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EXISTENCE OF SOLUTION FOR PERTURBED FRACTIONAL

HAMILTONIAN SYSTEMS

C. TORRES

Abstract. The main goal of this work is to prove the existence of two non-
trivial solutions for a perturbed fractional Hamiltonian systems given by

− tD
α
∞(−∞Dα

t u(t))− L(t)u(t) +∇W (t, u(t)) = f(t),

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2
) is a symmetric and positive

definite matrix for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W is the gradient of
W at u.

1. Introduction

In this paper, we shall be concerned with the existence of two solutions for the
perturbed fractional Hamiltonian systems

− tD
α
∞(−∞Dα

t u(t))− L(t)u(t) +∇W (t, u(t)) = f(t) (1)

where t ∈ R and u ∈ Rn.
Fractional differential equations both ordinary and partial ones are applied in

mathematical modeling of processes in physics, mechanics, control theory, biochem-
istry, bioengineering and economics. Therefore the theory of fractional differential
equations is an area intensively developed during last decades [1], [10], [15], [21],
[29]. The monographs [11], [16], [18], enclose a review of methods of solving which
are an extension of procedures from differential equations theory.

Recently, a great attention has been focused on the study of differential equations
including both - left and right fractional derivatives. Apart from their possible
applications, equations with left and right fractional derivatives are an interesting
and new field in fractional differential equations theory. Some works in this topic
can be founded in papers [3], [4], [12], [24], [25], [26], [27], [28], [30] and their
references.

If f = 0 in (1), in [24] the author considers the following fractional Hamiltonian
systems

tD
α
∞(−∞Dα

t u(t)) + L(t)u(t) = ∇W (t, u(t)) (2)
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where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn×n) is a symmetric matrix valued
function for all t ∈ R, W ∈ C1(R×Rn,R) and ∇W (t, u(t)) is the gradient of W at
u. Assuming that L and W satisfy the following hypotheses:

(L) L(t) is positive definite symmetric matrix for all t ∈ R, and there exists an
l ∈ C(R, (0,∞)) such that l(t) → +∞ as t → ∞ and

(L(t)x, x) ≥ l(t)|x|2, for all t ∈ R and x ∈ Rn. (3)

(W1) W ∈ C1(R× Rn,R), and there is a constant µ > 2 such that

0 < µW (t, x) ≤ (x,∇W (t, x)), for all t ∈ R and x ∈ Rn \ {0}.
(W2) |∇W (t, x)| = o(|x|) as x → 0 uniformly with respect to t ∈ R.
(W3) There exists W ∈ C(Rn,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)| for every x ∈ Rn and t ∈ R.

It showed that (2) has at least one nontrivial solution via Mountain pass theorem.
Very recently Zhang and Yuan [30], using the genus properties of critical point
theory, generalized the result of [24] and established some new criterion to guar-
antee the existence of infinitely many solutions of (2) for the case that W (t, u) is
subquadratic as |u| → +∞. Explicitly, L satisfies (L) and the potential W (t, u) is
supposed to satisfy the following conditions:

(HS)1 W (t, 0) = 0 for all t ∈ R, W (t, u) ≥ a(t)|u|θ and |δW (t, u)| ≤ b(t)|u|θ−1 for
all (t, u) ∈ R × Rn, where θ < 2 is a constant, a : R → R+ is a bounded
continuous function and b : R → R+ is a continuous function such that
b ∈ L

2
2−θ (R);

(HS)2 There is a constant 1 < σ ≤ θ < 2 such that

(W (t, u), u) ≤ σW (t, u) for all t ∈ R and u ∈ Rn \ {0};
(HS)3 W (t, u) is even in u, i.e. W (t, u) = W (t,−u) for all t ∈ R and u ∈ Rn.

In this paper we extend the result of Torres [24] and Zhang and Yuan [30] to the
case f ̸= 0. For that purpose throughout the paper, (., .) : Rn × Rn → R denotes
the standar scalar product in Rn and |.| is the induced norm. Let

Xα =

{
u ∈ Hα(R,Rn) :

∫
R
[|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))]dt < ∞
}
.

Xα is a Hilbert space under the norm

∥u∥Xα =

(∫
R
[|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))]dt

)1/2

.

From (L) it follows that there is a constant Ce > 0 such that for every u ∈ Xα,

∥u∥α ≤ Cϵ∥u∥Xα , (4)

see [24] for more details. Set

M = max
|u|=1

W (u).

We will also assume that

(Wf ) M < 1
2C2

αC2
e
and f : R → Rn is a continuous square integrable function

such that

∥f∥L2 <
1

2C2
αC

2
e

−M,
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where Cα > 0 (see Theorem 2.1, below).

