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ON EXISTENCE AND UNIQUENESS OF SOLUTION FOR

FRACTIONAL BOUNDARY VALUE PROBLEM

HASIB KHAN, RAHMAT ALI KHAN AND MOHSEN ALIPOUR

Abstract. In this paper, we investigate existence and uniqueness of solution

for a nonlinear fractional differential equation with boundary conditions{
cDα

0+
u(t) + f(u(t)) = 0, 1 < α < 2,

u(ξ) = 0, Dpu(1)− µu(η) = 0, 0 < p < 1.

where η < ξ. The differential operator is Caputo fractional derivative. We use
Shauder fixed point theorem and Banach contraction principle. We impose
some growth conditions on the nonlinear function f .

1. Introduction

Recently fractional calculus has gained much popularity and importance in sci-
ence and engineering. It has already been proved by experiments that most of
the situations associated with complex systems have nonlocal dynamics possess-
ing long memory in time. The fractional order derivatives and integrals have
some of these characteristics which has the capabilities of modelling various com-
plex phenomena and the fractional modelling is considered to be a powerful tool
for the swift development of fractional calculus. The concentration of many re-
searchers have been attracted in a verity of research fields due to the development
and applications of fractional calculus such as engineering, mathematics, physics,
chemistry, etc [1, 2, 3, 4, 5, 6]. The researchers have studied and developed var-
ious features of fractional differential equations but the theory of existence and
uniqueness of solutions of fractional order differential equations is being considered
the most significant area of research and the researchers in the field of mathe-
matics also struggles to develop theory for applied sciences which can play an
important role in this area of mathematics. The community of mathematicians
showed a lot of interest in this field of research, particularly, to study the boundary
value problems for fractional order differential equations, we refer the readers to
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Here we refer some boundary value problems which motivated us for the present
work. In [24], Bai and Lu investigated the existence and multiplicity of positive
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solutions for fractional differential equation{
Dq

0+u(t) + f(t, u(t))) = 0, 0 < t < 1

u(0) = u(1) = 0,

where 1 < q ≤ 2 and Dq
0+ is the Riemann-Liouville fractional derivative.

By an application of Green’s function in [25], X. Xu et.al studied multiple posi-
tive solutions for the boundary value problem of a nonlinear fractional differential
equation {

Dσ
0+u(t) = f(t, u(t))) = 0, 0 < t < 1

u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 < α ≤ 4 is a real number and Dσ
0+ is the standard Riemann-Liouville

differentiation.
By means of Guo-Krasnosel’skii fixed point theorem and Leggett-Williams fixed

point theorem in [26], S. Zhang studied the existence and multiplicity of positive
solutions for nonlinear fractional boundary value problem{

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where 1 < α ≤ 2 is a real number and Dα
0+ is the standard Caputo’s fractional

derivative.
By means of upper and lower solution method and fixed point theorems S. Liang

and J. Zhang in [27], studied positive solution of fractional boundary value problem{
Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

where 3 < α ≤ 4 is a real number and Dα
0+ is standard Riemenn-Liouville fractional

derivative.
In this paper we study existence and uniqueness of solution for fractional differ-

ential equation. {
cDα

0+u(t) + f(t, u(t), u′(t)) = 0 1 < α < 2

u(ξ) = 0, Dpu(1)− µu(η) = 0 0 < p < 1
(1)

where 0 < η < ξ < 1, 0 < µ < 1, f ∈ C([0, 1]× [0,+∞)× [0,+∞), [0,+∞)) and
Dα is Caputo’s fractional derivative of order α.

We recall some basic definitions and results. For α > 0, choose n = [α] + 1 in
case α in not an integer and n = α in case α is an integer. The fractional order
integral of order α > 0 of a function f : (0,∞) → R is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds,

provided the integral converges. For a function f ∈ Cn[0, 1], the Caputo fractional
derivative of order α is define by

(Dα)f(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

provided that the right side is pointwise defined on (0,∞).
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The following Lemmas gives some properties of fractional integrals.
Lemma 1 [2] For α, β > 0, the following relation hold:

Dαtβ =
Γ(β + 1)

Γ(β + 1− α)
tβ−α−1, β > n and Dαtk = 0, k = 0, 1, 2, ..., n− 1.

