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Abstract 

  

This paper focuses on modelling the thermal behaviour of buildings and designing an optimal control algorithm 

for their HVAC systems. The problem of developing a good model to capture the heat storage and heat 

transmission properties of building thermal elements such as rooms and walls is addressed by using the lumped 

capacitance method. The equations governing the system dynamics are derived using the thermal circuit 

approach, and by defining equivalent thermal masses, thermal resistors and thermal capacitors. In the control 

design part, we have introduced a control algorithm which is composed in Pontryagin’s Minimum Principle 

controller. The optimal tracking problem is solved in Pontryagin’s Minimum Principle controller where the 

interconnection of all walls are taken into consideration. The Pontryagin’s Minimum Principle controller 

0minimizes a quadratic cost function which has two quadratic terms. One takes into account the comfort level 

and the other represents the control effort, i.e. the energy consumed to operate the HVAC system. Simulation 

results for a single room example show energy savings using this control algorithm  over a conventional PI 

controller. 
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Introduction 

  Systems of air-conditioning for countries 

founded in the tropics operate at a constant 

compressor speed as these countries experience a 

quite moderate diurnal temperature variation of the 

order of 5–10 ⁰C throughout the year. The 

building's temperature is maintained constant using 

a simple on/off system to the air-handling unit. 

There was no proper control system is used in 

many cases to conserve energy. The selection of 

these systems for most application is mainly based 

on capital cost of the equipment and the use of a 

control system to conserve the electrical energy is 

not of prime importance. 

In cases where there is need of an accurate 

temperature controller of an environment, for 

example, during manufacturing of electronic 

components, cooling and dehumidifying of air is 

accomplished through heating and cooling of air to 

the required conditions in the air handling unit.  

Currently, there is a wide concern about the 

optimum use of energy in buildings. As the price of 

fuel has doubled in the last five years. Two topics  

were of general interests, they were Energy 

conservation and thermal comfort in buildings. 

Using well tuned controller for the air-handling 

unit (AHU) and variable-speed compressor (VSC) 

were suggested and investigated to maintain a 

thermal comfort of an environment room and to 

reduce the energy consumption from an air-

conditioning unit. Which also include the 

development of many different types of controller 

either for AHU or the compressor system. Among 

many control methods for heating and ventilation 

of air-conditioning application, the proportional-

integral-derivative (PID) algorithm is very 

common. 

In the United States, homes and commercial 

buildings use 71% of the electricity according to 

the U.S. Energy Information Agency, and this 
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number will rise to 75% by 2025[1]. Homes 

account for 37% of all U.S. electricity consumption 

and 22% of all U.S. primary energy consumption 

(EIA 2005). This makes home energy reduction an 

important part of any plan to reduce U.S. 

contribution to global climate change [2]. 

 

Mathematical Model 

Using the heat transfer equations fundamentals to 

derive the governing heat transfer equations for the 

temperature distribution in walls and room of a 

simple building. The heat transfer and storage 

equations compose a simple plant model 

representing a one room building Figure (1). 

 

Figure 1: Lumped Capacitance Model of The Room 

 

The model of  room is based on a simple lumped 

capacity model. This model considers a building as 

a thermal network which is analogous to a electric 

circuit network. The nodes in the network are the 

components (room air, walls, ceiling etc.) which 

are considered as lumped capacitance. The 

temperature on each node is analogous to the 

voltage in a electric network. Heat flows among the 

nodes, just like the electric current. There is 

thermal resistance between components and 

thermal capacitance for each capacitance. Thus we 

get a linear thermal network and we can derive 

state-space equations through the energy balance of 

each node. 

