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Abstract— The Partial Differential Equations (PDEs) are very
important in dynamics, aerodynamics, elasticity, heat transfer, waves,
electromagnetic theory, transmission lines, quantum mechanics,
weather forecasting, prediction of disasters, how universe
behave ....... Etc., second order linear PDEs can be classified
according to the characteristic equation into 3 types coinciding 3
basic conic sections hyperbolic, parabolic and elliptic; Elliptic
equations have none family of (real) characteristic curves. All the
three types of equations can be reduced to its first canonical form
finding the general solution or the second canonical form similar to
3 basic PDE models; Elliptic equations reduce to a form coinciding
with the Laplace’s equations Thus, Laplace’s equations serve as
basic canonical models for all Elliptical second order linear PDEs
the reduced canonical form can be modeled by boundary condition
with COMSOL Multiphysics and Mathematica elliptical PDEs serve
as basic uniform steady state solution for analysis of both parabolic
and hyperbolic PDES.

Keywords-- elliptical PDEs — canonical form — constant
coefficient PDEs — variable coefficients PDEs — LaPlace equation.

1. Introduction

A PDE is an equation that contains one or more partial
derivatives of an unknown function that depends on at least two
variables. usually, one of these deals with time t and the
remaining with space. PDEs are very important in dynamics,
elasticity, heat transfer, electromagnetic theory, and quantum
mechanics.

The theory of partial differential equations of the second order
is more complicated than the equations of the first order, and it
is much more typical of the subject as a whole. Within the
context, considerably better results can be achieved for
equations of the second order in two independent variables than
for equations in space of higher dimensions. Linear equations
are the easiest to handle. In general, a second order linear partial
differential equation is of the form

AQGY)Uyx + B, YUy + C(x, YUy, + D(x, y)uy, +
E(x,y)uy + F(x,y)u =G(x,y) (1)

where A, B, C, D, E, F and G are in general functions of x and
y but they may be constants. The subscripts are defined as

: PR u
partial derivatives where u,, = P

2. Canonical form

The classification of partial differential equations is suggested
by the classification of the quadratic equation of conic sections
in analytic geometry.
Ax?* 4+ Bxy + Cy* +Dx+Ey+f =0

represents hyperbola, parabola, or ellipse accordingly as
B%-4AC is positive, zero, or negative.
Classifications of PDE are:

(i) Hyperbolic if BZ-4AC >0

(ii) Parabolic if B2—4AC =0

(iiiy  Elliptic if B?>~4AC<0

The classification of second-order equations is based upon the
possibility of reducing equation by coordinate transformation to
canonical or standard form at a point. An equation is said to be
hyperbolic, parabolic, or elliptic at a point (x;, yo) accordingly
as;

B?(x0,Y0)~4A(X0,¥0)C (X0, ¥0)  (2)

is positive, zero, or negative. If this is true at all points, then the
equation is said to be hyperbolic, parabolic, or elliptic. In the
case of two independent variables, a transformation can always
be found to reduce the given equation to canonical form in a
given domain. However, in the case of several independent
variables, it is not, in general, possible to find such a
transformation

To transform equation (1) to a canonical form we make a
change of independent variables. Let the new variables be;
e=e(xy)n=n(Ky)

Assuming that € and n are twice continuously differentiable
and that the Jacobian;

. & &
Nx Ny
is nonzero in the region under consideration, then x and y can
be determined uniquely. Let x and y be twice continuously
differentiable functions of € and n Then we have,

= Jue a—ua—n—us +u

X T 9gox  onox | EX nllx
u = Juoe a—ua—n—ue +u
J’_asay anay_ &7y 'y
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__Ouy de | Suy,bn _ 2
Uxx = “9e ox Wa = Uge&y” + Zuensxnx +