Lemma 2 [2] Fort β ≥ α > 0 and f ∈ L1[a, b], the following

DαIβa+f(t) = Iβ−α
a+ f(t) holds almost everywhere on [a, b]

and it is valid at any point t ∈ [a, b] if f ∈ C[a, b].
Lemma 3 Let α > 0 then

Iα Dα
0 u(t) = u(t) + c0 + c1t+ ...+ cn−1t

n−1, for ci ∈ R. (2)

Lemma 4 [2] For g(t) ∈ C(0, 1), the homogenous fractional order differential equa-
tion Dα

0+g(t) = 0 has a solution

g(t) = c1 + c2t+ c3t
2 + ...+ cnt

n−1, ci ∈ R, i = 1, 2, 3, ..., n. (3)

We use the following notations for our convenience,

G1(t, s) = − 1

Γ(α)
(t− s)α−1,

G2(t, s) =
1

Γ(α)
(ξ−s)α−1+

t− ξ

∆2
(
µ

α
(ξ−s)α−1−(η−s)α−1)+

1

Γ(α− p)
(1−s)α−p−1,

G3(t, s) =
1

Γ(α)
(ξ − s)α−1 +

t− ξ

∆2

µ

α
(ξ − s)α−1 +

1

Γ(α− p)
(1− s)α−p−1

and

G4(t, s) =
1

Γ(α− p)
(1− s)α−p−1.

Lemma 5 Let f ∈ C([0, 1]× [0,+∞)× [0,+∞), [0,+∞)), the BVP for fractional
differential equation{

cDα
0+u(t) + f(u(t)) = 0, 1 < α < 2,

u(ξ) = 0, Dpu(1)− µu(η) = 0, 0 < p < 1,
(4)

has a solution given by

u(t) =

∫ 1

0

G(t, s)f(u(s))ds, (5)

where

G(t, s) =



G1(t, s) +G2(t, s) 0 ≤ s ≤ η ≤ ξ ≤ t ≤ 1 ,

G2(t, s), 0 ≤ t ≤ s ≤ η ≤ ξ ≤ 1 ,

G3(t, s) 0 ≤ η ≤ t ≤ s ≤ ξ ≤ 1 ,

G4(t, s) 0 ≤ η ≤ ξ ≤ t ≤ s ≤ 1,

G1(t, s) +G3(t, s) 0 ≤ η ≤ s ≤ ξ ≤ t ≤ 1 ,

G1(t, s) +G4(t, s) 0 ≤ η ≤ ξ ≤ s ≤ t ≤ 1 .
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Proof. Applying the integral operator Iα0 on the equation (4) and by the help of
lemma 1, we get the following

u(t) = −Iα0 y(t) + c1 + c2t (6)

Applying p order derivative on (6) we have

cDp
0+u(t) = −Iα−py(t) + c2

t1−p

Γ(2− p)
(7)

by the boundary conditions in (4) we have

c1 = Iαy(ξ)− ξ

∆
(µIα(y(ξ)− y(η)) + Iα−py(1))

and

c2 =
1

∆
(Iα−py(1) + µIα(y(ξ)− y(η)))

where ∆ = 1
Γ(2−p) − ηµ+ ξµ > 0. Substituting the values of c1, c2 in (6), we have

u(t) =− Iαy(t) + Iαy(ξ) +
t− ξ

∆
(µIα(y(ξ)− y(η)) + Iα−py(1)) (8)

which can be written as

u(t) =− 1

Γ(α)

∫ t

0

y(s)

(t− s)1−α
ds+

1

Γ(α)

∫ ξ

0

y(s)

(ξ − s)1−α
ds

+
t− ξ

∆
(

µ

Γ(α)
(

∫ ξ

0

y(s)

(ξ − s)1−α
ds−

∫ η

0

y(s)

(η − s)1−α
ds)

+
1

Γ(α− p)

∫ 1

0

y(s)

(1− s)1−α+p
ds) =

∫ 1

0

G(t, s)f(u(s))ds.

