
Journal of Fractional Calculus and Applications,

Vol. 6(1) Jan. 2015, pp. 21-30.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

LARGE DEFLECTION OF A CIRCULAR PLATE UNDER

NON-UNIFORM LOAD PERTAINING TO A PRODUCT OF

SPECIAL FUNCTIONS

V.B.L. CHAURASIA, JAGDISH CHANDRA ARYA

Abstract. The main object of this paper is to obtain the large deflection
and bending stresses for a clamped circular plate under non-uniform load by
using Berger’s approximate method. The load shape considered here is an

arbitrary function p(x) involving Jacobi polynomial, Fox-Wright function and
H̄-functions. The small deflection case is also considered as a particular case
of large deflection. The nature of the load shape considered here yields many
useful and interesting results while solving the problem. Some known and new

results have been evaluated by taking suitable values of parameters.

1. Introduction

The H̄-function given by Inayat-Hussain [6, 7] which is a generalization of the
familiar Fox H-function, is as follows

H̄
M,N

P,Q[z] = H̄
M,N

P,Q

[
z
∣∣∣(aj,αj;Aj)1,N, (aj,αj)N+1,P

(bj,βj)1,M,(bj,βj;Bj)M+1,Q

]
=

1

2πi

∫ i∞

−i∞

ϕ̄(ξ) zξ dξ (1)

where

ϕ̄(ξ) =

∏M
j=1 Γ(bj − βjξ)

∏N
j=1{Γ(1− aj + αjξ)}Aj∏Q

j=M+1{Γ(1− bj + βjξ)}Bj
∏P

j=N+1 Γ(aj − αjξ)
, (2)

i =
√
(−1).

This contains the fractional powers of some of the Gamma functions. Here and
throughout the paper aj (j = 1,. . . ,P) and bj (j = 1,. . . ,Q) are complex parameters
αj ≥ 0 (j = 1, ...,P), βj ≥ 0 (j = 1, ...,Q)(not all zero simultaneously) and the
experiment Aj (j = 1,. . . ,N) and Bj (j = M+1,. . . ,Q) can take non-integer values.

The contour in (2) is imaginary axis Re( ξ ) = 0. It is suitably indented in order
to avoid the singularities of the Gamma functions and to keep those singularities
on appropriate sides. Again, for Aj (j = 1,. . . ,N) not an integer, the poles of
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the Gamma functions of the numerator in (2) are converted to the branch points.
However, as long as there is no coincidence of poles from any Γ(bj−βjξ) (j =
1,. . . ,.M) and Γ (1− aj+αj ξ) (j = 1,. . . ,N) pair, the branch cuts can be chosen so
that the path of integration can be distorted in the usual manner. The condition
for the absolute convergence of the defining integral for H̄-function have been given
by Buschman and Srivastava as

Ω =
M∑
j=1

|Bj| +
N∑
j=1

Ajαj −
Q∑

j=M+1

|Bjβj| −
P∑

j=N+1

αj > 0

and | arg (z) | < 1
2 π Ω.

We assume that the convergence and sufficient condition of above function, given
by equation (1) is satisfied by each of the various H̄-function involved throughout
the present work.
The behavior of the H̄-function for small values of |z |follows easily from a result
recently given by Rathie [[10], p.306], we have

H̄
M,N

P,Q
[z] = 0 ( | z |α) ,H̄M,N

P,Q
[z] = 0 ( | z |α) ,

α = min
1 ≤ j ≤M

[Re (bj/Bj)] , | z | → 0.

The series representation of H̄-function [[2], p.271] is given by

H̄
S,T

U,V

[
z

∣∣∣∣(a′j ,α′
j ;A

′
j )1,T, (a

′
j ,α

′
j )T+1,U

(b
′
j ,β

′
j )1,S, (b

′
j ,β

′
j ;B

′
j )S+1,V

]
=

S∑
h=1

∞∑
r=0

σ(s) (− 1)r zs

r ! βh
(3)

where

σ(s) =

∏S

j = 1
j ̸= h

Γ(b
′

j − β
′

j s)
∏T

j=1{Γ(1− a
′

j + α
′

js)}
A

′
j

∏V
j=S+1{Γ(1− b

′
j + β

′
j s)}

Bj
∏U

j=T+1 Γ(a
′
j − α

′
js)

