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Abstract

A new distribution with two parameters named a discrete of the
novel alpha power transformed exponential (DNAPTE) distribution is
introduced using the survival of discretizing approach. Some of the
statistical properties are obtained for the new distribution such as
survival, hazard rate, alternative hazard rate functions, moments, and
order statistics. Maximum likelihood method is applied under Type 11
censored samples for estimating the unknown parameters, survival and
hazard rate function of the proposed model. A simulation study is
carried out to illustrate the theoretical results of the maximum
likelihood estimation. Finally, the DNAPTE distribution is adopted for
fitting the number of COVID-19 deaths in China and Europe countries.

Keywords: Discrete novel alpha power transformed exponential
distribution; Order statistics; Type II censored samples; Maximum

likelihood method; A simulation study; COVID-19 data.
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1. Introduction

The discrete probability distributions have great importance in
modeling real count data in many applied sciences such as public
health, medicine, agriculture, epidemiology, and sociology. Several
discrete distributions were introduced for modeling count data.
However, some traditional discrete models such as Poisson, Geometric
distributions have limited applications in reliability, failure times and
count. Some real count data show either under-dispersion or over-
dispersion. This has motivated several statisticians to explore new
discrete models based on classical continuous distributions for
modeling discrete failure times and reliability data. In the last two
decades. Nowadays, the authors introduced discrete models by the
discretization of continuous distribution for example: Krishna and
Pundir (2009) proposed discrete analogues of the Pareto and Burr
distribution, Gomez-Deniz (2010) introduced the discrete generalized
exponential distribution, and Jazi et al. (2010) introduced the discrete
inverse Weibull distribution. However, there is still a clear need to
construct more flexible discrete distributions to serve several applied
areas such as social sciences, economics, and reliability studies to
properly suit different types of count data. Furthermore, Kamari ez al.
(2016) applied Bayesian approach under two types of loss functions:
squared error and absolute error. Also, Para and Jan (2016) used the
ML estimation of the unknown parameters of discrete Burr Type XII
distribution and discrete Lomax distribution. While AL-Babtain ef al.
(2020a, 2020b) introduced the new two discrete models named the
discrete Poisson - Lindley and discrete Lindley distributions and the
natural discrete Lindley distribution, respectively. Al-Metwally et al.
(2020) introduced a new distribution named discrete Marshall Olkin
inverse Topp Leone distribution. Eliwa et al. (2020) proposed a new
flexible discrete family of distributions, named discrete Gompertz-G
family of distributions. In addition, EI-Morshedy et al. (2020a, 2020b)
introduced the discrete Burr-Hatke and exponentiated discrete Lindley
distributions, respectively. Almazah et al. (2021) proposed the
transmuted record type Geometric distribution. Aljohani et al. (2021)
introduced the uniform Poisson—Ailamujia model. Also, EL deep et al.
(2021) proposed a new distribution named discrete Ramos Louzada
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distribution. While Shafgat et al. (2021) proposed a new discrete
Nadaraiah and Haghighi distribution. A new distribution with two
parameters named discrete inverted Kumaraswamy (DIK) distribution
is introduced by El-Helbawy et al. (2022). Also, EL-Morshedy et al.
(2022) proposed a flexible discrete family of distributions named
discrete odd Weibull-G family of distributions. Then, Chesneau ef al.
(2022) proposed a new distribution with one parameter heavy tailed
discrete inverse Burr distribution using the general approach of
discretization of continuous distribution.

The rest of the paper is organized as follows: discrete of a novel
alpha power transformed exponential (DNAPTE) distribution is
introduced, and some statistical properties are given in Section 2.
While, in Section 3, maximum likelihood (ML) estimators are derived
of the unknown parameters. The efficiency of the introduced estimation
is assessed via simulation study and results are presented in Section 4.
Section 5 provides two real applications to COVID -19 data of the
DNAPTE distribution. Conclusion is discussed in Section 6.

2. Discretizing a Continuous Distribution

The general approach of discretizing a continuous variable can be
used to construct a discrete model by introducing a grouping on the
time axis see Roy (2003, 2004). If the crv, X has the sf, S(x) =

P(X = x) and times are grouped into unit intervals so that the drv of
X denoted= [X]; which is the largest integer less than or equal to x,
will have the probability mass function (pmtf).