In our simple room building model, there are four 

walls which are identified by w1, w2, . . . , w4. The 

area and the temperature of wall i is called Ai and 

Twi respectively. The temperature of the wall is 

assigned to its centre-line, separating the wall into 

two parts. The thermal capacity of a wall which is 

denoted by Cwi may be defined as 

 

 
 

(1) 

where the mass of wall i, mi can be obtained from 

the following equation 

 
 

(2) 

Where ρw is the density of the walls and Vwi is the 

volume of wall i which is the area of the wall times 

its thickness. 

Now we have one node for each the air inside the 

room, floor, ceiling, partitions and four nodes for 

the surrounding walls. These nodes should be 

linked to each other using the thermal resistances. 

Having the walls separated into two sides, we can 

define the thermal resistance for conduction for 

both sides of the wall. Therefore the thermal 

resistance for conduction for each side of the wall 

can be defined as 

 

 

(3) 

where Rw is the total thermal resistance of the wall, 

which can be expressed as 

 

 

(4) 

Where L is the thickness of the wall, k is the 

thermal conductivity of the wall material, and A is 

the area of the wall. 

the convective heat transfer coefficient (h) depends 

on the type of fluid, flow properties and 

temperature properties, it will have different values 

for the two sides of the walls depending on the 

factors mentioned above for each side[3]. For 

simplicity, we only consider two different 

convective heat transfer coefficients, one for the 

internal and one for the external sides of the 

peripheral walls. Notice that the internal walls have 

the same convective heat transfer coefficient on 

their both sides. We denote the internal convective 

heat transfer coefficient, by hi and the external 

convective heat transfer coefficient, by ho. 

Accordingly the thermal resistance for convection 

on the internal and external sides of the peripheral 

walls denoted by (Ri) and (Ro), respectively, can be 

defined as follows 

 

 

(5) 

 

 

 

(6) 

 

Now we can derive the governing equation for the 

temperature evolution in walls, floor, ceiling, 

partitions, and air of the room, using the resistances 

and capacitors defined above. By performing nodal 

analysis we can get the following equation for the 

temperature of walls, floor, ceiling, partitions, and 

room air [4]. 

2.1 Energy balance on external walls 

 

 

(7) 

Where the subscripts refer to the number of the 

wall, for which the equation is written. The first 

term in he above equation accounts for the heat that 

is transferred from air in room to the wall. The 

second term represents the heat transfer from the 

outside to the wall. The term Uwi  and Uwo  

represent the thermal transmittance of the wall 
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inner and outer respectively, (W/m
2
K). Tao,(K) 

outside air temperature, Tai, (K) inside air 

temperature and Cw, (J/K) thermal capacitance of 

the wall. A similar equation can be written for wall 

2 ,3 and 4 

We can write this equation for all of the walls of 

the building. So we have 4 equations governing the 

temperature evolution in the walls [5]. 

 2.2 Floor 

 

 

(8) 

where Af, (m
2
) area of the floor, Cw, (J/K) thermal 

capacitance of the wall, p fraction of solar radiation 

entering floor, Qs, solar radiation through glazing, 

, (W/m
2
K) thermal transmittance of the floor and 

Tf,(˚C) temperature of floor. 

2.3 Ceiling 

 

 

(9) 

where Ac, (m
2
) area of the ceiling, Cc, (J/K) thermal 

capacitance of the ceiling, , (W/m
2
K) thermal 

transmittance of the ceiling and Tc,(˚C) temperature 

of ceiling. 

 

2.4 Partitions 

 

 

(10) 

where Aip, (m
2
) area of the internal partition, Cip, 

(J/K) thermal capacitance of internal partition, p 

fraction of solar radiation entering floor, Qs, solar 

radiation through glazing, , (W/m
2
K) thermal 

transmittance of internal partition and Tip,(˚C) 

temperature of internal partition. 

2.5 Air 

 

 =    

(11) 

where Ca, (J/K) thermal capacitance of air, , (W) 

heat supplied by the plant, , (W) is the heat 

generation inside the room which can be from 

electrical devices such as computers, or from 

humans, lighting and etc. 

