Bulletin of Faculty of Science, Zagazig University (BFSZU)

e-ISSN: 1110-1555

Volume-2023, Issue-2, pp-172-179

https://bfszu.journals.ekb.eg/journal DOI: 10.21608/bfszu.2022.135293.1132

Research Paper

Partial 2-Metric Spaces for Cyclic (ψ , ϕ ,A,B)-Contractions in Fixed Point Theorems

H. M. Abuo Donia ^{1,*}, H. A. Atia ¹, Eman Safaa ¹
Mathematics Department, Faculty of Science, Zagazig University, Zagazig, 47H10-54H25, Egypt.

Corresponding author: dr.emansafaa@gmail.com, eman.safaa@yahoo.com

ABSTRACT: There are a lot of generalizations of the concept of metric space . In this paper we using some fixed point theorems in partial 2- metric spaces and given an examples in it . And We propose the idea of Cyclic (ψ,ϕ,A,B) - Contraction in partial 2- metric spaces and investigate fixed point theorems for mappings meeting cyclical generalised contractive requirements in full partial 2-metric spaces in this research . The goal of this paper is to present some fixed point theorems for a mapping meeting a cyclical generalised contractive condition in partial 2- metric spaces based on a pair of altering distance functions . We establish that these mappings necessarily have unique fixed points in complete 2- metric spaces . Fixed point theorems for some contractions from this class are introduced and illustrative examples are given . Our results in that paper also generalises an existing result in 2- metric spaces .

KEYWORDS: Partial metric spaces, contractive conditions, partial 2-metric spaces, a fixed point, cyclic map

Date of Submission: 23-05-2022 Date of acceptance: 17-08-2022

I. INTRODUCTION

Several generalizations of the metric spaces originated from a fixed point theory in diverse domains. In [3-4,6,13], a number of writers establish several metric space on fixed point theorems. Matthews [12] was one of them, and in 1994, he defined a normal metric spaces are generalised to partial metric spaces. Lateef [10] used contractive to prove fixed point theorems in 2-metric spaces. Abu Donia et al. also proposed an idea of partial 2-metric spaces in [5]. We'll try going over some of the most well-known partial metric space [1-2,7-9] and partial 2-metric space definitions and characteristics.

Definition [11]. Let X be a nonempty set. The mapping $p: X \times X \to [0, \infty)$ is said to be a partial metric on X if the following conditions are true. For any $x, y, z \in X$, we have,

(PM-1)
$$p(x,x) = p(y,y) = p(x,y)$$
 if and only if $x = y$,

(PM-2)
$$p(x,x) \le p(x,y)$$
,

(PM-3)
$$p(y,x) = p(x,y)$$
,

(PM-4) $p(x,z) \le p(x,y) + p(y,z) - p(y,y)$, and then the pair (X,ρ) is called a partial metric space, (for short PMS).

Definition [5]. A mapping $\rho: X^3 \to \square^+$ where X is a non-empty set, is said to be a partial 2-metric on X if the following conditions are holds true. For every x, y, z and u in we have,

(P2M-1)
$$\rho(x, x, x) = \rho(y, y, y) = \rho(z, z, z) = \rho(x, y, z)$$
 when at least two of x,y and z are equals, (P2M-2) $\rho(x, x, x) \le \rho(x, y, z)$,

(P2M-3)
$$\rho(x, y, z) = \rho(x, z, y) = \rho(z, y, x),$$

(P2M-4) $\rho(x, y, z) \le \rho(x, y, u) + \rho(x, u, z) + \rho(u, y, z) - \rho(u, u, u)$. Then the pair (X, ρ) is called a partial 2-metric space; for short we write P2M space.

Example [5]. Let $x = \{0,1\}$ and let $\rho(x,y,z) = \{\frac{2}{1} \text{ if } x = y = z = 0\}$, then (X,ρ) is a P2M space.

Theorem[5]. Let (X, ρ) be a partial 2-metric space, and suppose the function

$$\mathbf{d}_{\rho}: X^3 \longrightarrow [0, \infty)$$
, denoted by

 $d_{\rho}(x,y,z)=3\rho(x,y,z)-\rho(x,x,x)-\rho(y,y,y)-\rho(z,z,z)$, then (x,d_{ρ}) is a 2-metric space.

