

Bulletin of Pharmaceutical Sciences Assiut University

Website: http://bpsa.journals.ekb.eg/ e-mail: bullpharm@aun.edu.eg

RESIDUAL SOLVENTS ANALYSIS IN METRONIDAZOLE RAW MATERIAL USING HEAD SPACE GAS CHROMATOGRAPHY

Derouicha Matmour^{1,2*}, Khalil Fateh Eddine Hassam^{3,4}, Yassine Merad² and Nassima Hamdi ZianI^{3,4}.

 ¹Therapeutic and Pharmaceutical Chemistry Laboratory, Pharmacy Department, Faculty of Medecine, University of Sidi Bel-Abbes, 22000, Algeria
 ²Central Laboratory, University Hospital Center of Sidi Bel-Abbes, 22000, Algeria
 ³Quality control laboratory, WanyLab, 16002 Algiers, Algeria
 ⁴Hikma Pharmaceuticals, 16002 Algiers, Algeria

In pharmaceutical raw material (PRM), the residual solvents (RS) are residual impurities which must be controlled due to their toxicity. In this study, we report the quality control results of residual solvents impurties analysis using head space gas chromatography with flame ionization detector (HS-GC-FID) of six raw materials samples of Metronidazole marketed in Algeria. The GC is equipped with a flame-ionization detector and silica column coated with 1.8 μ m layer of phase G43. The carrier gas is nitrogen with a linear velocity of 35 cm/s and a split ratio of 1:5. The column temperature is 40 °C then it rise to 240 °C. The injection temperature is 140 °C and that of detector is 250 °C. 29 organic solvents belongs to classes 1 and 2 were researched whose control is mandatory because of their carcinogenic and intrinsic toxicity, only five solvents were identified in the different samples and the methanol was quantified in M2 sample. All samples collected satisfy the test except M2 sample which contains a slight excess of methanol estimated of 14 ppm. This slight excess show that M2 sample wasn't well purified and this may be due to the difficulty of solvents complete removal.

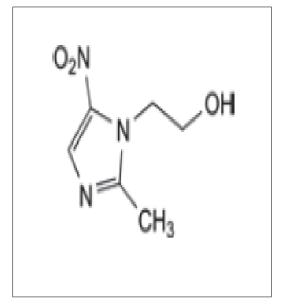
Keywords: Residual Solvents, HS-GC-FID, Metronidazole, Active Pharmaceutical Ingredient, Solvents-impurties.

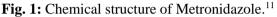
INTRODUCTION

In the different steps synthesis of pharmaceutical raw materials (PRM), the organic solvents are habitually used.¹ Residual solvents cannot be completely removed due to certain chemical and physical criteria.^{2&3} Residual solvents (RS), that is, volatile organic impurities (VOI) are small amounts of solvents remaining in the PRM after purification processes.^{3&4} Drug manufacturers should minimize residual amounts of solvents due to their toxicity to patients. Therefore, safety standards must be respected which are published in the pharmacopoeias and guidelines of the ICH.4&5 Residual organic solvents must be controlled, therefore, if their amounts are below the limits, the PRM is compliant and if they are greater, purification is necessary.⁵

ICH has also included daily exposure limit of many solvents it has classifed these solvents into four classes on the basis of the toxicity level and the degree to which they can be considered an environmental hazard⁶. Class I solvents (which covers 5 residual solvents) are known or suspected human carcinogens and environmental hazards, the use of these solvents should be avoided. Class I solvents should be identifed and quantifed. Class II solvents (which covers 29 residual solvents) are non-genotoxic animal carcinogens or possible causative agents of other irreversible toxicity such as neurotoxicity or teratogenicity. Use of these solvents should be limited. Class II solvents have individual limits. Class III solvents (which covers 26 residual solvents) having low toxic potential to man; no healthbased exposure limit is needed. Class 3 solvents

Received in 11/8/2022 & Accepted in 19/9/2022


^{*}Corresponding author: Derouicha Matmour, E-mail: drmatmour24@hotmail.fr


have PDEs of 50 mg or more per day. Finally, Class 4 solvents are those for which no adequate toxicological data have been found⁷. Therefore determination of residual solvents becomes a necessary procedure for quality control of drug substances and drug product to meet regulatory guideline and ensure patient safety^{8*9}.