If we write the heat transfer equation for every wall 

and room in the building and represent the 

equations in a state space form we get the 

following form of equation. 

 
 

(12) 

 

 
 

(13) 

Where X˙ is a vector of derivatives of 

temperatures, A, B are matrices of coefficients, X 

is a vector of states and U is the input vector. We 

select the temperatures of walls (Twn), ceiling (Tc), 

floor (Tf), room air (Tai), etc. as state variables in 

X(t). And the input variables in U(t) include heat 

supplied by the plant (Qp), internal “casual” heat 

gains (Qc), solar radiation through windows (Qs), 

and outside air temperature (Tao). 
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 As shown in previous modelling results, we have a 

seven-order system and it is difficult to deal with it 

in later control strategy steps. So, the next step is to 

reduce our system model order by using some 

reduction techniques which will be illustrated in the 

next section model order reduction. 

 

3. Model Order Reduction 

As shown in previous section, it is deduced that our 

seven-order system is very complex to be simulated 

numerically as the complexity of the control law 

often depends on the order of the system.  

For control design purposes, we can approximate 

the model with another model of reduced order that 

preserves the original transfer function as much as 

possible.This can be done by eliminating 

uncontrollable and unobservable modes that do not 

affect the transfer function by using two subsequent 

stages, "Balanced Transformation" is used to 

transform our unbalanced system to balanced 

system and then we make "Model Reduction" to 

reduce our obtained balanced system to real 

reduced system that maintain the same transfer 

function as the original system behaviour. 

Actually, we have two options of techniques for 

reducing our system order and the preferred 

technique is chosen according to its resulting 

deviation from the original behaviour. Techniques 

that will be tested are "DELETE Technique" and 

"MATCH DC Technique" 

3.1 Delete Technique 

This technique reduces the order of the model by 

eliminating the states associated with small σi’s 

using the following MATLAB function. 

rsys = modred(sysb,elim,'del') 

 

 

X' = A X + B U 

 =   +  

(16) 

  

 

Figure 2: The step response is showing the difference between 

the original system (sys) and reduction system(rsys) 

We observed in figure 2  that the behaviour of the 

reduced system differs from the original system 

behaviour with a considerable error. So, we will go 

ahead with another technique "MatchDC 

Technique". 

3.2 MatchDC Technique 

The matched DC-gain method preserves the DC 

gain of the original full-order model using the 

following simple function 

rsys = modred(sysb,elim,'MatchDC') 

 

X' = A X + B U 

 =   + 

 

 

(17) 

 

46 



Diaa El-Din et al., Sci. Journal of Oct. 6 Univ. 2018; 4(2): 23-34 

28 
 

Figure 3: The step response is showing there are no difference 

between the original system (sys) and reduction system(rsys) 

 

Using the "MatchDC" technique, the behaviour 

deviation error is approximately negligible and 

cannot be considered as shown in figure 3. 

So we will accept "MatchDC" result to continue 

with it in next section Dynamic Optimization, 

using Pontryagin's Minimum Principle which 

relies on second order equations obtained from 

"MatchDC" technqiue. 

Dynamic Optimization 

Dynamic Optimization interested in optimization of 

plants under dynamic conditions, i.e., the system 

variables are variant with respect to time and 

consequently the time is included in system 

representation. Then the plant is represented by 

differential equations. Techniques involved are 

calculus of variations, dynamic programming, 

search techniques, and Pontryagin technique 

principle. 

 

Figure  4:  Closed-Loop Structure for Time-Optimal Control 

System 

 

4.1  Optimal Control 

The main target of optimal control is determining 

control signals that will drive plant to accomplish 

some constraints and at the same time extremize 

(i.e. maximize or minimize) cost function. We are 

aiming to getting the optimal control signal u*(t) (* 

denotes optimal condition) to drive the plant P 

from initial state to final state with some 

constraints on controls and states and at the same 

time extremizing the cost function J. 