The probability mass function (pmf) is a mathematical function that
calculates the probability a discrete random variable will be a specific
value. pmf also describe the probability distribution for the full range
of values for a discrete variable. A discrete random variable can take
on a finite or countable infinite number of possible values, such as the
number of heads in a series of coin flips or the number of customers
who visit a store on a given day.
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P(x) = S(x)— S(x+1) ,x=0,1,2,..

(1)

The pmf of the drv, dX can be viewed as discrete concentration of pdf
of X. So, given any continuous distribution it is possible to construct
corresponding discrete distribution using (1).

One of the advantages of applying this approach of discretizing is that
the sf for discrete distributions has the same functional form of the sf
for the continuous distributions; as a result, many reliability
characteristics and properties remain unchanged. Thus, discretization
of a continuous lifetime model according to this approach is an
interesting and simple approach to derive a discrete lifetime model
corresponding to the continuous one.

2.1 Construction of discrete a novel alpha transformed exponential
distribution.

Mashwani et al. (2021) proposed a new flexible family of
distributions, named New Alpha Power Transformed NAPT family of
distributions. A New Alpha Power Transformed Exponential NAPTE
distribution is introduced as a special case of this family. They
obtained some of the statistical properties for the NAPTE distribution.
The model parameters have been estimated by the ML method. The
pdf of A NAPTE distribution is given by

ln(l—e_ﬁx)
gx;ap) = ln(a)ﬁ:;x_l , x>0 , af>0 ()

where are a and f shape parameters and should be positive.
The corresponding cdf and sf are, respectively, given by

G, B)=a™") x>0 , af>0 3)
and
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Sx)=1—a™¢") x>0 , ap>0 4)
Using (1) dX can be viewed as the discrete analogue to the continuous
NAPTE variable X, and is commonly said to follow DNAPTE
distribution with two parameters a and S, denoted by DNAPTE («, )
distribution, where the corresponding pmf of dX can be written as

p(x) = an(1-e7FED) _ pin(1-e7F¥) , x=0,1,2,..

)
and the cdf, sf and hrf are as follows:
F(x) = 1—S(x) + P(x) = a™(1-¢FY) y=0,1,2,.. (6)
Sx)=1—-F(x)+ P(x)=1— a‘“(l—e_ﬁx), x=01,2,.. (7)
and

In(1-e~Bx+1D) In(1-e~B%

h(x) = % - 1_aln(1)_;fﬁ,f) ) x=0,1,2,.;a,8>0 (8)
There are some problems associated with the definition of h(x), three
of the more notable ones are given below:

a. h(x)is not additive for series system.

b. The cumulative hrf, H(x) = ), h(x) # —In S(x).

c. h(x) <1 and it has the interpretation of a probability. [For

more details, see Xie et al. (2002) and Lai (2013) and (2014)].

Therefore, it was necessary to find an alternative definition that is
consistent with its continuous counterpart. Roy and Gupta (1992)
provide an excellent alternative definition of a discrete hrf denoted

by hy(x):

hi(x) =In [ﬂ] — In L 1 gn(1-e7P%)

s(x+1) _aln(l—e_ﬂ(x"'l))

,Xx=0,12,...;a,>0(9)

There is a relationship between h, (x) and h(x), given by:
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h(x) =1— e M®

(10)

Plots of pmf and hrf of DNAPTE distribution are presented,
respectively, in Figures 1 to 2, for some selected values of the
parameters.
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Figure 1: The plots of the probability mass function
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Figure 2: The plots of the hazard rate function

Figure 1 shows that the pmf of DNAPTE distribution can be
decreasing and increasing according to the selected values of the
parameters. While Figure 2 the hrf of DNAPTE (a, 8 ) distribution is
increasing, decreasing and bathtub so the DNAPTE (a, 8 ) distribution
provides a good fit to several data in literature.

2.2 Some properties of discrete a novel alpha Power transformed
exponential distribution

This section is devoted to obtain some important statistical properties
of DNAPTE (a, 8 ) distribution, such as the mode, r** moments and
order statistics.
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2.2.1 The moments of discrete a novel alpha power transformed exponential
Distribution
In this subsection, non-central, central and standard
moments are obtained.
a. The non-central moments of the discrete a novel alpha power
transformed exponential distribution
The non-central moments of DNAPTE distribution can be obtained
using (5) as follows:

He = E(x") = Xilox" p(x)

x=0

= Y22 @) _ g™ r = 1,234
In particular, the mean (¢) of DNAPTE distribution is given by
po=p=Y2ox [aln(1—e—ﬂ(x+1)) _ aln(l—e—ﬁx)]. 12)

b. The central moments of the discrete a novel alpha power
transformed exponential distribution