2
UpnMx T UgEpx + UpNxx
0uy de | Ouy dn

— y Yy — 2
Uyy = -2 3y " on oy Uge€y” + 2UgpEyn,, +

Utly” + UsEyy + UnTlyy

__OQuy 0 | Ouxdn __
uxy = E@ W@ = uggsxey + unnnxny +
UgExy + UyNxy + Uy (exny + eynx)
substituting in (1)
A" (X, Y Uyx + B* (X, YUy + CF(x, YUy, +
D*(x,y)ux + E*(x,)uy + F*(x, Y)u =G (x,y)  (3)
Where;
A* = Ag,® + Beyey + cgy?
B* = 2Agn, + B(exr]y + eyr]x) + 2Ceym,y,
C* = An,® + By + Cny)2
D* = Agyy + Beyy + Ceyy, + Dey + Eg,,
E* = Anxx + By + C1yy, + Dy + E,,
F*=F |, G"=G
The resulting equation (3) is in the same form as the original
equation (1) under the general transformation. The nature of the
equation remains constant if the Jacobian does not vanish.
B*? —4A*C* = J2(B2 —4AC) and J? #0, We shall
assume that the equation under consideration is of the single
type in a given domain. The classification of equation (1)
depends on the coefficients
A (X, ¥),B(x,Y), and C (x, y) at a given point
(X, ¥) so equation (1) rewritten as;
A(X, Y)ugy + B(X, y)ugy + Cx Y)uyy =
H(x,y,u, Uy, Uy) (4)
Where; A, B, C#£0
And equation (3) rewritten as;
A" (X, Y)uge + B (X, Y)ugy + C* (X, y)up, =
H(s, n,U, Uy, un)
Where A*, C* =0
Agy® + Begey + cey® = 0
An? + By, + Cny® =0
Since the 2 equations from the same type, we can rewrite them;
Agy® + Beygey +cg,? = 0
where € stands for the 2 functions €, n
Dividing by £,2  A(2)2+B=+C =0

gy gy

Do (D) gDy,

dx gy dx
d B+VB2-4AC
therefore, two roots are d—z ==

These equations, which are known as the characteristic
equations, are ordinary differential equations for families of
curves in the by-plane along which

€ = constant and 1 = constant. The integrals of equation are
called the characteristic curves. Since the equations are first
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order ordinary differential equations, the solutions may be
written as;

D1(x,y)=c1 P2(X,y)=C2
Hence the transformations
e=01(x,y), =02 (x,Y)
will transform equation (4) to a canonical form.

We show that the characteristic of any elliptical PDE can be
transformed as;

*B2 — 4AC < 0 so, we have no real characteristic but it has
complex solution which is analytic along some neighborhood
domain can be reduced into first canonical form

Ugy = H(s,n,u, ug,un) where € = a + if8

1 = a — if3 are two conjugate functions where;

1 1
a=2(e+m), f=s(—n)
au 9B

with c; and c; as constants.

_ Ouda

= ——=u,0, +u
x aaax+asax ol + UgPx
_ Ouda  O0udp _
U, = 303y 0[30y_uaay+u68y
_ OuxOa | duy df _ 2 2
Uyx = o 9x ap ax Ugq Oy ™ + ZuocBaxBx + uBBBx +
U Ay + uBBxx
duy da , Ouy 9
— iy o yon _ 2 2
Uyy =70 3y + on 3y UagOy” + 2Ugyn 0y By, + uggBy,” +
uaayy:ugﬁyya ap
_ Ouy 0a ux 0 _
Uy = - 3y + B 3y Uqa Oy &y + UppByBy + UgOyy +

ugPyry + uuB(“xBy + ayBx)

substituting in (1)

A (X, YUy + B (0, Yty + C7 (X, ¥)uyy + D7 (x, y)uy +
E*(x,y)uy + F'(x,p)u =G"(x,y)  (3)

Where;

A" = Aa,® + Bayay + cay?

B* = 240, B, + B(a, By + a,By) + 2Ca, By

C* = AB,* + BB.B, + CB,°

D* = Adyy, + Boyy, + Cayy, + Doy + Eq,,

E* = AByyx + BByy + CByy + DB + EBy,

F*=F |, G =

The resulting equation (3) is in the same form as the original
equation (1) under the general transformation. The nature of the
equation remains constant if the Jacobian does not vanish.