Definition [5]. A sequence $\{x_n\}$ in a partial 2-metric space (X, ρ) converges to a point x in X if $\lim_{n\to\infty} \rho(x_n, x, z) = \rho(x, x, x)$ for all z in X.

Theorem [5]. A sequence $\{x_n\}$ in a partial 2-metric space (X, ρ) , converges to a point x in X if $\lim_{n\to\infty} \rho(x_n, x, z) = \rho(x, x, x)$ for all z in X.

Definition [5]. A sequence $\{x_n\}$ in a partial 2-metric space (X, ρ) , is said to be a Cauchy sequence if the $\lim_{n,m\to\infty} \rho(x_n,x_m,z)$ exists and finite, for all z in X.

Definition [5]. Let (X, ρ) a partial 2-metric space is said to be complete if every Cauchy sequence in X converges to an element x in X such that $\lim_{n,m\to\infty} \rho(x_n,x_m,z) = \rho(x,x,x)$, for all z in X.

Lemma [5]. (1) A sequence { x_n } is a Cauchy sequence in a partial 2-metric space (X, p) if and only if { x_n } is also a Cauchy sequence in the 2-metric space (X, d_p)

(2)
$$(X, p)$$
 is complete if and only if (X, d_{ρ}) is also complete. Moreover $\lim_{n\to\infty} \rho(x, x_n, z) = \lim_{n\to\infty} \rho(x, x_n, z) = \rho(x, x, x) \Leftrightarrow \lim_{n\to\infty} d_{\rho}(x, x_n, z) = 0$

Theorem [14]. Set A and B be nonempty closed subsets of a complete metric space (X,d). Assume that $T:A \cup B \to A \cup B$ is a cyclic map such that $d(Tx,Ty) \le kd(x,y)$ $\forall x \in A, y \in B$. If $k \in [0,1)$, then T has a unique fixed point in $A \cap B$.

Definition [14]. The function $\varphi:[0,\infty)\to[0,\infty)$, is called an altering distance function if the following properties are satisfied:

- (1) φ is continuous and non-decreasing.
- (2) $\varphi(t) = 0$ if and only if t=0.

II. Main Results

The goal of this paper is to present some fixed point theorems for a mapping meeting a cyclical generalised contractive condition in partial 2-metric spaces based on a pair of altering distance

Definition: Let (X, ρ) be a partial 2-metric space and A and B be nonempty closed subsets of X. A mapping T:X \to X is called a cyclic (ψ, φ, A, B) -contraction if

- (1) ψ and φ are altering distance functions,
- (2) AUB has a cyclic representation w.r.t. T; that is, $T(A)\subseteq B$ and $T(B)\subseteq A$, and

$$\psi(\rho(Tx,Ty,z)) \leq \psi(\max\{\rho(x,y,z),\rho(x,Tx,z),\rho(y,Ty,z)\})$$

$$-\varphi(\max\{\rho(x,y,z),\rho(y,Ty,z)\})$$
, for all $x \in A$, $y \in B$ and $z \in X$.

Now we introduce our main result.

Theorem : Assume (X, ρ) be a complete partial 2-metric space, let A and B be nonempty closed subsets of X. If T:X \to X is a cyclic (ψ, ϕ, A, B) -contraction, then T has a unique fixed point $u \in A \cap B$.

Suppose that $x_0 \in A$. Since T:X \to X is a cyclic (ψ, ϕ, A, B) -contraction then T(A) \subseteq B, if we choose $x_1 \in B$ such that $Tx_0 = x_1$. Also, if T(B) \subseteq A, we set $x_2 \in A$ such that $Tx_1 = x_2$. By continuing, we can construct sequences $\{x_n\}$ in X such that $Tx_{2n} = x_{2n+1}$ and $Tx_{2n+1} = x_{2n+2}$ for $x_{2n} \in A$ and $x_{2n+1} \in B$. Then there exist two cases :

Case (1) If $x_{2n_0+1} = x_{2n_0+2}$ for some $n \in \mathbb{N}$, then $x_{2n_0+1} = Tx_{2n_0} = x_{2n_0+2} = Tx_{2n_0+1}$. Thus, x_{2n_0+1} is a fixed point of T in A \cap B.

