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SUBORDINATION RESULT FOR A CLASS OF ANALYTIC
FUNCTIONS WITH MISSING COEFFICIENTS

DEEPAK BANSAL, JANUSZ SOKOL

ABSTRACT. In the present investigation we consider a new class of functions
Rn(a,v) and prove some subordination result. Our result gives result of Owa
and Ma [4].

1. INTRODUCTION AND PRELIMINARIES

Let A,, denote the class of functions of the form

[o ]
fe)=z+ > at (neN) (1)
k=n—+1
which are analytic in the open unit disk A = {z: z € C and |2| < 1}. A domain
D C C is convex if the line segment joining any two points in D lies entirely in D.
A univalent function f € A, is convex if f(A) is convex. Analytically, a univalent
function f € A, is convex if and only if

Zf”(Z)>
Re | 1+ > 0. 2
(555 )
Further, a function f(z) in the class A,, is said to be close-to-convex of order

a(0 < a < 1) in the unit disk A if there exists a convex function g(z) € A,, such
that

f'(2) }
NRe { >a(z€A 3
The concept of close-to-convex functions was introduced by Kaplan [2].

Definition 1.1. Let 0 <~y <1, 0 < a < 1. A function f(z) € A, is said to be in

the class R, («,7) if and only if satisfies

‘(1—7)f(;)+'yf'(z)—1’<1—a(z€A). (4)
Note that f(z) € Rn(a,) gives
S)fie{(l—’y)f(zz) —|—'yf’(z)} > a. (5)
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Obviously f(z) = z belongs to the class R, («, ). The class R, («,7) is a subclass
of class P7(3) defined by Swaminathan [6]. If v = 1, we get the class R, («) defined
in Owa and Ma [4]. For v = 0 we get the class A, («) defined by Owa and Hu [5].

An analytic function f is subordinate to an analytic function g, written as f(z) <
g(z) (z € U), if there is an analytic function w defined on A with w(0) = 0 and
lw(z)| < 1, z € A such that f(z) = g(w(z)). In particular, if g is univalent in A
then we have the following equivalence:

f(2) <g(z) < [(0) =g(0) and f(A) C g(A).
In order to prove our main result we need following lemma due to Miller and Mocanu

[3], see also Jack [1].
Lemma 1.2. Let the function

w(z) = bp2" + bpyp12" T 4. (n € N) (6)
be analytic in A with w(z) is not identically zero. If zg = roe’® (ro < 1) and
[w(z0)] = max {|w(z); |2] < |z0l}, (7)

then
zow' (20) = mw(zo).

where m is real and m > n > 1.

2. MAIN RESULTS
Theorem 2.1. Let the function f(z) defined by (1) be in the class Ry (o, 7). Then

1—

1@y, 0a) (8)
z 14+n

Proof. It is clear that the result is true if f(z) = z. Then, we assume that

f(2) # z. Define the analytic function w(z) in the unit disk A by

z 14+9n
then we see that
w(z) = bp2™ 4+ bpyp12" ™+ .(n €N). (10)

Obviously w(0) = 0 and w(z) is not identically zero since f(z) is not identically
equal to z. Now, we need only to prove that |w(z)| < 1 for all z € A. If not so,
there exists a point zg € A such that

max |w(z)l = |w(zy)| = 1.
max fu(z)] = fuw(zo)|

Therefore, applying our Lemma 1.2, we have
zow' (20) = mw(zo), (11)

where m is real and m > n > 1. Using (9),

(1 —a)[zw'(z) + w(z)]

F) =1+ ) (12)
Now using (9) and (12) we see that
W=y L% ) 1= 27 ua) 4 yzow(20).

20 1+9n
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Applying (11), we have

(1—7)%?—1—7]“(2’0)—1: W[l—km’ﬂ-
Thus
=) Ly -1 - E22E M) 5

This contradicts that f(z) belongs to the class R, («,~). Therefore, we complete
the proof of theorem.[]

It follows from theorem the following
Remark 2.2 For v = 1 in Theorem 2.1, we get the result obtained by Owa and
Ma [4] in Theorem 1.

Corollary 2.3.1If the function f(z) defined by (1) is in the class R,(«,7), then

()]s (252),

The bound is best possible for the function f(z) defined by

_ (1 — Oé) n+1
f(z)=z+ 1+n72 € Rul(a,7).
Theorem 2.4. Let the function f(z) defined by (1) be in the class Ry (e, 7). Then
1—«
< — k 1
ol £ iyt ke (13)
and
—~ -1k
}:4—€QE;QMMK<L (14)
k=n-+1

Proof. Using (1) we can write the condition (4) as follows

— 1—~y(1-k
Z 3(7>akzk_l <1l(zeA) (15)
k=n-+1 -a

then we see that

(oo}

1—-~v(1-k&
Z ( ) ax Skl
11—«
k=n-+1

is the bounded function, hence it has the coefficients bounded by 1. Therefore, we
have
1—~(1—k)

<1 k>n,
11—«

ag

and we immediately obtain the estimation (13), while (14) also follows immediately
from another known property of bounded functions. (0
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