Journal of Fractional Calculus and Applications, Vol. 6(1) Jan. 2015, pp. 1-4. ISSN: 2090-5858. http://fcag-egypt.com/Journals/JFCA/

SUBORDINATION RESULT FOR A CLASS OF ANALYTIC FUNCTIONS WITH MISSING COEFFICIENTS

DEEPAK BANSAL, JANUSZ SOKÓŁ

ABSTRACT. In the present investigation we consider a new class of functions $\mathcal{R}_n(\alpha, \gamma)$ and prove some subordination result. Our result gives result of Owa and Ma [4].

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A}_n denote the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \ (n \in \mathbb{N})$$

$$\tag{1}$$

which are analytic in the open unit disk $\Delta = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. A domain $D \subset \mathbb{C}$ is convex if the line segment joining any two points in D lies entirely in D. A univalent function $f \in \mathcal{A}_n$ is convex if $f(\Delta)$ is convex. Analytically, a univalent function $f \in \mathcal{A}_n$ is convex if and only if

$$\mathfrak{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 0. \tag{2}$$

Further, a function f(z) in the class \mathcal{A}_n is said to be close-to-convex of order $\alpha(0 \leq \alpha < 1)$ in the unit disk Δ if there exists a convex function $g(z) \in \mathcal{A}_n$ such that

$$\Re \mathfrak{e}\left\{\frac{f'(z)}{g'(z)}\right\} > \alpha \ (z \in \Delta) \tag{3}$$

The concept of close-to-convex functions was introduced by Kaplan [2].

Definition 1.1. Let $0 \le \gamma \le 1$, $0 \le \alpha < 1$. A function $f(z) \in \mathcal{A}_n$ is said to be in the class $\mathcal{R}_n(\alpha, \gamma)$ if and only if satisfies

$$\left| (1-\gamma)\frac{f(z)}{z} + \gamma f'(z) - 1 \right| < 1 - \alpha \ (z \in \Delta).$$

$$\tag{4}$$

Note that $f(z) \in \mathcal{R}_n(\alpha, \gamma)$ gives

$$\mathfrak{Re}\left\{(1-\gamma)\frac{f(z)}{z} + \gamma f'(z)\right\} > \alpha.$$
(5)

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, Subordination, Close-to-convex functions. Submitted May 6, 2014 .

Obviously f(z) = z belongs to the class $\mathcal{R}_n(\alpha, \gamma)$. The class $\mathcal{R}_n(\alpha, \gamma)$ is a subclass of class $\mathcal{P}_{\gamma}^{\tau}(\beta)$ defined by Swaminathan [6]. If $\gamma = 1$, we get the class $\mathcal{R}_n(\alpha)$ defined in Owa and Ma [4]. For $\gamma = 0$ we get the class $\mathcal{A}_n(\alpha)$ defined by Owa and Hu [5].

An analytic function f is subordinate to an analytic function g, written as $f(z) \prec g(z)$ ($z \in \mathbb{U}$), if there is an analytic function w defined on Δ with w(0) = 0 and |w(z)| < 1, $z \in \Delta$ such that f(z) = g(w(z)). In particular, if g is univalent in Δ then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\Delta) \subset g(\Delta).$$

In order to prove our main result we need following lemma due to Miller and Mocanu [3], see also Jack [1].

Lemma 1.2. Let the function

$$w(z) = b_n z^n + b_{n+1} z^{n+1} + \dots (n \in \mathbb{N})$$
(6)

be analytic in Δ with w(z) is not identically zero. If $z_0 = r_0 e^{i\theta_0}$ ($r_0 < 1$) and

$$|w(z_0)| = \max\left\{|w(z); |z| \le |z_0|\right\},\tag{7}$$

then

$$z_0 w'(z_0) = m w(z_0).$$

where m is real and $m \ge n \ge 1$.

2. Main Results

Theorem 2.1. Let the function f(z) defined by (1) be in the class $\mathcal{R}_n(\alpha, \gamma)$. Then

$$\frac{f(z)}{z} \prec 1 + \frac{(1-\alpha)z}{1+\gamma n}.$$
(8)

Proof. It is clear that the result is true if f(z) = z. Then, we assume that $f(z) \neq z$. Define the analytic function w(z) in the unit disk Δ by

$$\frac{f(z)}{z} = 1 + \frac{(1-\alpha)w(z)}{1+\gamma n},$$
(9)

then we see that

$$w(z) = b_n z^n + b_{n+1} z^{n+1} + \dots (n \in \mathbb{N}).$$
(10)