Case (2) We suppose that $x_{2n+1} \neq x_{2n+2}$ for all $n \in \mathbb{N}$. There are two probabilities of n:

(i) If $n \in \mathbb{N}$ is even, then n=2t for some $t \in \mathbb{N}$. Since

$$\psi(\rho(Tx,Ty,z)) \leq \psi(\max\{\rho(x,y,z),\rho(x,Tx,z),\rho(y,Ty,z)\}) - \varphi(\max\{\rho(x,y,z),\rho(y,Ty,z)\}).$$

(1)

Now we have.

$$\psi(\rho(x_{n+1}, x_{n+2}, z)) = \psi(\rho(x_{2t+1}, x_{2t+2}, z)) = \psi(\rho(Tx_{2t}, Tx_{2t+1}, z))
\leq \psi(\max\{\rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t}, Tx_{2t}, z), \rho(x_{2t+1}, Tx_{2t+1}, z)\})
- \phi(\max\{\rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t+1}, Tx_{2t+1}, z)\})
= \psi(\max\{\rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t+1}, x_{2t+2}, z)\})
- \phi(\max\{\rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t+1}, x_{2t+2}, z)\}).$$

So,
$$\frac{\psi(\rho(x_{2t+1}, x_{2t+2}, z)) \leq \psi(\max\{\rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t+1}, x_{2t+2}, z)\})}{-\varphi(\max\{\rho(x_{2t}, x_{2t+1}, z), \rho(x_{2t+1}, x_{2t+2}, z)\})}.$$
 (2)

If we choose $max\{\rho(x_{2t},x_{2t+1},z),\rho(x_{2t+1},x_{2t+2},z)\}=\rho(x_{2t+1},x_{2t+2},z).$

Then eq.(2) becomes

$$\psi(\rho(x_{2t+1},x_{2t+2},z)) \le \psi(\rho(x_{2t+1},x_{2t+2},z)) - \varphi(\rho(x_{2t+1},x_{2t+2},z).$$

Then $\varphi(\rho(x_{2t+1},x_{2t+2},z))=0$, and since φ is altering distance function, hence $\rho(x_{2t+1},x_{2t+2},z)=0$. From the condition (P2M-1), we get $x_{2t+1}=x_{2t+2}$ this is a contradiction for assumption. Therefore,

$$\max\{\rho(x_{2t},x_{2t+1},z),\rho(x_{2t+1},x_{2t+2},z)\}=\rho(x_{2t},x_{2t+1},z).$$

Then

$$\psi(\rho(x_{2t+1}, x_{2t+2}, z)) = \psi(\rho(x_{n+1}, x_{n+2}, z))$$

$$\leq \psi(\rho(x_{2t}, x_{2t+1}, z)) - \varphi(\rho(x_{2t}, x_{2t+1}, z)$$

$$= \psi(\rho(x_{n}, x_{n+1}, z)) - \varphi(\rho(x_{n}, x_{n+1}, z).$$
(3)

(ii) If
$$n \in \mathbb{N}$$
 is odd, then $n=2t+1$ for some $t \in \mathbb{N}$. From eq. (1) we have
$$\psi\left(\rho\left(x_{n+1}, x_{n+2}, z\right)\right) = \psi\left(\rho\left(x_{2t+2}, x_{2t+3}, z\right)\right) = \psi\left(\rho\left(Tx_{2t+1}, Tx_{2t+2}, z\right)\right)$$

$$\leq \psi\left(\max\{\rho\left(x_{2t+1}, x_{2t+2}, z\right), \rho\left(x_{2t+1}, Tx_{2t+1}, z\right), \rho\left(x_{2t+2}, Tx_{2t+2}, z\right)\}\right)$$

$$-\phi\left(\max\{\rho\left(x_{2t+1}, x_{2t+2}, z\right), \rho\left(x_{2t+2}, Tx_{2t+2}, z\right)\}\right)$$

$$= \psi \left(\max \{ \rho(x_{2t+1}, x_{2t+2}, z), \rho(x_{2t+1}, Tx_{2t+1}, z), \rho(x_{2t+2}, Tx_{2t+2}, z) \} \right)$$