,

s = ξh,r =
bh + r

βh
. (4)

Also, the Fox-Wright’s function [11] is defined as

p′ψ q′(z) = p′ψ q′

[
(ej,Ej)1,p′ ;

(fj,Fj)1,q′ ; z
]

=
∞∑
n=0

∏p′

j=1 Γ(ej + Ejn)∏q′

j=1 Γ(fj + Fjn)

zn

n !
, (5)

where Ej(j = 1, ..., p′) and Fj(j = 1, .., q′)are real and positive and

1 +

q′∑
j=1

Fj −
p′∑
j=1

Ej > 0.

Plates are the flat structures whose thickness t is small compared to the other in-
plane dimensions. For a circular plate , the only in-plane dimension is the radius ρ.
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Plate theories are classified in many ways. One of them is based on the thickness,
that is, thin and thick-plate theories. Geometrically, a plate is said to be thin if its
thickness ratio t/ρ is less than 1/20, otherwise the plate is known to be thick. The
bending properties of a plate depend mainly on its thickness as compared with its
other dimensions. There are several theories for plates under large deflection; the
most commonly used of them is the Von-Karman plate theory which is sometimes
referred to as the Kirchoff-Foppel plate theory.
In the classical theory of plates, small deflection and elastic behavior of the material
are assumed. When the lateral deflection exceeds one half the plate thickness [13],
the classical theory generally is not adequate and the second order effects of the ver-
tical displacements on the membrane stresses need to be considered. Two-coupled
non-linear partial differential equations considering these effects were given by [6].
Solutions based on these differential equations have been known as large deflection
solutions. Berger [1] in 1955 proposed an approximate method for investigating the
large deflection of initially flat isotropic plates.

Here the large deflection of a clamped circular plate under non-uniform load has
been calculated by using Berger’s approximate method. We consider the applied
external pressure p(x) in the following form:

p(x) = K0

(
1− x2

ρ2

)α

Pa,b
β

(
1− 2x2

ρ2

)
p′ψ q′

{
K1

(
1− x2

ρ2

)}
H̄

M,N

P,Q

[
K2

(
1− x2

ρ2

)]
H̄

S,T

U,V

[
K3

(
1− x2

ρ2

)]
(6)

where Pa,b
β (x)is the Jacobi polynomial [12] and K0, K1 and K2 are constants.

2. Statement of the Problem

Let us assume a clamped circular plate of thickness t, radius ρ and flexural
rigidity R. Then by using Berger’s method, the approximate equations for a circular
plate undergoing large deflections due to an externally applied load p(x) may be
given as (

d2

dx2
+

1

x

d

dx

) (
d2w

dx2
+

1

x

dw

dx
− k2w

)
=

p

R
= ϕ(x) (7)

where k is a normalized constant of integration given by the equation

dy

dx
+

y

x
+

1

2

(
dw

dx

)2

=
k2t2

12
(8)

where w is the plate deflection, normal to the middle plane of the plate and y is
the radial displacement.
The boundary condition of the problem are:
(i) w = 0 = dw

dx , at x = ρ
(ii) y = 0, at x = ρ

Solution of the Problem

Let us consider
w =

∑
i

Gi[J0(xti)− J0(ρti)] (9)

where ti is the i-th root of J1(ρti) = 0.
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It is clear that the boundary conditions are satisfied by the above equation.
Now using (9) in the equation (7), we find∑

i

Gi t
2
i (k

2 + t2i ) J0(xti) = ϕ(x) (10)

Now expanding ϕ(x) in a series of Bessel’s function, we obtain on integration∫ ρ

0

Gi t
2
i (k

2 + t2i ) J
2
0(xti) x dx =

∫ ρ

0

ϕ(x) J0(xti) ρdx (11)

Now by left hand side of (11)∫ ρ

0

x J20(xti)dx =
ρ2

2
J20(ρti) (12)

(11) becomes

Gi t
2
i (k

2 + t2i )
ρ2

2
J20(ρti) =

∫ ρ

0

ϕ(x) J0(xti) x dx

or

Gi =
2
∫ ρ

0
x ϕ(x) J0(x ti)dx

ρ2 t2i (k
2 + t2i )J

2
0(ρti)