(9)

2. MAIN RESULTS

We consider the space E = {u(t) ∈ C[0, 1] : u′(t) ∈ C[0, 1]} with the norm de-
fined by

∥u∥1 = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u′(t)|. (10)

E is a Banach space [20]. For convenience, use the following notations

p1 =(

∫ 1

0

G(t, s) +
1

Γ(α− 1)

∫ t

0

(t− s)α−2 +
1

∆
(

µ

Γ(α)
(

∫ 1

0

(ξ − s)α−1

+

∫ η

0

(η − s)α−1) +
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1))m(s),

(11)

p2 =
tα + ξα

Γ(α+ 1)
+

t+ ξ

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
) +

tα−1

Γ(α)

+
1

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
),

(12)

λ1 =
tα + ξα

Γα+ 1
+

t− ξ

∆2
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γα− p+ 1
), (13)

λ2 =
tα−1

Γ(α)
+

1

∆
(

µ

Γ(α+ 1)
(ηα + ξα), (14)
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andϖ = λ1+λ2. ChooseR ≥ max{2p1, (2kp2)
1

1−δ , }, where k1 = maxt∈[0,1] a1(t), k2 =
maxt∈[0,1] a2(t) and consider a closed bounded subset U = {u(t) ∈ E : ∥u∥1 ≤ R, t ∈
[0, 1]} of E.

Assume that the following growth conditions hold:

(A1) f : I × R× R → R be continuous.
(A2) There exists a nonnegative function m(t) ∈ L1(I) such that

|f(u(t))| ≤ m(t) + a|u(t)|δ,

where a ∈ R are nonnegative constants and 0 < δ < 1.
(A3) There exists a nonnegative function m(t) ∈ L1(I) such that

|f(u(t))| ≤ m(t) + a|u|δ,

where a ∈ R are nonnegative constants and δ > 1.
(A4) There exists constant ζ > 0, such that

|f(u(t))− f(v(t))| ≤ ζ(|u(t)− v(t)|),

for each t ∈ I and u, v, are real valued functions of t.

Lemma 6 Assume that (A1) holds then the function u(t) ∈ E is the solution of the
fractional boundary value problem (1) if and only if T u(t) = u(t), for all t ∈ [0, 1].

Proof. Let u(t) be solution of (1) and

v(t) =

∫ 1

0

G(t, s)f(u(s))ds

by (8) we have

v(t) =− Iαy(t) + Iαy(ξ) +
t− ξ

∆
(µIα(y(ξ)− y(η)) + Iα−py(1)). (15)

Applying cDα
0+ on (15) and using lemma (1), we have

cDα
0+v(t) =

cDα
0+(−Iαy(t) + Iαy(ξ) +

t− ξ

∆
(µIα(y(ξ)− y(η)) + Iα−py(1)))

= −f(u(t))
(16)

and it is easy to check the boundary conditions. �

Theorem 7 Assume that (A1), (A2) hold. Then the problem (1) has a solution.

Proof. Define an operator T : E → E by

T (u(t)) =

∫ 1

0

G(t, s)f(u(s))ds, t ∈ [0, 1]. (17)
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By the continuity of f and G, we claim the continuity of T . Here we show that
T : U → U . Let u(t) ∈ U , we have

|T u(t)| = |
∫ 1

0

G(t, s)y(s)ds| ≤ |
∫ 1

0

G(t, s)(m(t) + k|u|δ)ds|

≤
∫ 1

0

G(t, s)m(t)ds+ k|u|δ
∫ 1

0

G(t, s)ds

≤
∫ 1

0

G(t, s)m(t)ds+ k|u|δ{
∫ t

0

(G1(t, s) +G2(t, s))ds+

∫ η

t

G2(t, s)ds

+

∫ ξ

η

G3(t, s)ds+

∫ 1

ξ

G4(t, s)ds}

≤
∫ 1

0

G(t, s)m(t)ds+ k|u|δ{ tα + ξα

Γ(α+ 1)
+

t+ ξ

∆
(

µ

Γ(α+ 1)
(ξα + ηα)