$$- \phi \left(\max \{ \rho(x_{2t+1}, x_{2t+2}, z), \rho(x_{2t+2}, Tx_{2t+2}, z) \} \right)$$

that is,

$$\psi(\rho(x_{2t+2}, x_{2t+3}, z)) \leq \psi(\max\{\rho(x_{2t+1}, x_{2t+2}, z), \rho(x_{2t+2}, x_{2t+3}, z)\})
-\varphi(\max\{\rho(x_{2t+1}, x_{2t+2}, z), \rho(x_{2t+2}, x_{2t+3}, z)\}).$$
(4)

If we choose

$$max\{\rho(x_{2t+1},x_{2t+2},z),\rho(x_{2t+2},x_{2t+3},z)\}=\rho(x_{2t+2},x_{2t+3},z).$$

Then eq.(4) becomes

$$\psi(\rho(x_{2t+2},x_{2t+3},z)) \le \psi(\rho(x_{2t+2},x_{2t+3},z)) - \varphi(\rho(x_{2t+2},x_{2t+3},z)).$$

Then $\varphi(\rho(x_{2t+2}, x_{2t+3}, z)) = 0$, hence $\rho(x_{2t+2}, x_{2t+3}, z) = 0$. From the condition (P2M-1), we get $x_{2t+2} = x_{2t+3}$ this is a contradiction for assumption. Therefore,

$$max\{\rho(x_{2t+1},x_{2t+2},z),\rho(x_{2t+2},x_{2t+3},z)\}=\rho(x_{2t+1},x_{2t+2},z).$$

Then

$$\psi(\rho(x_{n+1}, x_{n+2}, z)) = \psi(\rho(x_{2t+2}, x_{2t+3}, z))$$

$$\leq \psi(\rho(x_{2t+1}, x_{2t+2}, z)) - \varphi(\rho(x_{2t+1}, x_{2t+2}, z))$$

$$= \psi(\rho(x_n, x_{n+1}, z)) - \varphi(\rho(x_n, x_{n+1}, z)).$$
(5)

Eqs. (3) and (5) are the same results, so,

$$\psi(\rho(x_{n+1}, x_{n+2}, z)) \le \psi(\rho(x_n, x_{n+1}, z)) - \varphi(\rho(x_n, x_{n+1}, z)) \quad \forall n \in \mathbb{N}$$
(6)

then we have $\{\rho(x_{n+1},x_{n+2},z):n\in N\}$ is a non-increasing sequence and consequently, there is $r\geq 0$ such that the limit

$$\lim_{n\to\infty} \rho(x_{n+1}, x_{n+2}, z) = r. \tag{7}$$

From eq. (6), by taking as $n\to\infty$ and using eq. (7), since ψ and φ are continuous functions, we have $\psi(r) \le \psi(r) - \varphi(r)$.

Therefore, $\varphi(r)=0$ if and only if r=0. Then

$$\lim_{n\to\infty} \rho(x_{n+1}, x_{n+2}, z) = 0.$$
 (8)

From (P2M-2), we get $\rho(x_n, x_n, x_n) \le \rho(x_n, x_{n+1}, z)$, by taking the limit as $n \to \infty$ and using eq. (8) we get

$$\lim_{n\to\infty} \rho(x_n, x_n, x_n) = 0. \tag{9}$$

Since

$$d_{\rho}(x_{n}, x_{n+1}, z) = 3\rho(x_{n}, x_{n+1}, z) - \rho(x_{n}, x_{n}, x_{n}) - \rho(x_{n+1}, x_{n+1}, x_{n+1}) - \rho(z, z, z),$$

then $\lim_{n\to\infty} d_{\rho}(x_n, x_{n+1}, z) \le 3\lim_{n\to\infty} \rho(x_n, x_{n+1}, z),$

using eq. (8) in the above equation we get

$$\lim_{n\to\infty} d_{\rho}\left(x_n, x_{n+1}, z\right) = 0 \tag{10}$$

Now we can demonstrate this $\{x_n\}$ is a Cauchy sequence in the metric space $(A \cup B, d_\rho)$. Consider that $\{x_n\}$ is not a Cauchy sequence in $(A \cup B, d_\rho)$. Then there exists $\varepsilon > 0$ for which we have two subsequences $\{x_{n(i)}\}$ and $\{x_{m(i)}\}$ of $\{x_n\}$ such that n(i) > m(i) < i, then

$$d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right) \ge \varepsilon.$$
 This means that
$$d_{\rho}\left(x_{m(i)}, x_{n(i)-1}, z\right) < \varepsilon.$$
 (11)