(13)

Now using [5], equations (2) through (4), the definition of Bessel function and in-
terchanging the order of summations and integration, we find∫ 1

0

θ2λ+1(1− θ2)α P
a,b

β (1− 2θ2) p′ψ q′ [K1(1− θ2)]

.H̄
M,N

P,Q[K2(1− θ2)] H̄
S,T

U,V[K3(1− θ2)] Jµ(θτ) dθ

=
∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

S∑
h=1

∞∑
r=0

Kn
1 K

s
3(−1)r+n′′

(−β)n′ σ(s)
(
τ
2

)µ+2n′′

2 n ! n′ ! n′′ ! β ! r ! βh

.

∏p′

j=1 Γ(ej + Ejn) Γ(1 + a + β) (1 + a + b + β)n′ Γ
(
λ+ n′ + n′′ + µ

2 + 1
)∏q′

j=1 Γ(fj + Fjn) Γ(1 + a + n′) Γ(1 + µ+ n′′)

H̄
M, N+1

P+1,Q+1

[
K2

∣∣∣(−α−n−s,1;1); (aj,αj;Aj)1,N,(aj,αj)N+1,P

(bj,βj)1,M,(bj,βj;Bj)M+1,Q,(−1−λ−n−n′−n′′−α−s− µ
2 ,1;1)

]
(14)

where

Re(a) > − 1, Re(b) > − 1, Re(λ) > −1, Re(α) > −1, Re(µ) > − 1

2
,
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Re

(
α+

b
′

j

β
′
j

)
> 0, Re

(
α+

b
′

j

β
′
j

)
> 0, (j = 1, ...,Q)

Using (14) in view of (6) and (7), we get

Gi =
K0 Γ(1 + a + β)

R β ! (k2 + t2i ) J
2
0(ρti)

∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

S∑
h=1

∞∑
r=0

.
Kn

1 K
s
3(−1)r+n′′

(−β)n′ σ(s)

n ! n′ ! n′′ ! r ! βh

∏p′

j=1 Γ(ej + Ejn) Γ(1 + n′ + n′′) (1 + a + b + β)n′∏q′

j=1 Γ(fj + Fjn) Γ(1 + a + n′) Γ(1 + n′′)

H̄
M, N+1

P+1,Q+1

[
K2

∣∣∣(−α−n−s,1;1), (aj,αj;Aj)1,N,(aj,αj)N+1,P

(bj,βj)1,M,(bj,βj;Bj)M+1,Q,(−1−n−n′−n′′−α−s,1;1)

]
(15)

Now combining the equations (9) and (15), we get

w = L1

∑
i

L2

(k
2
+ t2i )

[J0(xti)− J0(ρti)] (16)

where

L1 =
K0 Γ(1 + a + β)

R β !

and

L2 =
1

t2i J
2
0(ρti)

∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

S∑
h=1

∞∑
r=0

Kn
1 Ks

3(−1)r+n′′
(−β)n′ σ(s)

n ! n′ ! n′′ ! r ! βh

.

∏p′

j=1 Γ(ej + Ejn) Γ(1 + n′ + n′′) (1 + a + b + β)n′∏q′

j=1 Γ(fj + Fjn) Γ(1 + a + n′) Γ(1 + n′′)

H̄
M, N+1

P+1,Q+1

[
K2

∣∣∣(−α−n−s,1;1); (aj,αj;Aj)1,N,(aj,αj)N+1,P

(bj,βj)1,M,(bj,βj;Bj)M+1,Q,(−1−n−n′−n′′−α−s,1;1)

]

Now the radial displacement y can be obtained by using equation (8) and (9) as

y =
k2t2x

24
− 1

2

∞∑
i=1

G2
i t

2
i

[
x

2

{
J

′

i
2(xti) +

(
1− 1

x2t2i

)
J21(xti)

}]

− 1

2

∞∑
i=1

∞∑
j=1

GiGjtitj

[
ti J2(xti)J1(xtj)− tj J2(xtj) J1(xti)

t2i − t2j

]
+ C1, i ̸= j (17)

where C1 is the constant of integration.
Applying the boundary condition

y = 0 at x = ρ and J1(ρti) = 0, we get



26 V.B.L. CHAURASIA, JAGDISH CHANDRA ARYA JFCA-2015/6(1)

C1 =
−k2t2ρ

24
+

1

4

∞∑
i=1

G2
i t

2
i ρ J

′2
1 (ρti). (18)

