchangeable fraction still 

represents a substantial percentage. Although, high 

concentrations of this contaminant are bound to 

relatively mobile fractions (Smičiklas et al., 2015); 

organics and sesquioxides especially Al- and Fe-

oxides play significant roles in Sr sorption (Chiang et 

al., 2010). 

Conclusions 

Different Sr fractions were equilibrated with each 

other during the first 90 days after pollution. The 

synthetic chelating agents, particularly DTPA were 

capable of extracting Sr from the different soil 

fractions (mainly from the soluble and exchangeable 

fractions), recording fair efficiencies (76-88%) in 

highly contaminated soil while in the low 

contaminated soils of light texture; these two 

chelating agents might not be enough to attain 

successful remediation via soil leaching of the 

contaminant. 
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Fig. 4. Distribution of Sr among the different soil fractions after soil leaching with either EDTA-2Na (A) 

or DTPA (B).
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