
Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

10th International Conference
on Electrical Engineering

ICEENG 2016

Enhanced Leveled DAG Prioritized Task Scheduling Algorithm in
Distributed Computing System

By

Amal EL-NATTAT * Nirmeen A. El-Bahnasawy * Ayman EL-SAYED *

Abstract:

In distributed computing environment, efficient task scheduling is essential to obtain
high performance. A vital role of designing and development of task scheduling
algorithms is to achieve better makespan. Several task scheduling algorithms have been
developed for homogeneous and heterogeneous distributed computing systems. In this
paper, we proposed a static task scheduling algorithm that optimizes the performance of
Leveled DAG Prioritized Task (LDPT) algorithm; namely ELDPT; to efficiently
schedule tasks on homogeneous distributed computing systems. ELDPT algorithm aims
to improve the performance of the system by minimizing the schedule length.

Keywords:

Task scheduling; Homogeneous distributed computing systems; Precedence constrained
parallel applications; Directed Acyclic Graph.

ـــ
* Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 2

1. Introduction:

Distributed systems have emerged as powerful platforms for executing parallel
applications. A distributed system can be defined as a collection of computing systems
that appears to its users as a single system, these systems collaborate over a network to
achieve a common goal [1]. There are two types of distributed systems; homogeneous
(in which processors are identical in capabilities and functionality) and heterogeneous
(in which processors are different).

In distributed computing environment, an application is usually decomposed into
several independent and/or interdependent sets of cooperating tasks. Dependent tasks
are represented by a Directed Acyclic Graph (DAG). DAG can be defined as a graph
consists of a set of vertices or nodes and a set of edges G(V, E) in which each node
represents a task and each edge represents a communication between two tasks (the two
tasks are dependent on each other). The computation cost of the task is represented by a
weight associated with each node and the communication cost between two tasks is
represented by a weight associated with each edge. The communication cost between
two dependent tasks is considered to equal zero if they are executed on the same
processor. Figure 1 shows an example of a simple task graph (DAG). In the Figure, t0 is
called predecessor (or parent) of t2 and t2 is called successor (or child) of t0. The edge
between t0 and t2 means that t2 can start execution only after t0 finishes its execution.

Figure (1): Example of a DAG

Efficient task scheduling of application tasks is essential to achieve high performance in
parallel and distributed systems. The basic function of task scheduling is to determine
the allocation of tasks to processors and their execution order in order to satisfy the
precedence requirements and obtain minimum schedule length (or makespan) [2]. Task-
scheduling algorithms are broadly classified into two basic classes: static and dynamic.

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 3

In static scheduling, the characteristics of an application, such as execution time of tasks
and data dependencies between tasks are known in advance (during compile time before
running the application). In dynamic scheduling, some information about tasks and their
relations may be undeterminable until run-time [3].

Over the past few decades, researchers have focused on designing task scheduling
algorithms for homogenous and heterogeneous systems with the objective of reducing
the overall execution time of the tasks. Topcuoglu et al. [2] have presented HEFT and
CPOP scheduling algorithms for heterogonous processors. Luiz et al. [4] have
developed lookahead-HEFT algorithm, which look ahead in the schedule to make
scheduling decisions. Eswari, R. and Nickolas, S. [5] have proposed PHTS algorithm to
efficiently schedule tasks on the heterogeneous distributed computing systems. Rajak
and Ranjit [6] have presented a queue based scheduling algorithm called TSB to
schedule tasks on homogeneous parallel multiprocessor system. Ahmed, S.G.; Munir,
E.U.; and Nisar, W. [7] have developed genetic algorithm called PEGA that provide low
time complexity than standard genetic algorithm (SGA). Xiaoyong Tang; Kenli Li;
Renfa Li; and Guiping Liao [8] have presented a list-scheduling algorithm called HEFD
for heterogeneous computing systems. Nasri, W. and Nafti, W. [9] have developed a
new DAG scheduling algorithm for heterogeneous systems that provide better
performance than some well-known existing task scheduling algorithms. In
homogeneous distributed systems, researchers have developed many heuristic task-
scheduling algorithms such as ISH [10], ETF [11], DLS [12], MH [13], and B-level
[14].