From (P2M-4), we get

$$\varepsilon \leq d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right)$$

$$\leq d_{\rho}\left(x_{m(i)}, x_{n(i)}, x_{n(i)-1}\right) + d_{\rho}\left(x_{m(i)}, x_{n(i)-1}, z\right) \\ + d_{\rho}\left(x_{n(i)-1}, x_{n(i)}, z\right) - d_{\rho}\left(x_{n(i)-1}, x_{n(i)-1}, x_{n(i)-1}, z\right) \\ + d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right) + d_{\rho}\left(x_{m(i)}, z\right) \\ + d_{\rho}\left(x_{m(i)}, z\right) + d_{\rho}\left(x_{m(i)}, z\right) + d_{\rho}\left(x_{m(i)}, z\right) \\ + d_{\rho}\left(x_{m(i)}, z\right) + d_{\rho}\left(x_{m($$

$$\leq \ \mathrm{d}_{\rho}\Big(x_{m(i)}, x_{n(i)}, x_{n(i)-1}\Big) + d_{\rho}\Big(x_{m(i)}, x_{n(i)-1}, z\Big) \ + d_{\rho}\Big(x_{n(i)-1}, x_{n(i)}, z\Big)$$

Taking $i \rightarrow \infty$ we get

$$\varepsilon \leq \lim_{i \to \infty} d_{\rho} \left(x_{m(i)}, x_{n(i)}, z \right)$$

$$\leq \lim_{i \to \infty} d_{\rho} \left(x_{m(i)}, x_{n(i)}, x_{n(i)-1} \right) + \lim_{i \to \infty} d_{\rho} \left(x_{m(i)}, x_{n(i)-1}, z \right)$$

$$+\lim_{i \to \infty} d_{\rho} \left(x_{n(i)-1}, x_{n(i)}, z \right),$$

and using eqs. (8), (10) and (11) in the above equation we get

$$\varepsilon \leq \lim_{i\to\infty} d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right) \leq 0 + \varepsilon + 0 = \varepsilon.$$

We have,
$$\varepsilon \leq \lim_{i\to\infty} d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right) \leq \varepsilon$$
.

Then
$$\lim_{i\to\infty} d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right) = \varepsilon$$
.

$$d_{\rho}\left(x_{m(i)}, x_{n(i)}, z\right) = 3\rho\left(x_{m(i)}, x_{n(i)}, z\right) - \rho\left(x_{m(i)}, x_{m(i)}, x_{m(i)}\right)$$

Since

$$-\rho(x_{n(i)},x_{n(i)},x_{n(i)})-\rho(z,z,z).$$

Letting $i\rightarrow\infty$ in the above equation and using eq. (9), then

$$\begin{split} \lim_{i \to \infty} d_{\rho} \left(x_{m(i)}, x_{n(i)}, z \right) &= \varepsilon = 3 \lim_{i \to \infty} \rho \left(x_{m(i)}, x_{n(i)}, z \right) - \lim_{i \to \infty} \rho \left(x_{m(i)}, x_{m(i)}, x_{m(i)} \right) \\ &- \lim_{i \to \infty} \rho \left(x_{n(i)}, x_{n(i)}, x_{n(i)} \right) - \lim_{i \to \infty} \rho \left(z, z, z \right) \\ &= 3 \lim_{i \to \infty} \rho \left(x_{m(i)}, x_{n(i)}, z \right). \end{split}$$

Then $\lim_{i\to\infty} \rho\left(x_{m(i)}, x_{n(i)}, z\right) = \frac{\varepsilon}{3}$ (12)