The central moments can be derived using the relation between the
central and non-central moments as given below

= Yo (f) WY W o1z (13)
thus, the variance (var) of DNAPTE distribution is

_e—Bx+1)
M2 = Yo X [a‘“(l e el _

aln(l—e-ﬁx)] _{ © x [aln(l—e-ﬁ("“)) — a‘"(l—e"”‘)]}z . (14)
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c. The standard moments of the discrete a novel alpha power
transformed exponential distribution
The rt" standard moments can be obtained as follows:
a, = E(%)r. (15)

The skewness and kurtosis of the DNAPTE distribution are given by,
respectively,

as = % and a, = Z—‘Zz’, Where W, is given by (18) andr=1, 2,

Table 1: The mean, standard deviation (SD), skewness (SK),
Kurtosis (KT) and coefficient of variation (CV) of DNAPTE

distribution
a | B i SD SK KT CV
0.25 0.2125 3.7876 9.15294 3.16235 | 17.8241
0.5 0.15 4.48424 12.9667 4.48 29.8949
025 ] 0.75 0.0875 5.56234 22.2286 7.68 63.5684
1.25 0.3704 2.67634 5.25106 1.814 7.2255
1.5 0.19711 3.93794 9.86737 3.409 19.978
0.25 0.3000 3.09795 6.4833 2.24 10.3265
0.5 0.425 2.40133 4.57647 1.58118 | 5.6501
0.5 0.75 0.3469 2.8073 5.60647 1.93704 | 8.09211
1.25 0.43843 2.33912 4.4363 1.53275 | 5.33524
1.5 0.44829 2.29464 4.3387 1.49904 | 5.1187
0.25 0.6375 1.5904 3.05098 1.05412 | 2.49475
0.5 0.45 2.2870 4.32222 1.49333 | 5.08226
0.75 | 0.75 0.2625 3.36501 7.40952 2.56 12.8191
1.25 0.6576 1.52819 2.95753 1.02183 | 2.32374
1.5 0.5209 1.99439 3.73391 1.29007 | 3.82873
0.25 1.0625 0.56875 1.83059 0.63247 | 0.53529
0.5 0.75 1.26536 2.5933 0.896 1.687145
1.25] 0.75 0.4375 2.34336 4.44571 1.536 5.35624
1.25 0.86817 0.97274 2.24035 0.77404 | 1.12045
1.5 2.355 0.6081 1.86696 0.64504 | 0.583696
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2.2.2 Entropy

The average quantity of "information,

nn

surprise," or "uncertainty"
present in a random variable's potential outcomes is measured by a
random variable's entropy in accordance with information theory.
Renyi entropy (RE), (see Renyi (1961)), is a fundamental entropy. It is
a key sign of complexity and ambiguity in many fields, such as
statistical inference, physics, econometrics, and pattern recognition in
computer science. You could enter (p > 0,p # 1, as the RE
specification for the DNAPTE distribution.

RE(p) = 1= 10g 5201 (1),

= 1':;/) log 2;‘;0 {aln(1—e—ﬁ(x+1)) . a,ln(l—e‘f”x)}_

Shannon entropy (SE), another well-known entropy, can be obtained
as a special case of RE as p = 1, where SE = — E[log p(x)].

2.2.3 The order statistic of the discrete a novel alpha power
transformed exponential distribution

Let F(x; a, B); the cdf of the i*" order statistic for a random sample
X1, Xy, ..., Xy, , from the DNAPTE (a, §) distribution, is given by

Fi(x; a,B) = (7)) [F(x; B, @)l [1-F(x; B, )], (16)
Using the binomial expansion for [1— F;(x;a,B)]* " and
substituting (6) in (21), where

Fix; a,8) = Siy(") [Fx a1 55 (") (-1 [F(x a.p)Y =

¢=i(:~l) ;1=—6~ (n;r) (_1)j [aln(l—e—ﬁ(xﬂ))]rﬂ'- (17)
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Special cases

Case I: If i=1 in (22) one can obtain the distribution function of
the first order statistic, as given below

Fix; a,B)=1—-[1—-F(x; a,B)|"=1— [1 _ (aln(l—e—li'(xﬂ)))]n.