Head space gas chromatography (HSGC) is generally used to determine residual solvents because of its high separation efficiency and sensitivity for organic volatile solvents. However head space bounds the analysis to those solvents being evaporated from HS only, it also requires larger sample load and analysis time should be longer due to sample equilibration. Headspace sampling is preferred because of its ability to avoid direct liquid or solid injection¹⁰.

Metronidazole is a synthetic antiparasitic that is part of the list of essential drugs established by World Health Organization, manufactured by several generic laboratories in Algeria, their high rate of prescription by clinicians thanks to their numerous indications in the different infections (gynecological, urinary, digestive and respiratory,.... etc.) (**Figure 1**).¹¹

In this paper, we will analysis and evaluate the residual solvents in six samples of Metronidazole raw material marketed in Algeria using HS-GC-FID.

MATERIALS AND METHODS

Six samples of an antiparasitic raw material called Metronidazole were collected from pharmaceutical producers installed in Algeria. They are labeled as follows: M1, M2, M3, M4, M5 and M6 (**Table 1**).¹²

Identification and quantification of residual solvents by HS-GC-FID^{13&14}

Standards, reagents and apparatus

USP Class 1, USP Class 2 _Mix A and USP Class 2 _Mix B residual solvents standards used for peak identification were purchased from Restek (Bellefonte, USA) and Dimethyl sulfoxide produced by Riedel-de Haën Germany.

Sample	Local Producer	Batch number	Expiration Date	Manufacturer-Supplier	
M1	Lab M1	20130558	06/2017	Quimdis (France)	
M2	Lab M2	09330056R	09/2019	Quimdis (France)	
M3	Lab M3	20110387	02/2018	Aarti Drugs Limited (India)	
M4	Lab M4	A00181	05/2017	Unknown	
M5	Lab M5	119M231	10/2018	Unknown	
M6	Lab o M6	345P/13	11/2017	Unknown	

Table 1: Sampling of Metronidazole raw material.

Composition of residual solvents standard solutions

- Class 1_USP (10-50 mg/mL): 1,1dichloroethene, 1, 1,1-trichloroethane, Carbon tetrachloride, Benzene and 1,2-Dichloroethane.
- Classe 2_USP_Mix A (0,35-19,4 mg/mL): Cyclohexane, Methylcyclohexane, trans-1,2dichloroethene, Tetrahydrofuran, Methanol, Dichloromethane, cis-1,2dichloroethene, Acetonitrile, Toluene, 1,4-Dioxane, Ethylbenzene, p-Xylene, m-Xylene, Isopropylbenzene, o-Xylene and Chlorobenzene.
- Classe 2_USP_Mix B (50-290 μg/mL): n-Hexane, Nitromethane, Chloroform, 1,2-Dimethoxyethane, Trichlorethylene, Pyridine, 2-hexanone and tetralin.

A Gas Chromatograph (GC-2010 Plus-Shimadzu Japan) coupled to flame ionization detector (FID) and headspace extraction sampler "HS" (Auto sampler AOC-5000 Plus-Shimadzu Japan).

Analysis protocol^{13,14&15}

- Class 1 Standard Stock Solution: Prepared from USP_Class 1 Residual Solvents at concentration of 10⁻⁵ mL/mL.
- Class 1 Standard Solution: Prepared from Class 1 Standard Stock Solution at concentration of 0,2 mL/mL in headspace vial.

 Table 2: Headspace operating parameters^{13&14}

- Class 2 Standard Stock Solution A: Prepared from USP Residual Solvents Class 2_Mixture A at concentration of 10⁻² mL/mL in headspace vial.
- Class 2 Standard Stock Solution B: Prepared from USP Residual Solvents Class 2_Mixture B at concentration of 10⁻² mL/mL in headspace vial.
- Class Mixture A 2 Standard Solution: Prepared from Class 2 Standard Stock Solution А at concentration of 0,5 mL/mL in headspace vial.
- Class 2 Mixture B Standard Solution: Prepared from Class 2 Standard Stock Solution B at concentration of 5 mL/mL in headspace vial.
- **Test Stock Solution**: Prepared from each Metronidazole sample at concentration of 10 mg/mL in headspace vial.
- Test Solution: Prepared from Test Stock Solution at concentration of 5 mL/mL in headspace vial.
- Class 1 System Suitability Solution: Prepared from Class 1 Standard Stock Solution at concentration of 0,2 mL/mL in headspace vial.