From eq. (1) we have

$$\begin{split} \psi(\rho(\mathbf{x}_{\text{m(i)}}, \mathbf{x}_{\text{n(i)}}, \mathbf{z})) &= \psi(\rho(T\mathbf{x}_{\text{m(i)}}, T\mathbf{x}_{\text{n(i)}}, \mathbf{z})) \\ &\leq \psi(\text{max}\{\rho(\mathbf{x}_{\text{m(i)-1}}, \mathbf{x}_{\text{n(i)-1}}, \mathbf{z}), \rho(\mathbf{x}_{\text{m(i)-1}}, T\mathbf{x}_{\text{m(i)-1}}, \mathbf{z}), \\ \rho(\mathbf{x}_{\text{n(i)-1}}, T\mathbf{x}_{\text{n(i)-1}}, \mathbf{z})\}) - \phi(\text{max}\{\rho(\mathbf{x}_{\text{m(i)-1}}, \mathbf{x}_{\text{n(i)-1}}, \mathbf{z}), \\ \rho(\mathbf{x}_{\text{n(i)-1}}, T\mathbf{x}_{\text{n(i)-1}}, \mathbf{z})\}) \end{split}$$

$$= \psi(\max\{\rho\left(x_{m(i)-1}, x_{n(i)-1}, z\right), \rho\left(x_{m(i)-1}, x_{m(i)-1}, z\right), \\ \rho\left(x_{n(i)-1}, x_{n(i)-1}, z\right)\}) - \varphi(\max\{\rho\left(x_{m(i)-1}, x_{n(i)-1}, z\right), \\ \rho\left(x_{n(i)-1}, x_{n(i)-1}, z\right)\}).$$

Letting $i \rightarrow \infty$ and from eq. (12), which the continuity of ψ and ϕ , we get that

$$\psi\left(\frac{\varepsilon}{3}\right) \leq \psi\left(\frac{\varepsilon}{3}\right) - \varphi\left(\frac{\varepsilon}{3}\right).$$

Therefore, $\varphi\left(\frac{\varepsilon}{3}\right) = 0$, since φ is alternig distance function, hence $\varepsilon = 0$, which is a contradiction.

Thus the sequence $\{x_n\}$ is a Cauchy sequence in the metric space $(A \cup B, d_\rho)$. If (X, ρ) is complete and AUB is a closed subspace of (X,ρ) , using Lemma , then $(A \cup B,\rho)$ is also complete.

Then the sequence $\{x_n\}$ converges in the metric space $(A \cup B, d_n)$, say

$$\lim_{i\to\infty}d_{\rho}(x_n,u,z)=0,$$

once more from Lemma, we find

$$\lim_{n\to\infty}\rho(x_n,u,z) = \lim_{n\to\infty}\rho(x_n,x_m,z) = \rho(u,u,u) \Leftrightarrow \lim_{n\to\infty}d_\rho(x_n,u,z) = 0.$$
(13)

Since the sequence $\{x_n\}$ is a Cauchy sequence in the metric space $(A \cup B, d_\rho)$, we have

$$\lim_{n,m\to\infty} d_{\rho}(x_{n}, x_{m}, z) = 0.$$
(14)
Since
$$d_{\rho}(x_{n}, x_{m}, z) = 3\rho(x_{n}, x_{m}, z) - \rho(x_{n}, x_{n}, x_{n}) - \rho(x_{m}, x_{m}, x_{m}) - \rho(z, z, z),$$

letting $n,m\rightarrow\infty$ in the above equation and from eqs. (9) and (14), we obtain

$$\lim_{n\to\infty} \rho(x_n, x_m, z) = 0. \tag{15}$$

From eq. (15) into eq. (13) we get

$$\lim_{n\to\infty} \rho(x_n, u, z) = \rho(u, u, u) = 0$$
(16)

Then the sequence $\{x_n\}$ is a sequence in A, and since A is closed in (X,ρ) , we have $u \in A$. Similarly, we have get $u \in B$, that is $u \in A \cap B$. From (P2M-4), we get

$$\rho(x_n, Tu, z) \le \rho(x_n, Tu, u) + \rho(x_n, u, z) + \rho(u, Tu, z) - \rho(u, u, u).$$