B** —4A*C* = J>(B> —4AC) and  J2=#0, We shall
assume that the equation under consideration is of the single
type in a given domain. The classification of equation (1)
depends on the coefficients

A (X, y), B (x,y), and C (x, y) at a given point

(X, y) so equation (1) rewritten as;

A(X: Y)uxx + B(X: Y)uxy + C(X' Y)uyy = H(X, VU, Uy, uy)

(4)

Where; A, B, C#0

And equation (3) rewritten as;

A" (X, Y)Ugq + B (X, y)ugp + C* (X, y)ugg = H(e, n,u, ua,uB)
where B* (X, y)ug,, = 0

Uy #0 so B"=0 A" =C

B* = 2Agm, + B(exr]y + eynx) +2Ceym, =0

which is transformed into second canonical form

Military Technical College, Cairo, Egypt, Sep. 5™ — Sep. 8", 2022.

2



Ugq + Ugp = H(a, B, U, Ug, Up)
similar to LaPlace equation to be modeled.

u= v;—;(ln(x + iy) + In(x — iy))

from general solution shown in fig. (1)

3. Elliptical equations

3.1. Fundamental Laplace equation
U+ Uy =0 A=1 B=0 C=1
B2 —4AC=-4<0

AV —BA+c=0 A*+1=0

d . d .
A=+i y =i 2—_
dx

fdy fldx iy=-x+c

x+iy=cl lete=x+iy

fdyzf—idx iy=x+c

x—iy=c2 letn=x-—1y

Exx = Exy =&y, =0 &, =1 &g =1
nxx=nyy=7’xy=0 Ne=1 n)’:_i

Uyx = uesgxz + Zusngxnx + urmnxz T UExx + UpNyyx =
—Uge + 2Ugy — Upy

Uyy = UgeEy” + 2Ugp 1y + Uyt + Ul + Uy, =
Uge + ZuS,, + Uy,

Uy + Uyy = Uy,

so the canonical form is dug, =0

=g ,u=f(e)+g9m

u=fx+iy) +gx—iy) = f(2) + 9(z)
U= Ugeyy T 1W0(y)

General method for particular solution
U = Uryy) t V() u,v should be analytic and harmonic
function u, = v, , u, = —v,

where u , v are Real function of Real variables then the Real
and Imaginary part of u each represents a solution for Laplace
P.D.E or any combination of them
As Laplace equation is symmetric so the solution should be
radial so we can set u = v(r)

X
r=4x?+y?% , Uy = Uply =~ Uy
T

2

x
Uyx = T+r_2vrr _r_gvr
- _7
Uy, =1, = rv,
2 2
Ur Y Yy
uyy Uy

=4+ —p.. ——
r o r2 ™ 3
Uy + Uyy = ~Ur + v,

By this method the P.D.E reduced into ode where;
1 . . .
“Ut Uy = 0 solving for v by integration

1
v=cln (;) + ¢* which is the fundmental sol.
where ¢ =~ , ¢ =0
s

u=v= _—1ln(x2 +y2)
2m
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Fig. 1.a. complex 3D plot for u, x and y.
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Fig. 1.c. complex contour plot for x and y.
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Fig. 1.d. complex modulus plot for x and y.




3.2. Variable coefficient equation
Uyy + X%y, = 0

B2 —4AC = —4x2 <0 x#0
A2 —Bl+c=0

e=2y—jx? , n=2y+jx?
Uyy = —4x%Ug, + BUyy — 4x°u,,
X%y, = 4x% U, + BUyy, + 4xPu,,
by adding

16Uy =0, uy =0 ,u, = g(e)

u=f(+gm

u=fQy—jx*)+gQy+jx?)

Apply second canonical form
a=2(e+n)=2y,=5@-n=—x

Uyy = 4x%Ugp — 2up , X°Uyy, = 4X% Uy,

by adding and simplify we get

Ugq + Upp = %uﬁ which is similar to la place equation to be
modeled

3.3. Constant coefficient equation

Uyy + 2Uyy, + SUyy, +u, =0
B2—44C=-16<0 ,Z=1%2;
Separate variables and integrate to get
e=y—Q+2)x , n=y—-1A-2)x
l6u,, — (ue + un) —2j(u, — un) =0
equating real and imaginary parts
From imaginary equating we get  u, = u,
From real equating we get

l6u,, — (ue + un) =0

from imaginary by subistuting

16u., — 2u, =0

using ODE by integrating factor we get
u= esfe) + g(n)

y-(1-2))x . .
u=e s f(y—>01+2)0)+g0@—-0-2)x)
Which is general solution
Apply second canonical form
a=%(s+n)=y—x , ,8=%(£—n)=2x
and substitute
Ugq + Ugp = i(ua — 2ug) which is similar to la place
equation that can be modeled