We are going to prove the following theorem.
Theorem 1.1 Suppose that (L)− (W3) and (Wf ) hold, then (1) possesses at least
two nontrivial solution in Xα.

Under this assumption, the problem of existence of solutions is much more deli-
cate, because extra difficulties arise in studying the properties of the corresponding
action functional I : Xα → R.

The problem here is as follows. We are given two sequences of almost critical
points inXα. The first one, obtained by Ekeland’s variational principle, is contained
in a small ball centered at 0. Using the mountain pass geometry of the action
functional, the existence of the second sequence is established. Both sequences are
weakly convergent in Xα. The question is whether their weak limits are equal
to each other or they define two geometrically distinct solutions of (1). The PS-
condition is enough to obtain two solutions.

The assumption (L) ensures the PS-condition at each level. In fact one needs
the PS-condition only at two levels and therefore it is tempting to seek for weaker
compactness assumptions.

The rest of the paper is organized as follows: In section §2, we describe the
Liouville-Weyl fractional calculus and we introduce the fractional space that we
use in our work and some proposition are proven which will aid in our analysis. In
section §3, we will prove Theorem 1.

2. Preliminary Results

2.1. Liouville-Weyl Fractional Calculus. In this section we introduce some
basic definitions of fractional calculus which are used further in this paper. For
more details we refer the reader to [10].

The Liouville-Weyl fractional integrals of order 0 < α < 1 are defined as

−∞Iαx u(x) =
1

Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ (5)

xI
α
∞u(x) =

1

Γ(α)

∫ ∞

x

(ξ − x)α−1u(ξ)dξ (6)

The Liouville-Weyl fractional derivative of order 0 < α < 1 are defined as the
left-inverse operators of the corresponding Liouville-Weyl fractional integrals

−∞Dα
xu(x) =

d

dx
−∞I1−α

x u(x) (7)

xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x) (8)

The definitions (7) and (8) may be written in an alternative form:

−∞Dα
xu(x) =

α

Γ(1− α)

∫ ∞

0

u(x)− u(x− ξ)

ξα+1
dξ (9)

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞

0

u(x)− u(x+ ξ)

ξα+1
dξ (10)

We establish the Fourier transform properties of the fractional integral and frac-
tional differential operators. Recall that the Fourier transform û(w) of u(x) is
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defined by

û(w) =

∫ ∞

−∞
e−ix.wu(x)dx.

Let u(x) be defined on (−∞,∞). Then the Fourier transform of the Liouville-Weyl
integral and differential operator satisfies

̂−∞Iαx u(x)(w) = (iw)−αû(w) (11)

̂
xIα∞u(x)(w) = (−iw)−αû(w) (12)

̂−∞Dα
xu(x)(w) = (iw)αû(w) (13)

̂
xDα

∞u(x)(w) = (−iw)αû(w) (14)

2.2. Fractional Derivative Spaces. In this section we introduce some fractional
spaces for more detail see [8]. Let α > 0. Define the semi-norm

|u|Iα
−∞

= ∥−∞Dα
xu∥L2

and norm

∥u∥Iα
−∞

=
(
∥u∥2L2 + |u|2Iα

−∞

)1/2

, (15)

and let

Iα−∞(R,Rn) = C∞
0 (R,Rn)

∥.∥Iα−∞ .

Now we define the fractional Sobolev space Hα(R,Rn) in terms of the Fourier
transform. Let 0 < α < 1, let the semi-norm

|u|α = ∥|w|αû∥L2 (16)

and norm

∥u∥α =
(
∥u∥2L2 + |u|2α

)1/2
,

and let

Hα(R,Rn) = C∞
0 (R,Rn)

∥.∥α
.

We note a function u ∈ L2(R,Rn) belong to Iα−∞(R,Rn) if and only if

|w|αû ∈ L2(R,Rn). (17)

Especially
|u|Iα

−∞
= ∥|w|αû∥L2 . (18)

Therefore Iα−∞(R,Rn) and Hα(R,Rn) are equivalent with equivalent semi-norm
and norm. Analogous to Iα−∞(R,Rn) we introduce Iα∞(R,Rn). Let the semi-norm

|u|Iα
∞

= ∥xDα
∞u∥L2

and norm

∥u∥Iα
∞

=
(
∥u∥2L2 + |u|2Iα

∞

)1/2

, (19)

and let

Iα∞(R,Rn) = C∞
0 (R,Rn)

∥.∥Iα∞ .