Letting $n \rightarrow \infty$ in the above inequalities and using eqs. (9) and (15) we have

$$\lim_{n\to\infty} \rho(x_n, Tu, z) \le \lim_{n\to\infty} \rho(x_n, Tu, u) + \lim_{n\to\infty} \rho(u, Tu, z).$$

Then
$$\lim_{n\to\infty} \rho(x_n, Tu, z) - \lim_{n\to\infty} \rho(u, Tu, z) \le \lim_{n\to\infty} \rho(x_n, Tu, u)$$
. (17)
Also,

$$\rho(u,Tu,z) \le \rho(u,Tu,x_n) + \rho(u,x_n,z) + \rho(x_n,Tu,z) - \rho(x_n,x_n,x_n).$$

Letting $n \rightarrow \infty$ in the above inequalities and using eqs. (9) and (16) we have

$$\lim_{n\to\infty} \rho(u, Tu, z) - \lim_{n\to\infty} \rho(x_n, Tu, z) \le \lim_{n\to\infty} \rho(u, Tu, x_n). \tag{18}$$

From eqs. (17) and (18) we get

$$\lim_{n\to\infty} \rho(x_n, Tu, z) = \rho(u, Tu, z). \tag{19}$$

Now, we prove that Tu=u. Since $\{x_n\} \in A$ and u ∈ B, from eq. (1) we have

$$\psi(\rho(x_{n+1},Tu,z)) = \psi(\rho(Tx_n,Tu,z))$$

$$\leq \psi(\max\{\rho(x_n,u,z),\rho(u,Tu,z),\rho(x_n,Tx_n,z)\})$$

$$-\varphi(\max\{\rho(x_n,u,z),\rho(u,Tu,z)\}).$$

So,

$$\psi(\rho(x_{n+1},Tu,z)) \leq \psi(\max\{\rho(x_n,u,z),\rho(u,Tu,z),\rho(x_n,x_{n+1},z)\})$$
$$-\varphi(\max\{\rho(x_n,u,z),\rho(u,Tu,z)\}).$$

Letting $n \rightarrow \infty$ in the above inequalities and using eqs. (15), (16) we get,

$$\psi(\lim_{n\to\infty}\rho(x_{n+1},Tu,z))\leq\psi(\rho(u,Tu,z))-\varphi(\rho(u,Tu,z)).$$

Using eq. (19) we get

$$\psi(\rho(\mathbf{u},Tu,z)) \leq \psi(\rho(u,Tu,z)) - \varphi(\rho(u,Tu,z)).$$

Then we get $\varphi(\rho(u,Tu,z)) = 0$ and since φ is altering distance function, hence $\rho(u,Tu,z) = 0$.

From the condition (P2M-1), we get Tu=u. Therefore u is a fixed point of T. We show that the fixed point is unique, we set v be any another fixed of T in $A \cap B$ such that v = Tv, $u \neq v$. Since and $v \in A \cap B \subseteq B$,

we find

$$\psi(\rho(u,v,z)) = \psi(\rho(Tu,Tv,z)
\leq \psi(\max\{\rho(u,v,z),\rho(u,Tu,z),\rho(v,Tv,z)\}
-\varphi(\max\{\rho(u,v,z),\rho(u,Tu,z)\})
= \psi(\rho(u,v,z)) - \varphi(\rho(u,v,z)).$$

Thus $\varphi(\rho(u, v, z)) = 0$ and where the function φ is an altering distance function, hence $\varphi(u, v, z) = 0$. Therefore, u = v. Hence the proof.

Example: Let $X = \{0,1\}$, and establish the P2M space on X by

$$\rho(x, y, z) = \begin{cases} 2 & \text{if } x = y = z = 0 \\ 1 & \text{otherwise} \end{cases}$$
. Also, define the mapping $T: X \to X$ by $T(x) = \frac{x^2}{1+x}$ and the

functions
$$\psi, \varphi: [0, \infty) \to [0, \infty)$$
 by $\psi(t) = 2t$ and $\varphi(t) = 0$. Take $A = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$ and $B = \begin{bmatrix} 0, 1 \end{bmatrix}$.

This example satisfy all the hypothesis of the above theorem.

