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Abstract  

 

This paper is concerned with a new buckling problem of rectangular plate subjected to uniaxial 

loads. The considered plate has two clamped edges parallel to x-axis while the other edges 

parallel to y-axis are simply supported (SCSC) subjected to combined uniaxial loads. The 

analysis of the plate under study is performed using minimum potential energy techniques 

andthe results are examined using finite element method. The energy method depends on the 

assumed deflection function, which satisfies exactly the end conditions and capable of 

representing the deflected plate surface. The analysis furnishes an approximate stability 

solutions; presented in curves describe the relation between the ratio of the intermediate load to 

the end load both, aspect ratio and the location of the intermediate load. These results can be 

used simply to design plates or walls that have to support intermediate 

floors/loads.Comparisons between the results of the energy technique and the finite element 

methods show very good agreement.  
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1. Introduction 

The stability of thin elastic rectangular plates under uniaxial loads is an important problem in 

civil engineering and its applications.Solutions of such plates are documented in all standard 

texts on plate buckling (for example Timoshenko and Woinowsky [1], Szilard [2], Timoshenko 

and Gere [3]). In some practical applications, plates (or walls) may subject to both intermediate 

load/floor and end loads. Stability of such loaded plates is, however, not available in open 

literature and not studied except for a recent paper by Xiang and Wang[4]that used the Levy 

solution approach and the state-space technique to solve such a problem.    

Also, Wang et al. [5]present some of the important features associated with the buckling of 

plates under combined uniaxial loads depending on the dividing of the considered plate into two 

sub-plates.Theexact critical buckling loadis the lowest solution of the combinationsof each sub-

plate solutions. The lowest solution from the twenty five is. Thestudy by  Wang et al. 

[5]includerectangular plate with two simply supported edges parallel to x-axis while the other 

edges parallel to y-axis can be free,  simply supported, or clamped.   

Salama [6] presents an approximate solution for the buckling loads of simply supported plates 

only in case of end and intermediate loadsusing energy technique.  

In this paper, anew case of study of SCSC rectangular plate under end and intermediate loads is 

investigated using both energy approach and finite element method. 

 

2. Model and Assumptions  

Consider anisotropic, elastic rectangular thin plate have two simply supported opposite edges 

parallel to y-axis (perpendicular to the load direction) and the other two opposite edges that 

parallel to x-axis are clampededges as shown in Figure1.The plate is of length a, width 

b,thickness h, modulus of elasticity E and Poisson’s ratio v. The plate is subjected to an end 
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uniaxial compressive load N1 at left edge (x=0), beside an intermediate compressive load N2at 

alocation x=a.  

 

 

 

Figure1.Stability of SCSC rectangular plate under intermediate and end uniaxial loads 

 

3. Method of Analysis and Theoretical Equations  

The deflection function of the buckled SCSC rectangular platecan be taken in the form of the 

double trigonometric series 
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WhereCmn are the unknown constants to be determined 

The general expression in Equation (1)can be simplified by considering the plate buckled into 

one half-wave in y direction (n=1) and the buckled plate is subdivided along the x-axis 

intomhalf waves ,the followingfunction can be taken 
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The total strain energy, U, of the plate in bending can be expressed as follows 
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Where D = (Eh
3
)/ (12(1-)

 2
) is the flexural rigidity of the plate. 

Also, the work,T,doneby the end uniaxial compressive load N1 at edge x=0, and the 

intermediate compressive load N2 at a location x=a is 

 

   


























b ab a

dydx
x

wN
dydx

x

wNN
T

0 0

2

2

0 0

2

21

2

)(

2

)(


     (4)
 

 

Substituting the deflection expressionin Equation (2) into Equations (3, 4), 
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Then the total energy (V) of the system is  

V = U – T           (7) 

Substituting Equations (5,6) into Equation (7), 
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Using the following expressions to the buckling factors for the end and intermediate loads 
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The total energy (V) can be expressed as 
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This is a function of second degree with coefficients C1,C2,….. Cm. These coefficients must 

now be chosen so as to make the total energy (V) a minimum, from which it follows that  
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This minimization procedure yieldsmhomogeneous linear equations in C1, C2, …, Cm,whichcan 

be put in the following form 

 