Hence the radial displacement y is established as

y =
k2t2(x− ρ)

24
− 1

2

∞∑
i=1

G2
i t

2
i

[
x

2

{
J

′

i
2(xti) +

(
1− 1

x2t2i

)
J21(xti)

}]

− 1

2

∞∑
i=1

∞∑
j = 1
i ̸= j

GiGjtitj

[
ti J2(xti)J1(xtj)− tj J2(xtj) J1(xti)

t2i − t2j

]
+

1

4

∞∑
i=1

G2
i t

2
i ρ J

2
0 (ρti)

3. Applications

(3.A) The deflection given by equation (16) can be used to evaluate the boundary
stresses at the surface of the plate which for the circular plate, are given by [1] as

σx = − 6R

t2

(
d2w

dx2
+
ν

x

dw

dx

)
(19)

and

σθ = − 6R

t2

(
ν
d2w

dx2
+

1

x

dw

dx

)
(20)

where ν is the Poisson’s ratio.
By using (16), we get

σx = − 6R

t2
L1

∑
i

L2

(k
2
+ t2i )

[
J

′ ′

0 (xti) +
ν

x
J

′

0(x ti)
]

(21)

and

σθ = − 6R

t2
L1

∑
i

L2

(k
2
+ t2i )

[
ν J

′′

0 (xti) +
1

x
J

′

0(x ti)

]
(22)

Now, putting x = 0 in (21) and (22), we get the bending stresses at the centre of
the plate as

(σx)x=0 = (σθ)x=0 =
3R

t2
L1

∑
i

L2

(k
2
+ t2i )

(ν + 1) t2i , (23)

Also by putting x = ρ, the bending stresses at the edge of the plate are obtained
as

(σx)x=ρ =
6RL1

t2

∑
i

L2

(k
2
+ t2i )

t2i J0(ρti) (24)

and

(σθ)x=ρ =
6RL1

t2

∑
i

L2

(k
2
+ t2i )

ν t2i J0(ρti) (25)
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(3.B) When k = 0, the differential equation (7) corresponds to that of small de-
flection equation and then equation (16) leads to

w = L1

∑
i

L2

t2i
[J0(xti)− J0(ρti)] (26)

(3.C) By using x = 0, we obtain the deflection w0 at the centre of the plate as

w0 = L1

∑
i

L2

(k
2
+ t2i )

[1− J0(ρti)] (27)

whereas the small deflection will be given by

w0 = L1

∑
i

L2

t2i
[1− J0(ρti)] (28)

4. Special Cases

(A) By setting αj = 1, βj = 1,Aj = 1,Bj = 1, ∀j for H̄S,T

U,V

{
K3

(
1− x2

ρ2

)}
in equa-

tion (6) all the results reduce to known result obtained by V.B.L. Chaurasia and
R.C. Meghwal [4].

(B) By taking Aj = Bj = 1and A
′

j = B
′

j = 1 for H̄
M,N

P,Q and H̄
S,T

U,V in the load p(x),

both the H̄-functions reduces to the Fox’s H-function. Then we obtain the deflection
as

w = D1

∑
i

D2

(k
2
+ t2i )

[J0(xti)− J0(ρti)] (29)

where

D1 =
K0

R

Γ(1 + a + β)

β !
(30)

and

D2 =
1

t2i J
2
0(ρti)

∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

S∑
h=1

∞∑
r=0

Kn
1 Ks′

3 (−1)r+n′′
(−β)n′

n ! n′ ! n′′ ! r ! βh
φ(s′)

(
ρti
2

)2n′′

.
(1 + a + b + β)n′ Γ(1 + n + n′′)

∏p′

j=1 Γ(ej + Ejn)

Γ(1 + a + n′) Γ(1 + n′′)
∏q′

j=1 Γ(fj + Fjn)

H
M, N+1

P+1,Q+1

[
K2

∣∣∣(−α−n−s′,1;1), (aj,αj) 1,P

(bj,βj)1,Q, (−1−n−n′−n′′−α−s′,1;1)