Procedure A of identification

The Headspace Operating Parameters are illustrated in Table 2.

Operating parameters	Operating conditions		
Equilibration temperature (°C)	80		
Equilibration time (min)	60		
Transfer-line temperature (°C)	85		
Syringe temperature (°C)	80-90		
Pressurization time (S)	≥ 60		
Injection volume (mL)	1		
Carrier gazs	Nitrogen or helium at an appropriate pressure		

Procedure C of Methanol quantification in M2 sample^{13&14}

The chromatographic and headspace conditions were set in the same way as the identification procedure A.

Methanol Standard Stock Solution (150 ppm)

Prepared from USP_Methanol Standard at concentration of 150 ppm.

Methanol Standard Solution

Prepared from Methanol Standard Stock Solution at concentration of 0,2 mL/mL.

Spiked Test Solution M2

Add 1 mL of Methanol Standard Stock Solution to 5 mL of Test Stock Solution M2 in headspace vial.

Calculate the Methanol Residual Solvent amount in M2 by the formula

Residual Solvant Content (ppm)

$$= 5 \times \frac{C (\mu g/mL)}{W (g)} \times \frac{A1}{(A2 - A1)}$$

C: concentration of Methanol Standard Stock Solution (µg/mL)

W: sample weight (g)

A1: Methanol peak Area in the Test SolutionA2: Methanol peak Area in the Spiked Test solution.

RESULTS AND DISCUSSION

Procedure A of identification System compliance

Solvents Identification: the chromatograms obtained with the Standard Solutions (Class 1, Class 2_Mix A and Class 2_Mix B) (Figure 2, 4, 6) and the typical chromatograms supplied with Standard Solutions (Figure 3, 5, 7) are comparable, which allowed us to identify the respective peaks corresponding to solvents of each class with their retention times (Table 3).

 Table 3: Retention time of solvents.

Solvent	Retention time							
	(min)							
Class 1 solvents								
1,1-Dichloroethene	06.283							
1, 1,1-trichloroethane	14.572							
Tetrachloromethane	15.775							
Benzene	17.007							
1,2-Dichloroethane	17.007							
Class 2_Mix A solvents								
Methanol	4.285							
Acetonitrile	5.800							
Dichloromethane	7.556							
trans-1,2-dichloroethene	8.412							
cis-1,2-Dichloroethene	12.128							
Tetrahydrofuran	13.565							
Cyclohexane	15.12							
Methylcyclohexane	22.649							
1,4-Dioxane	23.730							
Toluene	26.677							
Chlorobenzene	30.394							
Ethylbenzene	30.661							
m-Xylene	30.927							
p-Xylene	30.927							
o-Xylene	31.811							
Isopropylbenzene	32.604							
(Cumene)								
Class 2_Mix	B solvents							
n-Hexane	9.444							
Nitromethane	12.562							
Chloroform	13.657							
1,2-imethoxyethane	17.522							
Trichloroethene	21.631							
Pyridine	26.668							
2-Hexanone	28.584							
Tetralin	38,596							
Co-elution of Benzene and 1.2-dichloroethane								

Co-elution of Benzene and 1,2-dichloroethane which were eluted at the same retention time (TR: 17.007 min) (Figure 2).

Co-elution of m-Xylene and p-Xylene which were eluted at the same retention time (TR: 30.927 min) (Figure 4).

Signal-to-noise ratio: the signal-to-noise ratio of 1,1,1-trichloroethane peak is 8.82, which is greater than the limit required by the USP (at least 5). The signal-to-noise ratio of the following peaks: (1,1-dichloroethene, 1,1,1-trichloroethane, tetrachloromethane and benzene / 1,2-dichloroethane) of System Suitability Solution are respectively: 8.98, 8.82, 3.07 and 10.09. These values are according to the standard required by the USP (minimum 3).