(18)
Case II: If i = n in (22) the distribution function of the largest
order statistic, as follows:
B+
Fu(x; a,B) = [F(x; )] = [a(t-e )| (19)

which is the cdf of DNAPTE (a, f8), and the sf of DNAPTE (n, [ ) is

S(x) = 1— (a]n(l_e—ﬁ(xﬂ)))n. 20)

Suppose that X1, X2, X3, ..., X, 1s a random sample from the DNAPTE
distribution with two parameters o and . Let Xi.n, X2:n, X3:, ... , Xnm

denote the corresponding order statistics. Then, the pmf of Xi.n, is
defined by:

_ . — n! FO  ic1rq _ 2 \n-i
PXin =x) = (i—1)!(n—i)!fF(x—1)v (1-v)"'dv. (21)
Using the binomial expansion for(1 — v)™~¢, then the pmf in (26).
. f— = n—l Tl—l n—i _ ] F(x) i+v-—-1 —
PXip = x) (i-1D!(n—0)! J=0( j )( ) fF(x—l)v dv

oy 2= () G ()

x [ama-e e -t ) )
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The pmf of the smallest order statistic is obtained by substituting
i=1 in (27) as follows:

P(Kyn =) =033 (M) (1) () x [ )™

_ j 1+j
[ aln(l_e—ﬁx)]”’ ] (23)

And, the pmf of largest order statistic is obtained by substituting
i=n in (27) as follows:

P(X,., =x) = [aln(l—e‘ﬁ(“l))]" _ [aln(l—e_ﬁx)]n_ 24)

Also, (22) can be used to obtain the pmf of the DNAPTE («, )
distribution, (see Arnold et al. (2008)).

3. Estimation of the Parameters of Discrete a Novel Alpha Power
Transformed Exponential Distribution

In this section, methods of moments and ML are used to derive the
estimators of the parameters for the DNAPTE distribution.

3.1 Method of moments

In this subsection, method of moments is applied to estimate the
unknown parameters of the DNAPTE distribution. The method of
moments is based on equating the population moments; which are
functions of the parameters to the corresponding sample moments and
subsequently solving the two equations simultaneously. The first the
second population and sample moments, respectively, are

”(a' B) =pu= Z;ozox [aln(l—e—ﬂ(xﬂ)) _ aln(l—e—ﬁx)] ’ (25)

p2 (e, B) =y = Xilox° [al"(l_e_ﬁ(xﬂ)) — al“(l_e_ﬁx)] , (26)
_ 1 _1 2

M1 - ; i=1xi and Mz — ; i=1x . (27)

Then equating u(@, B) = M, and p, (& B) = M, (28)

where @ and f are the estimators of a and S

(PRINT) :ISSN 1110-4716 211 (ONLINE): ISSN 2682-4825



Yovy g AUl and) Jagail) g 5 jladl) dsalell dlaal)

Since the moments of DNAPTE distribution cannot be obtained in
closed forms and (33) cannot be solved via ordinary techniques,
therefore the estimates can be obtained numerically.

3.2 Method of maximum likelihood

In this section, method of ML is used to derive the estimators of the
parameters for the DNAPTE distribution.

The method of ML is used to estimate the vector of two
parameters,
@ = (a, ) sf, hrf, and ahrf of the DNAPTE (a, B) distribution. Based

on Type II censored samples, also confidence interval of the parameters
(a, P) sf, hrf, and ahrf are derived. Suppose that Xi, Xo, ..., Xris a Type
II censored sample of size r obtained from a life test on n items whose
lifetimes have a DNAPTE (a, B) distribution. Then the likelihood
function is

L(@,x) o< (Tl PSS G )], 29)
where p(x) and S(x) are given, respectively, by (5) and (7). The
X ‘s are ordered times fori = 1,2,... r

— —B(xi+1)) o —Bx;
L{g;x)xi]li- a‘“(l € — gn(1-e )] o 1 _
(g52) < (1 bl
aln(1—e-ﬁxr)] . (30)
The natural logarithm of the likelihood function is given by
£ =InL ((p;z) o« In[]-, [aln(l—e—ﬁ(xiﬂ)) _ aln(l—e_ﬁxi)] +

(n—7)In [1 — aln(l‘e_ﬁxr)] (31)

£ =37y tn[@(7 ) -] -y in[1 - @mO-](32)
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Considering the two parameters, @ and f are unknown and
differentiating the log likelihood function in (37), with respect to a
and (3, one obtains

+1)