The description of optimal control problem 

requires: 

 1. a mathematical model that describes the 

process to be controlled (i.e. state variables 

matrix),  

 2. determining the cost function, and  

 3. a specification of boundary conditions and the 

constraints on the states and/or controls.  

4.2 Time-Optimal Control of LTI System 

In this section, we address the problem of 

minimizing the time taken for the system to go 

from an initial state to the desired final state of a 

linear, time-invariant (LTI) system. The desired 

final state can be conveniently taken as the origin 

of the state space; in this way we will be dealing 

with time-optimal regulator system. 

4.3  Problem Formulation and Statement 

Let us now present a typical time-optimal control 

(TOC) system. Consider a linear, time-invariant 

dynamical system 

 x˙(t) = Ax(t) + Bu(t) (18) 

where, x(t) is nth state vector; u(t) is rth control 

vector, and the matrices A and B are constant 

matrices of nxn and nxr dimensions, respectively. 

We are also given that 

 1. the system (18) is completely controllable, 

that is, the matrix 
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(19) 

is of rank n or the matrix G is non-singular, and 

 2. the magnitude of the control u(t) is 

constrained as 

 
          

(20) 

Here, U+ and U- are the upper and lower bounds of 

U. But, the constraint relation (20) can also be 

written more conveniently (by absorbing the 

magnitude U into the matrix B) as 

 
           

   

(21) 

 3. the initial state is x(to) and the final (target) 

state is 0 

The problem statement is: Find the (optimal) 

control u*(t) which satisfies the constraint (21) 

and drives the system (18) from the initial state 

x(to) to the origin 0 in minimum time.  

 

4.4 Solution of the TOC System 

We develop the solution to this time-optimal 

control (TOC) system stated previously under the 

following steps. First let us list all the steps here 

and then discuss the same in detail. 

 

  Step 1: Cost Function  

  Step 2: Hamiltonian  

  Step 3: Minimization of Hamiltonian 

  Step 4: Costate Solutions 

  Step 5: Time-Optimal Control Sequences 

  Step 6: State Trajectories 

  Step 7: Switch Curve 

  Step 8: Phase Plane Regions 

  Step 9: Control Law 

  Step 10: Minimum Time 

 

 

 

Results 

5.1  Introduction 

In the present study we demonstrate the way  to 

obtain the closed loop structure for time-optimal 

control system of a second order (double integral) 

AHU system. 

5.2 TOC of a Double Integral System (AHU) 

Here we examine the time-optimal control (TOC) 

of AHU system which demonstrates a well-known 

procedure starting from problem formulation and 

statement then define our problem solution steps 

passing through implementation of control law. 

5.2.1 Problem Formulation and Statement 

5.2.1.1 Problem Formulation 

AHU system is described by second order 

equations as illustrated earlier, recalling we 

reduced our seven order system to a simple 

second order system using MATCHDC technique. 

 

X' = A X + B U 

 =   + 

  

(22) 

 

 
 

 

(23) 

where,  derivatives of walls temperatures; 

 walls temperatures and   is input 

signal represented by heat supplied by the plant 

(Qp). 

The control input   to the system is 

constrained as 

 
 

(24) 
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5.2.1.2 Problem Statement 

Given the double integral system and the 

constraint on the control find the admissible 

control that forces the system from any initial 

state[                     ] to the origin in minimum 

time. 

Let us assume that we are dealing with normal 

system and no singular controls are allowed. Now, 

we attempt to solve the system following the 

procedure described earlier. 

5.2.2 Problem Solution 

Our problem solution consists of the list of the 

following steps with the details following.  

 

 Step 1: Cost Function : For minimum-time 

system, the cost function is easily seen to 

be 

 

 

(25) 

where, t0 is fixed and tf is free. 