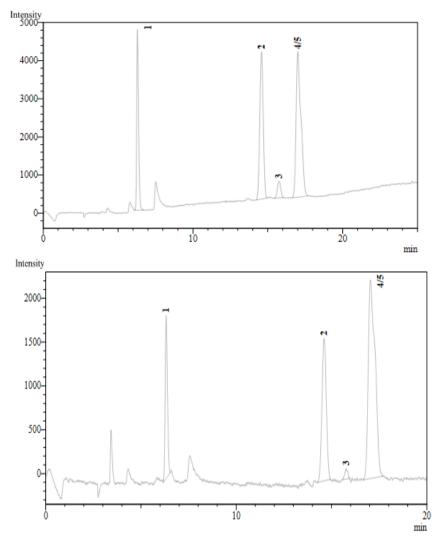


Fig. 2: Chromatograms of class 1 standard solution and class 1 system suitability solution.

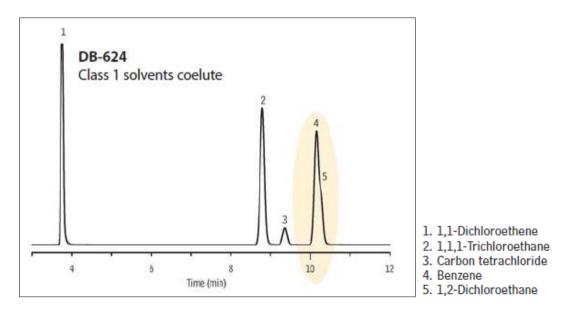


Fig. 3: Typical chromatogram of class 1_USP standard solution.¹⁶

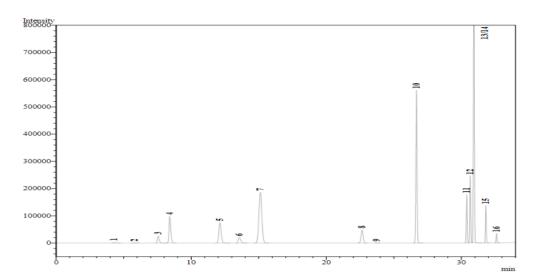


Fig. 4: Chromatogram of class 2_mix a standard solution.

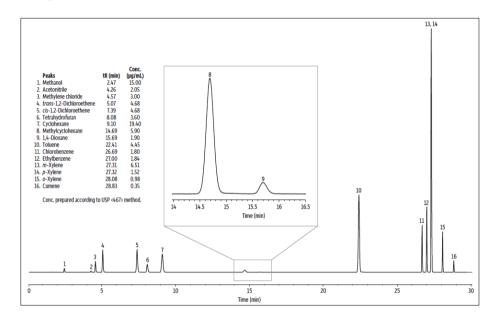


Fig. 5: Typical chromatogram of class 2_Mix A standard solution.¹⁷

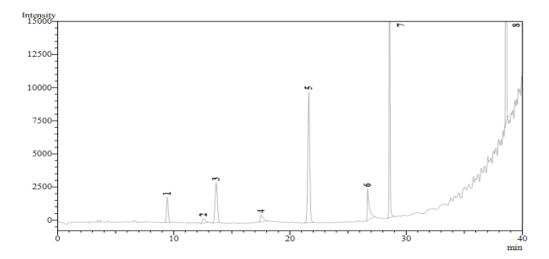


Fig. 6: Class 2_Mix B standard solution chromatogram.

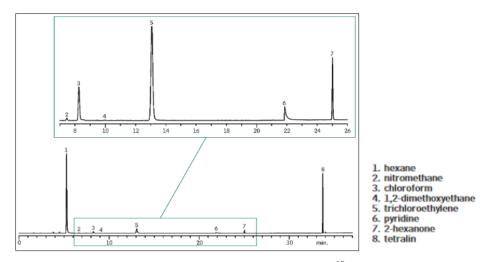


Fig. 7: Typical chromatogram of class 2_Mix B standard solution.¹⁸

Resolution: the resolution between acetonitrile peak and methylene chloride peak is 6, value conform to the standard (at least 1.0). In conclusion, the system is compliant.

Samples Analysis

M3 sample: five peaks are detected, methanol, acetonitrile. 1,1-dichloroethene, dichloromethane and tetrahydrofuran (Figure 9) respectively, they have the following surfaces (2852 µV.min, 4765 µV.min, 458 µV.min, 22345 µV.min and 10070 µV.min) lower the which are than those of corresponding standards (33227 µV.min, 6194 µV.min, 970 µV.min, 252054 µV.min and 277962 µV.min). So M3 sample satisfies the test.