+
1

Γ(α− p+ 1)
)}

(18)

from (17), we have

(T u)′(t) = −Iα−1y(t) +
1

∆

(
µIα(y(ξ)− y(η)) + Iα−py(1)

)
. (19)

and

|T ′u(t)| = | d
dt

∫ 1

0

G(t, s)f(u(s))ds|

≤ 1

Γ(α− 1)
(

∫ t

0

(t− s)α−2m(s)ds+ k|u|δ
∫ t

0

(t− s)α−2ds)

+
1

∆
{ µ

Γ(α)
(

∫ ξ

0

(ξ − s)α−1m(s)ds+ k|u|δ
∫ ξ

0

(ξ − s)α−1ds

+

∫ η

0

(η − s)α−1m(s)ds+ k|u|δ
∫ η

0

(η − s)α−1ds)

+
1

Γ(α− p)
(

∫ 1

0

(1− s)α−p−1m(s)ds+ k|u|δ
∫ 1

0

(1− s)α−p−1ds)}

≤ (
1

Γ(α− 1)

∫ t

0

(t− s)α−2 +
1

∆
(

µ

Γ(α)
(

∫ ξ

0

(ξ − s)α−1 +

∫ η

0

(η − s)α−1)

+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1))m(s)ds+ k|u|δ( t
α−1

Γ(α)
+

1

∆
(

µ

Γ(α+ 1)
(ξα + ηα)

+
1

Γ(α− p+ 1)
)

(20)
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from (18) and (20), we have

∥T u(t)∥1 ≤
∫ 1

0

G(t, s)m(s)ds+ k|u|δ{ tα + ξα

Γ(α+ 1)
+

t+ ξ

∆
(

µ

Γ(α+ 1)
(ξα + ηα)

+
1

Γ(α− p+ 1)
)}+ (

1

Γ(α− 1)

∫ t

0

(t− s)α−2 +
1

∆
(

µ

Γ(α)
(

∫ ξ

0

(ξ − s)α−1

+

∫ η

0

(η − s)α−1) +
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1)))m(s)ds+ k|u|δ( t
α−1

Γ(α)

+
1

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
)

= (

∫ 1

0

G(t, s) +
1

Γ(α− 1)

∫ t

0

(t− s)α−2 +
1

∆
(

µ

Γ(α)
(

∫ 1

0

(ξ − s)α−1

+

∫ η

0

(η − s)α−1) +
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1)))m(s)ds+ k|u|δ( tα + ξα

Γ(α+ 1)

+
t+ ξ

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
) +

tα−1

Γ(α)

+
1

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
)

(21)

by the use of (11), (12) and (21), we have

∥T u(t)∥1 ≤ p1 + k|R|δp2 ≤ R
2

+
R
2

= R.

which implies that T : U → U . Now we show that T is completely continuous
operator. Let t > τ and M = max{|f(u(t))| : t ∈ [0, 1], u ∈ U}, we have

|T u(t)− T u(τ)| = |
∫ 1

0

G(t, s)f(u(s))ds−
∫ 1

0

G(τ, s)f(u(s))ds|

≤ M|
∫ 1

0

G(t, s)ds−
∫ 1

0

G(τ, s)ds|

= M(
1

Γ(α)
(

∫ t

0

(t− s)α−1ds−
∫ τ

0

(τ − s)α−1ds)

+
t− τ

∆
{ µ

Γ(α)
(

∫ ξ

0

(ξ − s)α−1ds)

−
∫ η

0

(η − s)α−1ds+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1ds})

= M(
tα − τα

Γ(α+ 1)
+

t− τ

∆
(

1

Γ(α− p+ 1)
+

µ

Γ(α+ 1)
(ξα − ηα)))

and

|T ′u(t)− T ′u(τ)| = | − Iα−1(f(u(t))− f(u(τ)))| ≤ M(
tα−1 − τα−1

Γ(α)
)
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thus

∥T u(t)− T u(τ)∥1 ≤ M(
tα − τα

Γ(α+ 1)
+

t− τ

∆
(

1

Γ(α− p+ 1)
+

µ

Γ(α+ 1)
(ξα − ηα)))

+
M
Γ(α)

(tα−1 − τα−1).