In this paper, the problem of scheduling precedence constrained parallel tasks on
homogeneous physical machines (PMs) is addressed. The goal of enhanced algorithm is
to optimize the performance of LDPT [15] algorithm in order to provide better system
performance.

The remainder of this paper is organized as follows. Section 2 provides an overview of
LDPT algorithm. The proposed enhanced LDPT algorithm is discussed in section 3.
Finally, the conclusion and future work are mentioned in section 4.

2. LDPT Algorithm:

LDPT [15] is a list based scheduling algorithm. It depends on dividing the DAG into
levels with considering the dependency conditions among tasks in the DAG. The
algorithm has two phases: (1) Task prioritization phase, (2) Processor selection phase.
LDPT algorithm depends on giving a priority to each task as shown in Figure 2 then,
scheduling each task on one processor with taking into consideration the insertion-based
policy. Figure 2 shows the pseudo code of LDPT algorithm.

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 4

Generate the DAG
Divide the DAG into levels according to their communicated dependency
Sort the constructed levels according to dependency ordering
Sort tasks according to [their computation costs then their direct
communication of its next level] in descending order
While there are unscheduled levels do
 While there are unscheduled tasks do

For each level do
Find the task with the highest computation cost
If there are tasks have equal computation cost
 Then

Choose the task with the highest communication cost with its Childs in next
level

End if
Find the processor that minimizes the Earliest Start Time of the
selected task
Assign the task to the selected processor
Remove the selected task from the list
Repeat
Until all tasks are scheduled

End for each
End while

Figure (2): LDPT Algorithm [15]

3. ELDPT Algorithm
New algorithm is a list based scheduling algorithm. It depends on dividing the DAG
into levels with considering the dependency conditions among tasks in the DAG. The
algorithm has two phases: (1) Task prioritization phase, (2) Processor selection phase.

3.1. Task Prioritization Phase
In this phase, the DAG is divided into levels and the tasks in each level will be sorted
into a list in descending order based on their communication costs with children in the
next level. The ties are broken by the computation cost of the task.

3.2. Processor Selection Phase
In this phase, the tasks are picked from the list one by one and assigned to the processor
that will minimize the earliest start time of the task, with taking into consideration the
insertion-based policy. The insertion policy means that if there is an idle time slot on the
processor between two already scheduled tasks and it was enough for executing the
task, then the task is assigned on that processor in this idle slot without violating
precedence constraints. In other words, a task can be scheduled earlier if there is a

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 5

period of time between two tasks already scheduled on processor (P), where P runs idle.
If two processors provide the same start time for the task then, the task is assigned to the
processor on which most of its parents are scheduled. The Earliest Start Time of a task

on a processor is defined as shown in equation 1.

EST(nx , Pm)= max[TAvailable(),max{AFT()+ }] (1)

Where TAvailable() is the earliest time at which processor is ready. AFT() is the
Actual Finish Time of a task (the parent of task nx) on the processor . is the
communication cost from task to task , equal zero if the predecessor task is
assigned to processor . For the entry task, EST(,)= 0. Figure 3 shows the pseudo
code of the new algorithm.

Generate the DAG
Divide the DAG into levels according to their communicated dependency
Sort the constructed levels according to dependency ordering
Sort tasks according to [their direct communication of its next level then
their computation costs] in descending order
While there are unscheduled levels do
 While there are unscheduled tasks do

For each level do
Find the task with the highest communication cost with its Childs
in next level
If there are tasks have equal communication cost
 Then
Choose the task with the highest computation cost
End if

Find the processor that minimizes the Earliest Start Time of the
selected task
Assign the task to the selected processor
Remove the selected task from the list
Repeat
Until all tasks are scheduled

End for each
End while

Figure (3): ELDPT Algorithm

3.3. Performance Evaluation case studies
Case study 1: Consider the DAG shown in Figure 4; assume the system has two
processors (P0, P1). Table 1 shows the lists generated by LDPT and ELDPT. Figure 5

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 6

shows the Gantt chart generated by LDPT and ELDPT respectively. Both algorithms
assign the selected task to the processor that minimizes the start time (EST) of it. For
example, in Figure 5(a), the EST for task t4 on p0 is 3 and the EST for t4 on p1 is 1, so
the task t4 is scheduled on p1. In Figure 5(b), the same manner if followed with taking
into consideration the insertion-based policy. From Figure 5, it is shown that the
scheduling length (the finish time of the last task scheduled from the DAG) resulted
from LDPT and ELDPT are 15 and 13 unit of time respectively.