M4 sample: dichloromethane peak was appeared (Figure 9), having area of 4116 μ V.min, lower than that of the corresponding standard (252054 μ V.min). So M4 Sample satisfies the test.

M6 sample: methanol peak was detected (Figure 10), having surface of 2612 μ V.min, lower than that of the corresponding standard (33227 μ V.min). So M6 Sample satisfies the test.

M2 sample: only one peak was detected, that of Methanol (Figure 8), having surface of 33409 μ V.min, higher than that of the corresponding standard (33227 μ V.min). So M2 sample doesn't satisfy the test. A confirmation and quantification of methanol is mandatory.

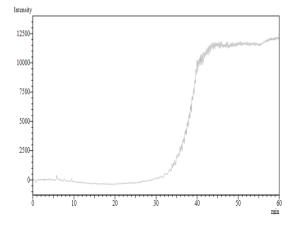
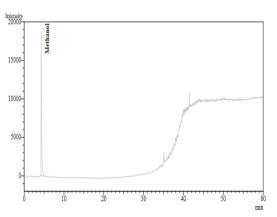



Fig. 8: Chromatograms of M1 and M2 samples.

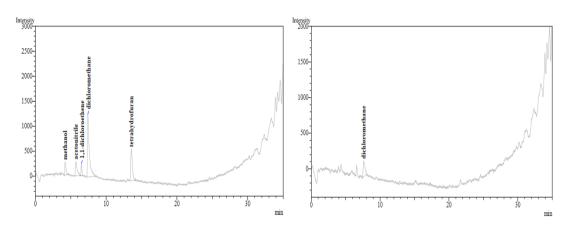


Fig. 9: Chromatograms of M3 and M4 samples.

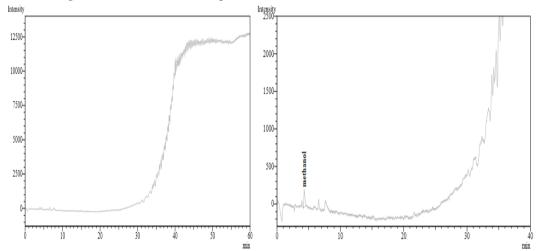


Fig. 10: Chromatograms of M5 and M6 samples.

Procedure C of Methanol quantification in M2 sample.

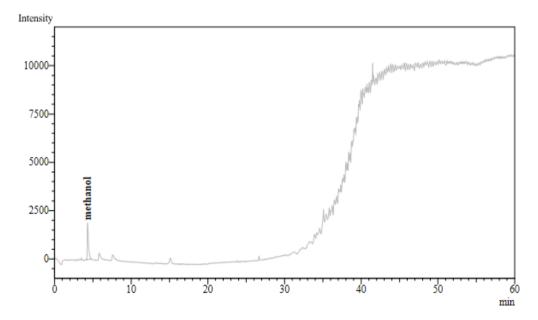


Fig. 11: Methanol standard solution chromatogram.

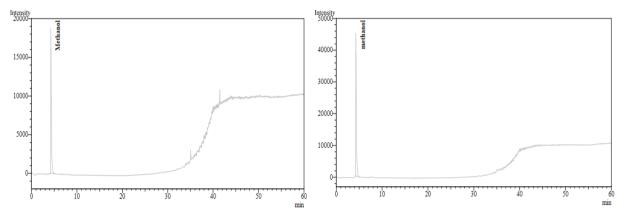


Fig. 12: M2 sample and M2 spiked sample chromatograms.

Table 3: Methanol content result in M2 sample.

Sample	Sample Weight (g)	Methanol Concentration (µg/mL)	Methanol Area in test solution A1 (µV.min)	Methanol Area in spiked test solution A2 (µV.min)	Methanol Content (ppm)	Allowed Limit (ppm)
M2	0,2501	150	33405	66640	3014,14	3000

The methanol content in M2 sample is estimated at 3014 ppm, this value is greater than the allowed limit of 3000 ppm (**Table 3**). Knowing that Methanol is used as solvent in synthesis or purification process, this excess in methanol shows that the sample hasn't been well purified, however it should be remembered that organic solvents aren't always easy to eliminate.