 Step 2: Hamiltonian: From the system 

(22), (23) and the cost function (25), form 

the Hamiltonian 

 

H ( ) = 1+ 

 + 

[0.0265  - 0.0873 ] + 0.0019 

 - 0.0015  

(26) 

 Step 3: Minimization of Hamiltonian: 

According to the Pontryagin Principle, we 

need to minimize the Hamiltonian as 

 
 

 

(27) 

 

= 

 

Using the Hamiltonian (26) in the condition (27), 

we have  

 

 

 

 

(28) 

which leads to 

 

 

 

[  

(29) 

Using the result of the previous section, we have 

the optimal control  given in terms of the signum 

function as 

 
 

 

(30) 

Now to know the nature of the optimal control, we 

need to solve for the costates function         and 

 

 Step 4: Costate Solutions: The costate 

equations along with the Hamiltonian (26) are 

  

 

(31) 

 

 

(32) 
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Solving the previous equations, we get the 

costates as 

 
 

(33) 

 
 

(34) 

singularity: singular interval cannot exist because 

the function "q" can only be zero if the initial 

costates are equal zero i.e.  =  = 0, then 

the costates leads to equal  zero i.e.  =  

= 0 and Hamiltonian condition will be equal one, 

however in NTOC, Hamiltonian condition must 

equal zero; pontryagin and his co-workers derived 

that condition [7]. 

by substituting (33),(34) in the function "q" we get 

 

 

= 

] 

(35) 

 Step 5: Time-Optimal Control Sequences: 

From the solutions of the costates (33) and (34) , 

we see that  and  are parabolic lines, and 

that there are four possible (assuming initial 

conditions    and  to be nonzero) 

solutions as shown in Figure 5. Also shown are the 

four possible optimal control sequences 

 
 

(36) 

that satisfy the optimal control relation (30). Let 

us reiterate that the admissible optimal control 

sequences are the ones given by (36). That is, a 

control sequence like {+1,-1,+1} is not an optimal 

control sequence. Also, the control sequence { + 

1, -1, + 1} requires two switching which is in 

violation of the earlier result that a second (nth) 

order system will have at most 1 (n - 1) switching. 

From Figure 5, we see that the time-optimal 

control for the second order (double integral) 

system is a piecewise constant and can switch at 

most once. In order to arrive at closed-loop 

realization of the optimal control, we need to find 

the phase (                   ) plane (state) trajectories. 

  

(a) (0) > 0;   (0) < 0 
(b) (0) < 0;   (0) > 

0 

  

(c) (0) < 0;   (0) < 0 
(d) (0) > 0;   (0) > 

0 

Figure 5: Possible Costates and the Corresponding 

Controls 

 Step 6: State Trajectories: Solving the state 

equations (23),  we have 

 
 

 

(37) 

where, U = (t) = ±l. For phase plane plots, we 

need to eliminate t from solutions (37) for the 
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states. Thus, (for simplicity, we omit ∗ since we 

are now dealing with all optimal functions only. 

 
 

(38) 

 

 
 

(39) 

where, we used U = ±1. If 

 

 

(40) 

And  if 

 

 

(41) 

Now, we can easily see that the relations (40) and 

(41) represent a family of parabolas in ( , ) 

plane (or phase plane) as shown in Figure 6. The 

arrow indicates the direction of motion for 

increasing (positive) time. Our aim is to drive the 

system from any initial state ( , ) to 

origin (0, 0) in minimum time. 

 

Figure 6: Phase Plane Trajectories for u = +1(red 

lines) and u = -1(blue lines) 

Now we can restate our problem as to find the 

time-optimal control sequence to drive the system 

from any initial state ( , ) to the origin (0,0) in 

minimum time. 

 Step 7: Switch Curve: From Figure 6, we see 

that there are two curves labeled γ- and γ+ which 

transfer any initial state  to the origin 

(0,0). 