)—1]] — [ln(l _ e—ﬁxi) a[ln(1—e—l*’xi)_1]]

aln(l—e_ﬁ(xi+1)) _ aln(l—e_”’xi)

at u [ln(l — e—ﬂ(xi+1)) a[ln(l—e—l‘(xi
a2,
i=1

ln(l_e_,;xr)a[ln(1—e-ﬁxr)—1]

-(n—r) [1_aln(1—e-ﬁxr)] 33)
and
P ( in(1me-PltD) [ + 1)eFGD e [ xe-BR
ot _ {al (1-eBCe+) % ] lna}—{al (1-e~Fxi) 1xiee—ﬁxi] 1na}
op i=1 aln(1—e‘ﬁ("i+1)) _ aln(l—e—ﬂxi)
ln(l—e_ﬁxr) =B
—(n-1)= (xie™Fr)Ina a4

[1-e~Bxr]|1-a

ln(l—e—ﬁxr)]'

Then the ML estimators of the parameters, denoted by & and /3 are
derived by equating the two nonlinear likelihood (38) and (39) to
zeros and solving numerically.

Depending on the invariance property, the ML estimators of S(x), h(x)
and h;(x) can be obtained by replacing a and  with their
corresponding ML estimators & and £3, respectively, in (7), (8) and (9)
as given below

Su(x)=1-— an(1-e) x= 0,12, ..
(3%)
. aln(l—e_i;(x"'l))_‘,)zln(l—e_l?")
hML(x) = ) ,\ln(l—e_ﬁx) , X = 0, 1, 2,
4

(36)
And
R B 1_aln(l—e_ﬁ’c) B
hy,,, (x) =In (e PG| x= 01.2,.. (37)
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When the sample size is large and the regularity conditions are
satisfied, see (Lehmann and Casella (1998)), the asymptotic
distribution of the ML estimators is

¢ ~ Bivariate Normal (go,l “lx (go)), where ¢ = (a, ), ¢ =

(@ B),and I ~1(¢).

The asymptotic variance-covariance matrix of the ML estimators o
and P ,which is the inverse of the observed Fisher information matrix.
The asymptotic observed Fisher information matrix can be obtained as
follows:

a%¢ a%¢

I ( ) ~ _(W) _(0a61)

LD -G,

da 02 222/ dap)
The asymptotic 100(1 — a) confidence interval for a, A, Smr(X), hmr (X)
and hy,,, (x) are given, respectively by:
L,=®w—Zec,; and U, =& — Zz0,,
2 2
(39

where L, and U,, are the lower and upper bound & is &, A, S(x), A(x)
or h;(x), Z is the 100(1 — %)% the standard normal percentile, (1 —
a)% is the confidence coefficient, oy is the standard deviation and
length=U, — L,,.
4. Numerical Results
This section aims to investigate the precision of the theoretical results

based on simulated and real data, by evaluating relative absolute
biases (RABs) and relative errors (REs).

(38)

4.1 Simulation study

In this subsection, a simulation study is presented to illustrate the
application of the various theoretical results developed in the previous
section on the basis of generated. Data from DNAPTE (a, B)
distribution, for different sample sizes (n=30, 50 and 100) and using
number of replications N=1000. The computations are performed
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using R package. The numerical procedures are performed according
to the following algorithm.

Step 1: a random sampleX;, X5, ..., X,, of sizes (n=30, 50,100) these

random samples are generated from DNAPTE distribution using the
Inu

following transformation: x; = —%ln 1-— em] —-1,i=1.2,..,n

and u; are random sample from uniform (0,1) and then taking the
ceiling.

Step 2: two different set values of the parameters are selected as,
Set 1(ed = 3,8 =0.5) and Set2 @« = 0.5, B =5.

Step 3: For each model parameters and for each sample size, the ML
estimates are computed.

Step 4: Steps from 1 to 3 are repeated 1000 times for each
sample size and for selected sets of the parameters. Then the averages,
RABs, REs and variances of the estimates of the unknown parameters
are computed.