Moreover Iα−∞(R,Rn) and Iα∞(R,Rn) are equivalent, with equivalent semi-norm
and norm [8]. We recall the Sobolev Lemma.
Theorem 2.1 [24] If α > 1

2 , then Hα(R,Rn) ⊂ C(R,Rn) and there is a constant
C = Cα such that

sup
x∈R

|u(x)| ≤ C∥u∥α. (20)



66 C. TORRES JFCA-2015/6(1)

Remark 2.1 If u ∈ Hα(R,Rn), then u ∈ Lq(R,Rn) for all q ∈ [2,∞], since∫
R
|u(x)|qdx ≤ ∥u∥q−2

∞ ∥u∥2L2 .

We introduce a new fractional spaces. Let

Xα =

{
u ∈ Hα(R,Rn)|

∫
R
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))dt < ∞
}
.

The space Xα is a Hilbert space with the inner product

⟨u, v⟩Xα =

∫
R
(−∞Dα

t u(t), −∞Dα
t v(t)) + (L(t)u(t), v(t))dt

and the corresponding norm

∥u∥2Xα = ⟨u, u⟩Xα .

Lemma 2.1 [24] Suppose L satisfies (L). Then Xα is continuously embedded in
Hα(R,Rn).
Lemma 2.2 [24] Suppose L satisfies (L). Then the imbedding of Xα in L2(R,Rn)
is compact.
Lemma 2.3 [24]

W (t, u) ≥ W (t,
u

|u|
)|u|µ, |u| ≥ 1 (21)

and

W (t, u) ≤ W (t,
u

|u|
)|u|µ, |u| ≤ 1 (22)

Remark 2.2 By Lemma 2.3, we have

W (t, u) = o(|u|2) as u → 0 uniformly in t ∈ R. (23)

In addition, by (W2), we have, for any u ∈ Rn such that |u| ≤ M1, there exists
some constant d > 0 (dependent on M1) such that

|∇W (t, u(t))| ≤ d|u(t)|. (24)

Lemma 2.4 [24] Suppose that (L), (W1)-(W2) are satisfied. If uk ⇀ u in Xα, then
∇W (t, uk) → ∇W (t, u) in L2(R,Rn).

Now we introduce more notations and some necessary definitions. Let B be a
real Banach space, I ∈ C1(B,R), which means that I is a continuously Frchet-
differentiable functional defined on B. Recall that I ∈ C1(B,R) is said to satisfy
the (PS) condition if any sequence {uk}k∈N ∈ B, for which {I(uk)}k∈N is bounded
and I ′(uk) → 0 as k → +∞, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denote its boundary. We obtain the existence of homoclinic solutions of (2) by
use of the following well-known Mountain Pass Theorems, see [20].
Theorem 2.2 (Mountain Pass Theorem) Let B be a real Banach space and
I ∈ C1(B,R) satisfying (PS) condition. Suppose that I(0) = 0 and

i. There are constants ρ, β > 0 such that I|∂Bρ ≥ β, and

ii. There is and e ∈ B \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),



JFCA-2015/6(1) FRACTIONAL HAMILTONIAN SYSTEMS 67

where

Γ = {γ ∈ C([0, 1],B) : γ(0) = 0, γ(1) = e}.

3. Proof of Main Theorem

Now we are going to establish the corresponding variational framework to obtain
the existence of solutions for (1). Define the functional I : Xα → R by

I(u) =

∫
R

[
1

2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t), u(t))−W (t, u(t)) + (f(t), u(t))

]
dt

=
1

2
∥u∥2Xα −

∫
R
W (t, u(t))dt+

∫
R
(f(t), u(t))dt. (25)

Then I ∈ C1(Xα,R) and it is easy to check that

I ′(u)v =

∫
R
[(−∞Dα

t u(t),−∞ Dα
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t)) + (f(t), v(t))] dt

(26)
for all u, v ∈ Xα, which yields that

I ′(u)u = ∥u∥2Xα −
∫
R
(∇W (t, u(t)), u(t))dt+

∫
R
(f(t), u(t)). (27)

In order to prove Theorem 1.1 we use the mountain pass theorem and Ekeland’s
variational principle [14], [20]. The proof will be divided into a sequence of lemmas.
Lemma 3.1 Suppose that (L) − (W3) and (Wf ) holds. Then I satisfies the PS-
condition.
Proof. Assume that (uk)k∈N ∈ Xα is a sequence such that

I(uk) → c and I ′(uk) → 0 as k → +∞. (28)

We have to show that {uk}k∈N possesses a convergent subsequence in Xα. We
firstly prove that {uk}k∈N is bounded in Xα. By (25), (27) we get

I(uk)−
1

µ
I ′(uk)uk =

(
1

2
− 1

µ

)
∥uk∥2Xα

−
∫
R

[
W (t, uk(t))−

1

µ
(∇W (t, uk(t)), uk(t))

]
dt

+

(
1− 1

µ

)∫
R
(f(t), uk(t))dt. (29)

From (W1) and Lemma 2.1, it follows that

I(uk)−
1

µ
I ′(uk)uk ≥

(
1

2
− 1

µ

)
∥uk∥2Xα −

(
Ce −

Ce

µ

)
∥f∥L2∥uk∥Xα ,

where Ce denote the continuous embedding constant given by Lemma 2.1. On the
other hand, by (28), there is k0 ∈ N such that for k ≥ k0,

c+ 1 + ∥uk∥Xα ≥ I(uk)−
1

µ
I ′(uk)uk.