Conclusion

29 organic solvents belongs to classes 1 and 2 were researched in six samples of Metronidazole Active Pharmaceutical Ingredients (API) whose control is mandatory because of their carcinogenic and intrinsic toxicity, only five solvents were identified in the different samples and the methanol was quantified in M2 sample. All samples collected satisfy the test except M2 sample which contains a slight excess of methanol estimated of 14 ppm. This slight excess show that M2 sample wasn't well purified and this may be due to the difficulty of solvents complete removal. The HS-GC-FID technique used showed that the identified solvents differ from one sample to another of the same molecule. This shows that manufacturers don't often use the same solvents to produce the same API, which justifies that residual organic solvent tests aren't usually mentioned in the specific monographs.

Acknowledgement

The authors are thankful to WanyLab Laboratory, for providing the facilities and instruments to carry out this work.

Funding Sources

Therapeutic Chemistry Laboratory, Pharmacy Department, Faculty of Medecine, University of Sidi Bel-Abbes, Algeria.

Conflict Of Interest

The authors declare that there is no conflict of interest. The authors alone are responsible for content and writing of the paper.

REFERENCES


- L. Heewon, "Pharmaceutical Industry Practices on Genotoxic Impurities", United States: CRC Press, p. 23 (2014).
- 2. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH),"Impurities in new drug substances (Q3A)", 1-15 (2017).
- United States Pharmacopeial Convention, "Organic impurities in drug substances and drug products". In: United States Pharmacopeia and National Formulary, (USP-NF). 38th-33th ed. USA, Deutscher Apotheker Verlag, p. 1270-12765 (2015).

- European Directorate for Medicines 4. Ouality and Health Care, "Residual solvents: General principles and classification", In: European Pharmacopoeia, 8^{th} ed. France, EDOM, 634-638 (2015).
- 5. P. Edouard, "Control of impurities in substances for pharmaceutical use according to the European Pharmacopoeia: evolution of knowledge and analytical methods of control", [Thesis]. Limoges. Limoges University, 45p (2011).
- PCFL, Gomes,ED. D'Andrea, CB. Mendes, Siqueira MEPB, "Determination of benzene, toluene and N-hexane in urine and blood by headspace solid-phase microextraction/gas-chromatography for the biomonitoring of occupational exposure", *J Braz Chem Soc*, 21(1),119-126 (2010).
- 7. Harmonized Tripartite Guideline on Maintenance of Note for Guidance on Impurities: Residual Solvents (Q3C (M)) International conference on harmonization of technical requirements for registrations of pharmaceuticals for human use (ICH), Geneva, (2016).
- 8. United States Pharmacopoeia, USP38/NF33, "Residual solvents", the United States Pharmacopeial Convention, Rockville, MD, USA, (2020).
- European Directorate for the Quality of Medicines & HealthCare, "Identification and control of residual solvents (2.4.24)". In: European Pharmacopoeia, 8th ed, Strasbourg, France, (2019).
- 10. C. Sojitra, A. Tehare, C. Dholakia, P. Sudhakar, S. Agarwal and K. Κ. Singh, "Development and validation of residual solvent determination by headspace chromatography gas in Imatinib Mesylate API", SN Applied Sciences. 1,233, (2019). https://doi.org/10.1007/s42452-019-0233-Х
- European Directorate for Medicines Quality and Health Care, "Metronidazole Monograph", *In: European Pharmacopoeia*, 8th ed, France, EDQM, p. 2768-2769 (2015).
- 12. Ministry of Health, Population and Hospital Reform, Pharmaceutical Products

Directorate, Registration underdirection, "Algerian medicines nomenclature", 31th December 2013. Available at:<u>http://www.sante.gov.dz/images/pharma</u> <u>cy/national</u> nomenclatureofpharmaceuticalproduct

Accessed January 8, 2014.