The results of the simulation study are given in Tables 2 and 3. The
RABs and REs of ML estimates of the parameters, st and hrf are
computed at to=0.4, as follows:

Zﬁ\lzl(estimatei)

— N

1) Average =

2) RAB (estimate) = 2astestimate)l
true value
i . ER(esti
3) Relative error (estimate) = Zeotmere)
tICue value
1 i i i—q(estimate;—t l
4) Estimated risk (estimate) = Li= (estima 1evl ru_va ue)'

Table 2 shows the averages, RABs, REs, variances for the parameters, sf
and hrf estimates, also 95% confidence intervals where the initial values

for the parameters are 0=3, f=0.5 under three levels of % x 100

percentage of uncensored observations. Type II censoring 80% and 100%.
Table 3 displays the same computational results, but for different initial
values of the parameters a=0.5, B=5 , at the same mission time t, from the
DNAPTE distribution for different sample sizes where (n=30, 50 and 100)
and also level of Type II censoring 80% and 100% and number of
replications, N = 1000.
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Table 2: RABs, REs of ML estimates, 95% confidence intervals of the
parameters,
survival and hazard rate functions from DNAPTE distribution for
different sample sizes n,
censoring level r and the replications N= 1000, « = 3,8 = 0.5, t=0.9

n | r | parameters | estimates | RABs | REs LL UL | Length
a 3.2673 | 0.0891 | 0.0727 | 2.7281 | 3.8067 | 1.0786

24 B 0.5409 |0.0818 | 0.0029 | 0.4335 ] 0.6482 | 0.2147
R(ty) 0.6721 |0.0398 | 0.0101 | 0.4752]0.1934 | 0.4028

30 h(tg) 0.3817 |0.0066 | 0.0104 | 0.6003 | 0.8781 | 0.1676
a 3.1859 10.0619 | 0.0358 | 2.8075 | 3.5641 | 0.7565

30 B 0.5283 | 0.0565 | 0.0021 | 0.4386 [ 0.6179 | 0.1793
R(ty) 0.6769 |0.0052 | 0.0101 | 0.4744 1 0.8771 | 0.4026

h(ty) 0.3608 |0.0271 | 0.0102 | 0.1898 | 0.5943 | 0.4045

a 3.1911 |0.0636 | 0.0377 | 2.8027 | 3.5793 | 0.7766

40 B 0.5309 0.0619 | 0.0022 | 0.4378 | 0.6241 | 0.1863
R(ty) 0.7468 |0.0038 | 0.0101 | 0.4734 ] 0.8759 | 0.4025

50 h(ty) 0.3349 10.0310 | 0.0103 | 0.1909 | 0.5961 | 0.0625
a 3.1523 ] 0.0509 | 0.0245 | 2.8395 | 3.4659 | 0.6264

50 B 0.5197 10.0394 | 0.0016 | 0.4397]0.5997 | 0.1599
R(ty) 0.7916 10.0074 | 0.0101 | 0.4757 ] 0.8786 | 0.4029

h(tg) 0.2474 10.0166 | 0.0102 | 0.4064 | 0.5896 | 0.4032

a 3.0482 | 0.1461 | 0.0031 | 2.9319 | 3.1557 | 0.2237

20 B 0.5058 |0.01150.0012 | 0.4352 ] 0.5763 | 0.1411
R(ty) 0.8349 10.0023 | 0.0101 | 0.4724 | 0.8749 | 0.4025

100 h(ty) 0.1938 |0.0048 | 0.0101 | 0.1823 | 0.5848 | 0.4024
a 3.0196 |0.0065 | 0.0016 | 2.9398 | 3.0995 | 0.1598

100 B 0.5035 10.0069 | 0.0012 | 0.4336 | 0.5734 | 0.1398
R(ty) 0.8869 |0.0027 | 0.0101 | 0.4711 ] 0.8735 | 0.4024

h(ty) 0.0984 10.0036|0.1012 | 0.1818 | 0.5842 | 0.4025
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Table 3: RABs, REs of ML estimates, 95% confidence intervals of the
parameters,
survival and hazard rate functions from DNAPTE distribution for
different sample sizes n,
censoring level r and the replications N= 1000, « = 0.5, = 5, t=0.9

n | r |parameters estimates| RABs | Res LL UL | Length
a 0.4188 |0.1624| 0.0078 | 0.2421 | 0.5955| 0.3534

24 B 5.4938 10.0988| 0.2450 | 4.5037 |6.4839 | 1.9801
R(ty) 0.0078 |0.1971] 0.0101 0 0.1949| 0.1949

30 h(ty) 0.9933 10.0026| 0.0011 | 0.7946 |1.1972 | 0.4025
a 0.4392 |0.1268| 0.0049 | 0.2989 10.5793 | 0.8032