]

whereas we get the small deflection as

w = D1

∑
i

D2

t2i
[J0(xti)− J0(ρti)] (31)
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In this case, the deflection at the centre of the plate is given by

w0 = D1

∑
i

D2

(k
2
+ t2i )

[1− J0(ρti)] (32)

(C) By replacing H̄
S,T

U,V[K3(1− θ2)] by

Uψ̄ V

[
(a

′
j ,α

′
j ;A

′
j )1,U ;

(b
′
j ,β

′
j ;B

′
j )1,V ;

k3(1− θ2)

]
and

H̄
M,N

P,Q[K2(1− θ2)] by Pψ̄ Q

[
(aj,αj;Aj)1,P ;

(bj,βj;Bj)1,Q ; K2(1− θ2)
]

in equation (6), we obtain the deflection as

w = D1

∑
i

D3

(k
2
+ t2i )

[J0(xti)− J0(ρti)] (33)

where D1 is given by (30) and

D3 =
1

t2i J
2
0(ρti)

∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

∞∑
ℓ=0

Kn
1 Kℓ

3(−1)n
′′
(−β)n′

n ! n′ ! n′′ ! ℓ !

(
ρti
2

)n′′

.
(1 + a + b + β)n′Γ (1 + n + n′′)

∏p′

j=1 Γ(ej + Ejn)
∏P

j=1 {Γ(e
′

j + E
′

jℓ)}
Aj

Γ(1 + a + n′) Γ(1 + n′′)
∏q′

j=1 Γ(fj + Fjn)
∏Q

j=1{Γ(f
′
j + F

′
jℓ)}Bj

H̄
1, P+1

P+1,Q+2

[
(−K2)

∣∣∣(−α−n−ℓ,1;1), {(1−aj),αj;Aj}1,P

(0,1), {(1−bj),βj;Bj}1,Q, (−1−n−n′−n′′−α−ℓ,1;1)

]
The small deflection in this case is given by

w = D1

∑
i

D3

t2i
[J0(x ti)− J0(ρ ti)], (34)

also, the deflection at the centre of the plate is,

w0 = D1

∑
i

D3

(k
2
+ t2i )

[1− J0(ρti)] (35)

(D) By replacing H̄
S,T

U,V[K3(1−θ2)] by g(S,T,U,V;K3(1−θ2)) and H̄
M,N

P,Q[K2(1−θ2)]
by g(M,N,P,Q; K2(1−θ2))the special cases of H̄-function ([10], eqn. (6.10), p.306,
[6], p.4119-4128) in equation (6), we obtain the deflection as

w = D1

∑
i

D4

(k
2
+ t2i )

[J0(xti)− J0(ρti)], (36)

where D1 is given by (30) and

D4 =
1

t2i J
2
0(ρti)

∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

∞∑
r=0

Kn
1 Kr

3 K
2
d−1(−β)n′ (−1)n

′′−Q

n ! n′ ! n′′ ! r !
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.
C2 f(r) Γ(Q + 1)Γ

(
1
2 + P

2

)
22+Q

√
π Γ(M) Γ

(
M− P

2

) (ρti
2

)2n′′
(1 + a + b + β)n′ Γ(1 + n + n′′)

∏p′

j=1 Γ(ej + Ejn)

Γ(1 + a + n′) Γ(1 + n′′)
∏q′

j=1 Γ(fj + Fjn)

H̄
1, 4

4,4

[
(−K2)

∣∣∣∣(−α−n−r,1;1), (1−M,1,1), (1−M+ P
2 ,1;1), (1−N,1;1+Q)

(0,1), (− P
2 ,1;1), (−N,1;1+Q), (−1−n−n′−n′′−α−r,1;1)

]
,

where

C2 =
2−V−2Γ(V+1)B( 1

2 ,
1
2+

U
2 )

π and

f(r) =

(
S− U

2

)
r
(S)r(T + r)

−(1+V)(
1 + U

2

)
r

.

The small deflection is given by

w = D1

∑
i

D4

(k
2
+ t2i )

[J0(xti)− J0(ρti)] (37)

and the deflection at the centre of the plate is

w0 = D1

∑
i

D4

(k
2
+ t2i )

[1− J0(ρti)] (38)
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