Task Comput.
Cost

t0 2
t1 1
t2 3
t3 2
t4 4
t5 5
t6 2
t7 1

Figure (4): Sample DAG of Case study 1

Table (1): Task Lists for LDPT and ELDPT, for Case study 1
Execution LDPT ELDPT

1 t0 t0

2 t1 t1

3 t4 t3

4 t2 t4

5 t3 t2

6 t5 t6

7 t6 t5

8 t7 t7

Figure 5 depicts the Gantt chart generated by LDPT and ELDPT. From the Figure, it is
shown that the scheduling length generated from LDPT algorithms is 15 units of time
while the scheduling length generated from ELDPT algorithm is 13 units of time. In
case of ELDPT, it is observed that there is less periods in which processors are idle than
that of LDPT. According to this result, the overall running time of the application will
be decreased and the efficiency of the system will be improved

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 7

Figure (5): Case Study 1: Scheduling Length generated by (a) LPDT, (b) ELDPT

Case study 2: Consider the DAG shown in Figure 6; assume the system has two
processors (P0, P1). Table 2 shows the lists generated by LDPT and ELDPT. Figure 7
shows the Gantt chart generated by LDPT and ELDPT respectively. In Figure 7(b), t4

depends on t1 and its computation cost is 2 units of time so that, t4 is inserted in the idle
time slot between t1 and t3 on processor p0. From Figure 7, it is shown that the
scheduling length resulted from LDPT and new algorithm is 21, and 16 unit of time
respectively.

Task Comput. Cost

t0 2

t1 3

t2 4

t3 2

t4 2

t5 5

Figure (6): Sample DAG of Case Study 2.

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 8

Table (2): Task Lists for LDPT and ELDPT, for Case study 2
Execution LDPT ELDPT

1 t1 t1

2 t0 t0

3 t2 t3

4 t3 t4

5 t4 t2

6 t5 t5

Figure (7): Case Study 2: Scheduling Length generated by (a) LPDT, (b) ELDPT

Case study 3: Consider the DAG shown in Figure 8, with the computation cost for each
task; assume the system has two processors (P0, P1). Table 3 shows the lists generated
by LDPT and ELDPT. Figure 9 shows the Gantt chart generated by LDPT and ELDPT
respectively. In Figure 9, it is shown that the scheduling length resulted from LDPT and
ELDPT are 25, and 23 unit of time respectively.

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 9

Task Comput. Cost

t0 2

t1 3

t2 1

t3 4

t4 3

t5 5

t6 2

t7 4

t8 6

Figure (8): Sample DAG of Case Study 3.

Table (3): Task Lists for LDPT and ELDPT, for Case study 3
Execution LDPT ELDPT

1 t0 t0

2 t1 t1

3 t2 t2

4 t5 t3

5 t3 t5

6 t4 t4

7 t7 t6

8 t6 t7

9 t8 t8

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 10

Figure (9): Case Study 3: Scheduling Length generated by (a) LPDT, (b) ELDPT

Case study 4: Consider the DAG shown in Figure 10 with the computation cost for
each task; assume the system has two processors (P0, P1). Table 4 shows the lists
generated by LDPT and ELDPT. Figure 11 shows the Gantt chart generated by LDPT
and ELDPT respectively. From Figure 11, it is shown that the scheduling length resulted
from LDPT and ELDPT are 28, and 26 units of time respectively.

Task Comput. Cost
t0 3
t1 4
t2 2
t3 1
t4 5
t5 2
t6 6
t7 4
t8 3
t9 2

t10 1
t11 5

Figure (10): Sample DAG of Case Study 4.