(22)

since the functionstα−1, τα−1, tα, τα, are uniformly continuous on the interval [0,1],
it follows that T is equicontinuous and by Arzela-Ascoli theorem T is completely
continuous. By Schauder fixed point theorem T has a fixed point.
Lemma 8 Assume that (A1), (A3) hold. Then the boundary value problem (1)
has a solution.

Proof. The proof is similar like theorem 2, so we exclude the proof. �

Theorem 9 Assume that (A1), (A4) hold. If ζϖ < 1 then the problem (1) has
a unique solution.

Proof. By the help of our supposition (A4), we have the following estimates By the
help of our supposition (A4), we have the following estimates

|T (u(t))− T (v(t))| = 1

Γ(α)

∫ t

0

(t− s)α−1|f(u(s))− f(v(s))|ds

+
1

Γ(α)

∫ ξ

0

(ξ − s)α−1|f(u(s))− f(v(s))|ds

+
t− ξ

∆
(

µ

Γ(α)
(

∫ ξ

0

(ξ − s)α−1|f(u(s))− f(v(s))|ds

+

∫ η

0

(η − s)α−1|f(u(s))− f(v(s))|ds)

+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1|f(u(s))− f(v(s))|ds)

≤ tα + ξα

Γ(α+ 1)
ζ(|u− v|) + t− ξ

∆
(

µ

Γ(α+ 1)
(ξα + ηα)ζ(|u− v|)

+
1

Γ(α− p+ 1)
ζ(|u− v|))

≤ (
tα + ξα

Γ(α+ 1)
+

t− ξ

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
)ζ(|u− v|)

(23)

using (13) and (23), we have

|T (u(t))− T (v(t))| ≤ λ1ζ(|u− v|) (24)
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by the help of (19), we have

|T ′(u(t))− T ′(v(t))| = | − 1

Γ(α− 1)

∫ t

0

(t− s)α−2|f(u(s))− f(v(s))|ds

+
1

∆
(

µ

Γ(α)
(

∫ ξ

0

(ξ − s)α−1|f(u(s))− f(v(s))|ds

−
∫ η

0

(η − s)α−1|f(u(s))− f(v(s))|ds)

+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1|f(u(s))− f(v(s))|ds)|

≤ 1

Γ(α)
tα−1ζ(|u− v|) + 1

∆
(

µ

Γ(α+ 1)
(ξα + ηα) +

1

Γ(α− p+ 1)
)ζ(|u− v|)

≤ ζ(|u− v|)( t
α−1

Γ(α)
+

1

∆
(

µ

Γ(α+ 1)
(ηα + ξα)) +

1

Γ(α− p+ 1)
)

(25)

using (14) and (25), we have

|T ′(u(t))− T ′(v(t))| = λ2ζ(|u− v|) (26)

thus by the help of (24) and (26), we have

∥T (u)− T (v)∥1 = max
t∈[0,1]

|T (u)− T (v)|+ max
t∈[0,1]

|T ′(u)− T ′(v)|

≤ λ1ζ(|u− v|) + λ2ζ(|u− v|)
= ϖζ∥u− v∥1

(27)

Thus, by contraction mapping principle the boundary value problem (1) has a
unique solution.
Example 1

lcllD
3
2
t u(t) =

u(t)

35(5 + 7|u(t)|)
u( 12 ) = 0, D

1
3u(1) = 1

10u(
1
3 )

(28)

For the unique solution of problem (28), we apply theorem (2) with

f(u(t)) =
u(t)

35(5 + 7|u(t)|)
,

t ∈ [0, 1], u(t),∈ [0,∞), α = 3
2 , p = 1

3 , µ = 1
10 , η = 1

3 and for u = u(t), v = v(t) we

have that |f(u(t))− f(v(t))| ≤ 1
5{|u− v|} and thus condition (A4), is satisfied. By

computation we have ϖ = 2.6250 and ζϖ = .5250 < 1. Thus by theorem (2), the
problem (28) has a unique solution.
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