Proof. Since
$$A = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$$
 and $T(x) = \frac{x^2}{1+x}$, we get $T(0) = 0$, $T(\frac{1}{2}) = \frac{1}{6}$, then

$$T(A) = \begin{bmatrix} 0, \frac{1}{6} \end{bmatrix}$$
. Note that $T(A) \subset B$. From $B = [0,1]$,

we get
$$T(0) = 0$$
, $T(1) = \frac{1}{2}$, then $T(B) = \left[0, \frac{1}{2}\right]$.

Note that $T(B) \subseteq A$. Therefore $A \cup B$ has a cyclic representation of T.

Set $x \in A$ and $y \in B$, without sacrificing generality, We can presume that $x \le y$.

We prove that inequality

$$\psi(\rho(Tx,Ty,z)) \leq \psi(\max\{\rho(x,y,z),\rho(x,Tx,z),\rho(y,Ty,z)\}) - \varphi(\max\{\rho(x,y,z),\rho(y,Ty,z)\}).$$

Since
$$\psi(\rho(Tx,Ty,z)) = \psi\left(\rho\left(\left(\frac{x^2}{1+x}\right),\left(\frac{y^2}{1+y}\right),z\right)\right) = \psi(1) = 2.$$

Since

$$\psi(\max\{\rho(x, y, z), \rho(x, Tx, z), \rho(y, Ty, z)\}) - \\
\varphi(\max\{\rho(x, y, z), \rho(y, Ty, z)\}) \\
= \psi(\max\{1, 1, 1\}) - \varphi(\max\{1, 1\}) \\
= \psi(1) - \varphi(1) = 2 - 0 = 2.$$

CONCLUSION

In this paper, introduced the new types of metric spaces and generalized some definitions and concepts in new metric spaces. Finally, we Study a common fixed point theorems for more than one mapping which defined on new metric spaces under general contractive conditions.

REFERENCES:

- 1. Abdeljawad T., Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput. Modelling, 11-12, (2011), 2923-2927.
- **2.** Abdeljawad T., Karapınar E. and Taş K., Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1894-1899.
- 3. Abu-Donia H. M., Atia H. A. and Khater O. (2020), Fixed point theorem by using ψ -contraction and (ϕ, ψ) --contraction in probabilistic 2--metric spaces, Alexandria Engineering Journal, 59(3), (2020), 1239-1242.
- **4.** Abu-Donia H. M., Atia H. A. and Khater O. (2020), Fixed point theorems for compatible mappings in intuitionistic fuzzy 3-metric spaces, Accepted in THERMAL SCIENCE: INTERNATIONAL SCIENTIFIC JOURNAL.
- **5.** Abu-Donia H. M., Atia H. A. and Safaa E., Fixed Point Theorems in Partial 2-Metric Spaces, submitted,1-12.
- **6.** Abu-Donia H. M., Atia H. A. and Khater O. (2020), Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (φ, ψ)-contractive mappings, Journal of Nonlinear Sciences & Applications (JNSA), 13(6).
- 7. Altun I., Sola F. and Simsek H., Generalized contractions on partial metric spaces, Topology Appl, 157(18), (2010), 2778-2785.
- **8.** Atun I. and Erduran A., Fixed point theorem for monotone mapping on partial metric spaces, Fixed Point Theory Appl., (2011), Article ID508730.
- **9.** Banach. S,: Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math. (1922), 133-181.
- **10.** Lateef D., Fixed Point Theorems in 2- Metric Space for Some Contractive Conditions, International Journal of Scientic and Innovative Mathematical Research (IJSIMR), 6(1), (2018), 16-20.
- **11.** Mathews G. S., Partial metric topology, Research Report 212, Dept. of Computer Science University of Warwick, (1992).
- 12. Mathews G. S., Partial metric topology, Ann. New York Acad. Sci. 728(1994),183-197.
- **13.** Saha M. and Dey D., Fixed Point Theorems for a Class of A-Contractions on a 2-metric space, Novi Sad J. Math., 40(1), (2010), 3-8.
- **14.** Shatanawi W. and Manro S., Fixed point results for cyclic (ψ, φ, A, B) -contraction in partial metric spaces, Fixed Point Theory and Applications, 165, (2012), 687-1812.