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 11

Table (4): Task Lists for LDPT and ELDPT, for Case study 4
Execution LDPT New

1 t0 t0

2 t4 t3

3 t1 t5

4 t5 t4

5 t2 t2

6 t3 t1

7 t6 t8

8 t7 t7

9 t8 t6

10 t9 t9

11 t10 t10

12 t11 t11

Figure (11): Case Study 4: Scheduling Length generated by (a) LPDT, (b) ELDPT

4. Conclusion and Future work
In this paper, a new static scheduling algorithm is developed for homogeneous
distributed computing systems. The enhanced ELDPT proposal algorithm is compared
with LDPT algorithm theoretically by applying them on some simple DAGs and it
provided better scheduling length. In the future this idea will be applied practically by

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 12

constructing a simulation environment to compare the performance of LDPT and
ELDPT in terms of another evaluation metrics such as schedule length, speed up, and
efficiency.

References:

[1] Journal of Theoretical and Applied Information Technology. (2011, April 9).
[Online]. Available: http://www.jatit.org/distributed-computing/grid-vs-
distributed.htm.

[2] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,” IEEE Trans.
Parallel and Distributed Systems, Vol. 13, No.3, pp. 260-274, March 2002.

[3] Y.K. Kwok and I. Ahmad, “Static Scheduling Algorithms for allocating Directed
Task Graphs to Multiprocessors”, ACM Computing Surveys, Vol.31, No.4, pp.
406-471, December 1999.

[4] Luiz F. Bittencourt, Rizos Sakellariou. "DAG Scheduling Using a Look ahead
Variant of the Heterogeneous Earliest Finish Time Algorithm", 18th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing(PDP), pp. 27-34, 2010.

[5] Eswari, R. and Nickolas, S. "Path-Based Heuristic Task Scheduling Algorithm for
Heterogeneous Distributed Computing Systems". Advances in Recent
Technologies in Communication and Computing (ARTCom), International
Conference on 2010. P: 30-34.

[6] Rajak and Ranjit. "A Novel Approach for Task Scheduling in Multiprocessor
System". International Journal of Computer Applications (IJCA), Vol.44, No. 11,
pp. 12-16, April 2012.

[7] Ahmad, S.G.; Munir, E.U. and Nisar, W. PEGA "A Performance Effective
Genetic Algorithm for Task Scheduling in Heterogeneous Systems". High
Performance Computing and Communication& 2012 IEEE 9th International
Conference on Embedded Software and Systems (HPCC-ICESS), IEEE 14th
International Conference on 2012. Pp. 1082-1087.

[8] Tang, X., et al., "List scheduling with duplication for heterogeneous computing
systems", Journal of Parallel and Distributed Computing (JPDC), Vol. 70,
No.4,pp. 323-329.2010.

[9] Nasri,W. and Nafti, W. "A new DAG scheduling algorithm for heterogeneous
platforms". Parallel Distributed and Grid Computing (PDGC), second IEEE
International Conference on 2012. Pp. 114-119.

[10] B. Kruatrachue and T. Lewis, "Grain size determination for parallel processing,"
IEEE Software, vol. 5, no. 1, pp. 23-32, May 1988.

http://www.jatit.org/distributed-computing/grid-vs-

Proceedings of the 10th ICEENG Conference, 19-21 April, 2016 EE076 - 13

[11] J. J. Hwang. Y.C. Chow. F. D. Anger and C.-Y. Lee. "Scheduling precedence
graphs In systems with interprocessor communication times." SLAM Journal of
Computing, vol. 18, no. 2. pp. 244-257. 1989.

[12] G.C. Slh and E. A. Lee. "A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures." IEEE Transactions on
Parallel and Distributed Systems, vol. 4. no. 2, pp. 75-87. Feb. 1997.

[13] H. El-Rewini and T.G .Lewis, " Scheduling parallel programs onto arbitrary target
machines." Journal of Parallel and Distributed Computing, vol. 9. no. 2, pp. 138-
153, June 1990.

[14] Panos M. Pardalos, SanguthevarRajasekaran, José D. P. Rolim, " Randomization
Methods in Algorithm Design: DIMACS Workshop", vol. 43, pp. 12-14,
December 1997.

[15] Amal EL-Nattat, Nirmeen A. El-Bahnasawy, Ayman EL-Sayed, "A new task
scheduling algorithm for maximizing the distributed systems efficiency";
International Journal of Computer Applications, vol.110. no. 9, January 2015.