- European Directorate for Medicines Quality and Health Care, "Identification and control of residual solvents", In: European Pharmacopoeia. 8th ed. France, EDQM, p. 134-38 (2015).
- United States Pharmacopeial Convention, "Identification, control and quantification of residual solvents: Water soluble items, Procedures A, B and C", *In: United States Pharmacopeia and National Formulary* (USP-NF),38th-33th ed, USA, Deutscher Apotheker Verlag, p. 171-176 (2017).
- European Directorate for Medicines Quality and Health Care, "Limits of residual solvents", In: European Pharmacopoeia. 8th ed. France, EDQM, p. 635-36 (2015).
- RESTEK library of online GC chromatograms, "Standard Chromatogram of Class 1_USP Residual Solvent Standard Solution for water-soluble substances", Available on: <u>http://www.restek.fr/images/</u> <u>cgram/gc ph1160.pdf</u> [Accessed 05th June 2017].
- RESTEK library of online GC chromatograms, "Standard Chromatogram of Class 2_USP_Mix A Residual Solvent Standard Solution". Available from: <u>http://www.restek.</u>
 <u>com/images/cgram/gcph1175.</u> pdf. [Accessed 05th June 2017].
- RESTEK library of online GC chromatograms, "Standard Chromatogram of Class 2_USP_ Mix B Residual Solvent Standard Solution". Available from: <u>http://www.restek.com/images/cgram/gcph</u> 00911. pdf. [Accessed 05th June 2017].

تحليل المذيبات المتبقية في مادة ميترونيدازول الخام باستخدام كروماتوجر افيا غاز مساحة الرأس مطمور درويشة ^{٢،۱} - خليل فتح الدين حسام^{٢،٢} - نسيمة حمدي زياني^{٣،٢} مختبر الكيمياء العلاجية والصيدلانية ، قسم الصيدلة ، كلية الطب ، جامعة سيدي بلعباس ، ٢٢٠٠ ، الجزائر تالمختبر المركزي ، مركز المستشفى الجامعي بسيدي بلعباس ، ٢٢٠٠ ، الجزائر مختبر ضبط الجودة ، واني لاب ، ٢٦٠٠ الجزائر العاصمة ، الجزائر مختبر الحكمة ، ٢٠٠٢ الجزائر العاصمة ، الجزائر

في المواد الخام الصيدلانية (PRM، المذيبات المتبقية) (RS) هي شوائب متبقية يجب الـتحكم فيها بسبب سميتها. في هذه الدراسة ، قمنا بالإبلاغ عن نتائج مراقبة الجودة لتحليل شوائب الملذيبات المتبقية باستخدام كروماتوجرافيا غازات الرأس مع كاشف تأين اللهب (HS-GC-FID) لست عينات من المواد الخام من Metronidazole يتم تسويقها في الجزائر. تم تجهيز GC بكاشف التأين باللهب وعمود السيليكا المطلي بطبقة ١,٨ ميكرومتر من المرحلة .G43 الغاز الحامل عبارة عن نيت روجين بسرعة خطية ٣٥ سم/ثانية ونسبة انقسام ١: ٥. درجة حرارة العمود ٤٠ درجة مئوية ثم ترتفع إلى ٢٤ درجة مئوية. درجة حرارة الحقن ١٤٠ درجة مئوية ودرجة حرارة الكاشف مراً إلزامياً بسبب سميتها بحث ٢٩ مذيبًا عضويًا ينتمي إلى الفئتين ١ و ٢ ، والتي تعد السيطرة عليها أمرًا إلزاميًا بسبب سميتها الذاتية المسببة للسرطان ، وتم تحديد خمسة مذيبات فقط في العينات المختلفة وتم تحديد كمية الميثانول في عينة 10 من من 120 من 13 من المؤلية مئوية مي ترتفع إلى تعميه بحث ٢٩ مذيبًا عضويًا ينتمي إلى الفئتين ١ و ٢ ، والتي تعد السيطرة عليها أمرًا إلزاميًا بسبب سميتها الذاتية المسببة للسرطان ، وتم تحديد خمسة مذيبات فقط في العينات المختلفة وتم تحديد كمية الميثانول في عينة 12 مين المي الذاتي تم جمعها تحقق الاختبار باستثناء عينة 10 التي تحديل على فسائس في عينة 12 مين المينانول يقدر بــــ ١٤ جزء في المليون. تظهر هذه الزيادة الطفيفة أن عينة 12 لــم يــتم منتقيتها جيدًا وقد يكون هذا بسبب صعوبة الإزالة الكاملة للمذيبات.