4. Physical application
1-Electrostatic potential charge in free region where the
potential in the rectangle whose upper side is kept at potential
110 V and whose other sides are grounded.
0<x<40, 0<y<?20
laplace equ. uyy + uy, = 0 (cartesian)
where u is the potential as shown fig. (2)
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2- Electrostatic potential charge in free region where the
potential in the rectangle whose upper side is kept at potential
110 V and whose other sides are grounded.

0<x<40, 0<y <20, uyy +2uUyy +5uy, +

u,, = 0 where u is the potential as shown fig. (3)
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3- Electrostatic potential charge in free region where the
potential in the rectangle whose upper side is kept at potential

110 V and whose other sides are grounded.

0<x<40, 0<y <20, uy +x?uy, =0 whereu

is the potential as shown fig. (4)
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4-The potential flow of an ideal incompressible fluid about a
circular cylinder of radius R with
a constant incident velocity v la place equation

Uy, +% ur+ri2 ugg = 0 (cylinderical)
u=f(e)+gm
u=f(n() —if) + g(n(r) + i6)
u = Arneind 4 B p-ind
Tn

B
Re = (Ar" + r_”) cos(n@)

By .
Im = (Ar” — r_") sin(n@)
by multiplying Re, Im we get
B
u= (Ar” + r_”) (Ccos(nB) + Dsin(nh))
n=12345,..
We are going to solve this P.D.E twice with different initial and
boundaries once for stream lines
Then for velocity potential.
ugrey=0 , r=R , ro®
u - vrsin(@) fromlIC,BC
Ar™(Ccos(nf) + Dsin(nf)) = vrsin(6)
comparing cof fecient
n=1,c=0, AD=v

B
(AR + E) (Dsin(6)) = 0 , B = —AR?
substitute in original so
B
u= (Ar" + r_"> (Ccos(n@) + Dsin(nh))
. AR? .
u= (Ar - T) Dsin6

R%\
u=v (r — T) sin(0)

u is stream functionas shown in fig. (5)

Fig. 5.a. complex 3d plot for Real part u and 2d plot
for stream lines.

Fig. 5.b. complex 3d plot for Imaginary part of u and
2d plot for stream lines.

Solving the same P.D.E again for velocity potential where;
Urg) = 2VRcos(f) , r=R

r— o , u- vrcos()

comparing cof fecients to get D = 0

n=1, AC = v, B = AR? then substitute

2
UG g) =V (r + RT) cos(9)
where u is velocity potential as shown in fig. (6)
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Fig. 6.a. complex 3d plot for Real part u and 2d plot
for velocity potential.

Fig. 6.b. complex 3d plot for Imaginary part of u and
2d plot for velocity potential.

By adding stream lines and velocity potential to get the
potential flow

U=v (r — RTZ) sin(0) + v (r + RTZ) cos(0)

as shown in fig. (7)

Potential velocity | (@)

T @ Components: Real Imaginary

Fig. 7.a. complex 3d plot for u and 2d plot for stream
lines and velocity potential.
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Fig. 7.b. animated vector field plot for circular
cylinder

5. Conclusion
The second-order linear PDESs can be classified into three types,
which are invariant under changes of variables. The types are
determined by discriminant. This exactly corresponds to the
different cases for the quadratic equation satisfied by the slope
of the characteristic curves. Elliptical equations have none
family of (real) characteristic curves. All the second order
elliptical PDE of equations can be reduced to canonical forms
to be simulated and modeled allowing the analysis of physical
phenomena to predict the variance over time as it serves the
steady state solution for both hyperbolic and parabolic linear
PDES which act as basic steady simplified solution for
hyperbolic and parabolic equation.
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