Obviously w(0) = 0 and w(z) is not identically zero since f(z) is not identically equal to z. Now, we need only to prove that |w(z)| < 1 for all $z \in \Delta$. If not so, there exists a point $z_0 \in \Delta$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Therefore, applying our Lemma 1.2, we have

$$z_0 w'(z_0) = m w(z_0), (11)$$

where m is real and $m \ge n \ge 1$. Using (9),

$$f'(z) = 1 + \frac{(1-\alpha)\left[zw'(z) + w(z)\right]}{1+\gamma n}.$$
(12)

Now using (9) and (12) we see that

$$(1-\gamma)\frac{f(z_0)}{z_0} + \gamma f'(z_0) - 1 = \frac{1-\alpha}{1+\gamma n} \left[w(z_0) + \gamma z_0 w'(z_0) \right].$$

JFCA-2015/6(1)

Applying (11), we have

$$(1-\gamma)\frac{f(z_0)}{z_0} + \gamma f'(z_0) - 1 = \frac{(1-\alpha)w(z_0)}{1+\gamma n} \left[1+m\gamma\right].$$

Thus

$$\left| (1-\gamma) \frac{f(z_0)}{z_0} + \gamma f'(z_0) - 1 \right| = \frac{(1-\alpha)(1+m\gamma)}{1+\gamma n} \ge 1 - \alpha.$$

This contradicts that f(z) belongs to the class $\mathcal{R}_n(\alpha, \gamma)$. Therefore, we complete the proof of theorem.

It follows from theorem the following

Remark 2.2 For $\gamma = 1$ in Theorem 2.1, we get the result obtained by Owa and Ma [4] in Theorem 1.

Corollary 2.3. If the function f(z) defined by (1) is in the class $\mathcal{R}_n(\alpha, \gamma)$, then

$$\left| Arg\left(\frac{f(z)}{z}\right) \right| \le \sin^{-1}\left(\frac{1-\alpha}{1+n\gamma}\right).$$

The bound is best possible for the function f(z) defined by

$$f(z) = z + \frac{(1-\alpha)}{1+n\gamma} z^{n+1} \in \mathcal{R}_n(\alpha,\gamma).$$

Theorem 2.4. Let the function f(z) defined by (1) be in the class $\mathcal{R}_n(\alpha, \gamma)$. Then

$$|a_k| \le \frac{1-\alpha}{1-\gamma(1-k)} \quad k > n, \tag{13}$$

and

$$\sum_{k=n+1}^{\infty} \frac{1 - \gamma(1-k)}{1-\alpha} \left| a_k \right|^2 < 1.$$
(14)

Proof. Using (1) we can write the condition (4) as follows

$$\left|\sum_{k=n+1}^{\infty} \frac{1 - \gamma(1-k)}{1 - \alpha} a_k z^{k-1}\right| < 1 \ (z \in \Delta)$$
(15)

then we see that

$$\sum_{k=n+1}^{\infty} \frac{1 - \gamma(1-k)}{1 - \alpha} a_k z^{k-1}$$

is the bounded function, hence it has the coefficients bounded by 1. Therefore, we have

$$\left|\frac{1-\gamma(1-k)}{1-\alpha}a_k\right| \le 1 \quad k > n,$$

and we immediately obtain the estimation (13), while (14) also follows immediately from another known property of bounded functions. \Box

Acknowledgement

The present investigation of author is supported by Department of Science and Technology, New Delhi, Government of India under Sanction Letter No.SR/FTP/MS-015/2010.

References

- [1] I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc., 3(1971), 469-474.
- [2] W. Kaplan, Close to convex schlicht functions, Mich. Math. J., 1(1952), 169-185.
- [3] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 55 (1978), 289-305.
- [4] S. Owa and W. Ma, On certain subclass of close-to-convex functions, Proc. Japan. Acad., 64(A)(1988), 106-108.
- [5] S. Owa and K. Hu, Properties of certain integral operator, Proc. Japan. Acad., 65(A)(1989), 292-295.
- [6] A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Ineq. Pure Appl. Math., 5(4)(2004), Art.3, 1-10.

Deepak Bansal

Department of Mathematics, Govt. College of Engg. and Technology, Bikaner 334004, Rajasthan, India

 $E\text{-}mail\ address: \texttt{deepakbansal_79@yahoo.com}$

Janusz Sokół

DEPARTMENT OF MATHEMATICS, RZESZÓW UNIVERSITY OF TECHNOLOGY, AL. POWSTAŃCÓW WARSZAWY 12, 35-959 RZESZÓW, POLAND

E-mail address: jsokol@prz.edu.pl