1. The γ+ curve is the locus of all (initial) points 

 which can be transferred to the final point 

(0,0) by the control u = +1. That is 

 

 

 

  

(42) 

2. The γ- curve is the locus of all (initial) points 

 which can be transferred to the final point 

(0,0) by the control u = -1. That is 

 
 

 

(43) 

3. The complete switch curve, i.e., the γ curve, is 

defined as the union (either or ) of the partial 

switch curves γ+  and γ- . That is 

 

 

 

 

 

(44) 

where, U means the union operation. 

The switch curve γ is shown in Figure 7. 
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Figure 7: Switch Curve for Double Integral Time-

Optimal Control System 

 Step 8: Phase Plane Regions: Let us now 

define the regions in which we need to apply the 

control u =  + 1 or u  = -1. 

1. Let R+ be the region of the points such that  

  

 

(45) 

That is R- consists of the region of the points to the 

left of the switch curve γ. 

2. Let R- be the region of the points such that 

  

 

(46) 

That is R- consists of the region of the points to the 

right of the switch curve γ. 

 

 

 

 

Figure 8: Various Trajectories by Four Possible 

Control Sequences 

Figure 8: shows four possible control sequences 

(36) which drive the system from any initial 

condition to the origin. 

1. If the system is initially anywhere (say a) on the 

 curve, the optimal control is u = +1 to drive the 

system to origin in minimum time . 

2. If the system is at rest anywhere (say b) on the 

 curve, the optimal control is u = -1 to drive the 

system to origin in minimum time  .  

 

3. If the system is initially anywhere (say c) in the 

 region, the optimal control sequence is u = {+ 

1, -1} to drive the system to origin in minimum 

time . 

4. If the system is initially anywhere (say d) in the 

 region, the optimal control sequence is u = {-

1, + 1} to drive the system to origin in minimum 

time . If we start at d and use the control u = + 1 

and use the optimal control sequence u = {-1, +1}, 

we certainly drive the system to origin but 

(a) we then have a control sequence {+1, -1, +1} 

which is not a member of the optimal control 

sequence (34), and  

(b) the time  taken for the system using the 

control sequence {+ 1, -1, + 1} is higher than the 

corresponding time  taken for the system with 

control sequence {-1,+1}.  

 

 Step 9: Control Law: We now reintroduce * to 

indicate the optimal values. The time-optimal 

control u∗ as a function of the state [ , ] is given 

by  

 

 

 

 

 

(47) 

Alternatively, if we define 
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(48) 

then if  

 
 

And 

 

(49) 

 Step 10: Minimum Time: We can easily 

calculate the time taken for the system starting at 

any position in state space and ending at the origin. 

We use the set of equations (38) and (39) for each 

portion of the trajectory. It can be shown that the 

minimum time  for the system starting from ( , 

) and arriving at (0,0). 

 

 

Conclusion 

The presented work was aimed to develop 

Optimal/Robust Control Strategy for Electrical 

Energy Cost Minimization in an Air-Conditioning 

Plant. We may summarize the work carried out as 

follows: 

1. Modelling the thermal behaviour of buildings 

and designing an optimal control algorithm for 

their HVAC systems. 

2. The system modelling order (seventh order 

system) has been simplified and approximated to 

another model of reduced order (second order 

system) that preserves the original transfer function 

as much as possible by using MATCHDC 

technique. 

3. Dynamic optimal control algorithm that takes 

into account the time-varying behaviour of thermal 

loads and operates more efficiently and more 

economically. 

4. The Phase Plane Trajectories for u = +1 (red 

lines) and u = -1 (blue lines) dedicated the direction 

of motion for increasing (positive) time. 

5. The switching curve for Double Integral Time-

Optimal Control System showed how to derive the 

system from any initial state ( , ) to final 

state at origin (0,0) in minimum time. 

6. Various trajectories control sequences showed 

that dynamic optimal control algorithm which is 

based on Pontryagin’s Minimum Principle 

controller was capable of arriving different required 

states in minimum time. 
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