30 B 5.2683 |0.0535]0.0726 | 4.7201 |5.8064 | 1.0782
R(ty) 0.0898 |0.0681|0.0103 | 0.1939 10.2085 | 0.4024

h(ty) 0.8644 |0.0015]0.0101 | 1.1961 |0.8937 | 0.4024

a 0.4392 10.1217]0.0049 | 0.2989 [0.5732 | 0.2803

40 B 5.2673 |0.0535] 0.0766 | 4.7282 |5.8064 | 1.0782
R(ty) 0.1349 |0.0681|0.0101 | 0.0939 10.1939| 0.1000

50 h(ty) 0.7264 |0.0011|0.0113 | 0.9369 |1.2984| 0.3616
a 0.4795 10.0411|0.0016 | 0.3987 [0.5602 | 0.1615

50 B 5.1624 10.0325| 0.027 | 4.8302 |5.4947 | 0.6645
R(ty) 0.2948 10.0848 0.0101 0 0.1941] 0.1941

h(ty) 0.8394 10.0011]0.1012.]0.9581 [1.1684 | 0.2103

a 0.4916 |0.0168|0.0013 | 0.4201 |0.5632| 0.1431

20 B 5.1025 |0.0205| 0.0177 | 4.8861 |5.3189 | 0.4328
R(ty) 0.4098 |0.0065|0.0101 | 0.2085 |0.4983 | 0.2899

100 h(ty) 0.8895 10.0006| 0.0102 | 0.7927 10.9219] 0.1291
a 0.4968 |0.0063|0.0012 | 0.4269 |0.5667 | 0.3709

100 B 5.0859 10.0172] 0.0086 | 4.9005 |5.2714| 0.3709
5.R(tp) 0.6981 [0.0663| 0.0101 | 0.2085 [0.7294 | 0.5209

h(ty) 0.9235 10.0005]0.0101 | 0.7927 10.9586 | 0.1659
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5. Applications of COVID-19 data

The DNAPTE distribution's flexibility is demonstrated using two real-
world COVID-19 data sets. The first set of data is the number of
COVID-19 daily deaths in China from January 23 to March.
(https://www.worldometers.info/coronavirus/country/china/).

Table 4: The observations are listed below in ascending order.

33455 6 6 7 7 7 8 8 9 1 1 11

0 1 1 3

3 r 111 2 2 2 2 2 2 2 2 3 3 33

4 56 7 2 2 4 6 6 7 8 9 0 1 15

33 444 4 4 4 5 5 6 6 7 7 7 8 8

&8 823 4 5 6 7 2 7 4 5 1 3 3 69
99991 1 1 1 1 1 1 1 1 1 1
77 7 8 0 0 0 1 1 2 3 4 4 4 5
5§89 4 8 1 6 2 3 5 0

The second set of data shows the number of COVID-19 daily deaths
in Europe from March 1 to March 31 (https://covid19.who.int/). The
observations are as follows:
Table 5: The observations are listed below in ascending order
6 18 28 29 44 47 55 116 118 129 150
184 219 236 237 336 421 434 612 648 706 838
1129 1393 1540 1941 2175 2278 2667 2803 2824

Some descriptive measures of both data sets are reported in Table 6.

Table 6: The descriptive measures of the two data sets in China and
Europe

Data | Min | Mean | Median Var Skewness | kurtosis | DI Q3 | Max
I 3 149.74 33 1924.8 0.8365 | 2.4502 |38.696| 83 | 150
II 6 818 336 | 868739.6| 1.0167 | 2.6308 | 1062.1 | 1407 | 2824
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Figure 3. The TTT plot of the DNAPTE model for number of deaths
in China and Europe
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Figure 4: The Histogram, pdf, empirical cdf, empirical sf and the P-P
plots of the DNAPTE model for number of deaths in China.
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Figure 5: The histogram, pdf, empirical cdf, empirical sf and the P-P
plots of the DNAPTE model for number of deaths in Europe

6. Conclusion

The DNAPTE distribution is proposed in this article as a new
discrete probability distribution. It can be used as an alternative to
some well-known discrete distributions. The discrete novel alpha
power transformed exponential distribution's mathematical properties
are presented. The model parameters are estimated using the ML
estimation method with Type II censoring. Comprehensive simulation
results are obtained to validate the theoretical results. The DNAPTE
distribution's utility is demonstrated empirically through two
applications to the number of deaths caused by COVID-19 in China
and Europe.
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