In consequence, since µ > 2, {uk}k∈N is bounded in Xα. Since Xα is a Hilbert
space, passing to a subsequence if necessary, it can be assumed that uk ⇀ u in Xα
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and hence, by Lemma 2.2, uk → u in L2(R,Rn). It follows from the definition of I
that

∥uk − u∥2Xα = (I ′(uk)− I ′(u))(uk − u)

+

∫
R
[∇W (t, uk)−∇W (t, u)](uk − u)dt. (30)

Since uk → u in L2(R,Rn), by Lemma 2.3,∇W (t, uk(t)) → ∇W (t, u(t)) in L2(R,Rn).
Hence ∫

R
(∇W (t, uk(t))−∇W (t, u(t)), uk(t)− u(t))dt → 0,

as k → +∞. So (30) implies

∥uk − u∥Xα → 0 as k → +∞.

�
Lemma 3.2 Suppose that (L)− (W3) and (Wf ) holds. There are ρ > 0 and β such
that I(u) ≥ β for ∥u∥Xα = ρ.
Proof. Let ρ = 1

CαCe
. Assume that u ∈ Xα and ∥u∥α ≤ ρ. By Theorem 2.1 and

(4)
∥u∥∞ ≤ CαCe∥u∥Xα ≤ 1

By (22) and (W3), we get

I(u) =
1

2
∥u∥2Xα −

∫
R
W (t, u(t))dt+

∫
R
(f(t), u(t))dt

≥ 1

2
∥u∥2Xα −

∫
R
W (t,

u

|u|
)|u|µdt− ∥f∥L2∥u∥L2

≥ 1

2
∥u∥2Xα −M∥u∥µ−2

∞

∫
R
|u|2dt− CαCe∥f∥L2∥u∥Xα

≥ 1

2
∥u∥2Xα −MC2

αC
2
e∥u∥2Xα − CαCe∥f∥L2∥u∥Xα . (31)

Hence, if ∥u∥Xα = ρ, we have

I(u) ≥ 1

2C2
αC

2
e

−M − ∥f∥L2 = β > 0,

by (Wf ). �
Lemma 3.3 Suppose that (L)− (W3) and (Wf ) holds. There is e ∈ Xα \ B(0, ρ)
such that I(e) ≤ 0, where B(0, ρ) is a ball in Xα of radius ρ centered at 0 and ρ is
given by Lemma 3.2.
Proof. Fix u ∈ Xα such that |u(t)| = 1 for all t ∈ [0, 1] and assume that σ ≥ 1.
Then by (21)

I(σu) =
σ2

2
∥u∥2Xα −

∫
R
W (t, σu(t))dt+ σ

∫
R
(f(t), u(t))dt

≤ σ2

2
∥u∥2Xα − σµ

∫ 1

0

W

(
t,

u(t)

|u(t)|

)
|u(t)|µdt+ σ

∫
R
(f(t), u(t))dt

≤ σ2

2
∥u∥2Xα − σµm

∫ 1

0

|u(t)|µdt+ σ

∫
R
(f(t), u(t))dt,

where
m = min

t∈[0,1],|u|=1
W (t, u).
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Since µ > 2, I(σu) → −∞ as σ → ∞. Hence there is σ ≥ 1 such that ∥σu∥Xα > ρ
and I(σu) ≤ 0. �
Proof of Theorem 1.1 Since I(0) = 0 and I satisfies Lemmas 3.1 - 3.3, it follows
by the mountain pass Theorem that I has a critical value c given by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where
Γ = {γ ∈ C([0, 1], Xα) : γ(0) = 0, I(γ(1)) < 0}.

By definition, it follows that c ≥ β > 0. By (31), I is bounded from below on

B(0, ρ). Let
c1 = inf

∥u∥Xα≤ρ
I(u). (32)

Since I(0) = 0, c1 ≤ 0. Thus c1 ≤ c. By Ekeland’s variational principle, there is a

minimizing sequence {wk}k∈N ⊂ B(0, ρ) such that

I(wk) → c1 and I ′(wk) → 0,

as k → ∞. From Lemma 3.1, c1 is a critical value of I. Consequently, I has at
least two critical points. �
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