         (11) 
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These equations will be satisfied by putting C1, C2, …, Cm equal to zero, which corresponds to 

the flat form of equilibrium of the plate. For a nontrivial solution, the buckling load of the plate 

can be obtained by equating to zero the determinate of [K].By selecting the number of 

trigonometric series (m) and assuming the intermediate force N2, the end compressive force 

N1will be gradually increasing until arriving a value for which one of the coefficients C1, C2, 

…, Cmbecomes infinity. The smallest of these values of N1 is called the end critical value 

corresponding to the assumed intermediate force N2.This method of calculating the critical 

buckling load brings us to a closer and closer approximation as the number (m) of the terms of 

the deflection function series given in Equation (3) increases, and by taking (m) infinitely large 

we obtain an exact solution.  

To examine the energy methodresults, finite element method is applied to the stability analysis 

of the considered plate. Mode shape for some cases of SCSC rectangular plates under 

intermediate load N2 are shown in figure 3 that describe the buckling behaviour of the plate 

under study. 

 

 

  ij mxm
K k   



7 

 

4. Results and Discussions 

An approximate solutions for the stability of SCSC rectangular plates under both intermediate and 

end loads are presented in Figure (2) (a-c). These results cover various aspect ratios (a/b =1, 1.5 and 

2) and intermediate load locations ( = 0.3, 0.5 and 0.7)  

From this figure, it is obvious that when the intermediate in-plane load is positive (N2>0), the 

buckling factor A1 decrease almost linearly as the buckling factor A2 increases for different 

aspect ratios. If the intermediate load is negative (N2<0), the buckling factor A1 increases almost 

linearly as the value of the buckling factor A2 increases. The increase of A1 is more pronounced 

when the intermediate load location factor  is small.  It is evident that the stability curves 

shown in Figure (2) have a highly nonlinear portion when the buckling factor A2 is close to 

zero. 

 

Also, it can be noticed that when the intermediate in-plane load is absent (N2=0), the buckling 

factor A1 is very close to the exact buckling factor for different aspect ratios [1, 3]. 

 

 

 

(a) Square plate [a/b=1.0] 
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Figure2. Stability of SCSC rectangular plate under intermediate load N2 and end load N1 

with aspect ratio (a) a/b=1.0, (b) a/b=1.5 and (c) a/b=2.0 

 

 

(b) Rectangular plate [a/b=1.5] 

 

(c) Rectangular plate [a/b=2.0] 
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 Aspect ratioa/b=1.0 

 

 

 
Aspect ratioa/b=2.0 

 

 
 

 

Aspect ratioa/b=3.0 

Figure3. Mode Shape for SCSC rectangular plate under intermediate load N2 
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5. Comparison of the Results 

Table 1 shows the comparison  between the energy approach and finite element method for 

theobtained buckling factor A2of SCSC rectangular plates subjected to intermediate in-plane 

load at x =a only. The values of the buckling factor A2 were obtained assuming the number of 

trigonometric series terms equals to ten(m=10). 

 

Table 1.Comparison of buckling factor A2 obtained by energy approach with finite element 

method assuming the plate subjected to N2 only (N1=0) 

a/b  Finite Element Method Energy Method % Diff. 

1.00 

 8.1338 8.4534 3.93% 

 9.2979 9.7398 4.75% 

 11.4706 11.7983 2.86% 

2.00 

 7.4296 7.6260 2.64% 

 7.7482 8.0024 3.28% 

 8.4287 8.8038 4.45% 

3.00 

 7.3274 7.4602 1.81% 

 7.4006 7.5858 2.50% 

 7.7488 7.9771 2.95% 

 

The comparison showed in the Table (1) clears the accuracy of the energy method that can be 

considered simple compared with the finite element method. 
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6. Conclusions 

An approximate solution for the buckling loads of SCSC plates subjected to both the end and 

intermediate in plane loads is presented in this paper using the energy approach and the 

obtained results are verified by applying the finite element method. 

In this paper, the energy method is presented in form allowing use a large number of terms of 

the trigonometric series which represent the deflection of the buckled plate under study.  

The great advantage of the present method is the determination of the critical buckling loads of 

the problem in hand from one solution.  

This present method is simple to use by engineers designing walls or plates that have to support 

intermediate floor/loads with satisfactory accuracy.  
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