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DETERMINATION OF AN UNKNOWN SOURCE TERM IN A

SPACE-TIME FRACTIONAL DIFFUSION EQUATION

S. TATAR, R. TINAZTEPE, S. ULUSOY

Abstract. Fractional(nonlocal) diffusion equations replace the integer-order
derivatives in space and time by their fractional-order analogues and they

are used to model anomalous diffusion, especially in physics. This paper
deals with a nonlocal inverse source problem for a one dimensional space-time

fractional diffusion equation ∂β
t u = −rβ(−∆)α/2u(t, x) + f(x)h(t, x) where

(t, x) ∈ ΩT := (0, T ) × Ω and Ω = (−1, 1). For the numerical solution of the
inverse problem, a numerical method based on discretization of the minimiza-
tion problem, steepest descent method and least squares approach is proposed.
Numerical examples illustrate applicability and high accuracy of the proposed

method.

1. Introduction

In this paper, we consider an inverse source problem for the following space-time
fractional equation

∂β

∂tβ
u(t, x) = −rβ(−∆)α/2u(t, x) + f(x)h(t, x), (t, x) ∈ ΩT ,

u(t,−1) = u(t, 1) = 0, 0 < t < T,
u(0, x) = 0, x ∈ Ω,

(1)

where ΩT := (0, T ) × Ω, Ω = (−1, 1), r > 0 is a parameter, f(x) ∈ L2(Ω),
h(t, x) ∈ C1([0, T ];L∞(Ω)) are given functions, β ∈ (0, 1), α ∈ (1, 2) are frac-
tional order of the time and the space derivatives respectively and T > 0 is a final
time.

The fractional-time derivative considered here is the Caputo fractional derivative
of order 0 < β < 1 and is defined by

∂βf(t)

∂tβ
:=

1

Γ(1− β)

∫ t

0

∂f(r)

∂r

dr

(t− r)β
, (2)
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where Γ is the Gamma function. This was intended to properly handle initial
values [1, 2, 3], since its Laplace transform(LT) sβ f̃(s)− sβ−1f(0) incorporates the

initial value in the same way as the first derivative. Here, f̃(s) is the usual Laplace
transform. It is well-known that the Caputo derivative has a continuous spectrum
[2], with eigenfunctions given in terms of the Mittag-Leffler function

Eβ(z) :=
∞∑
k=0

zk

Γ(1 + βk)
.

In fact, it is easy to see that, f(t) = Eβ(−λtβ) solves the eigenvalue problem

∂βf(t)

∂tβ
= −λf(t), f(0) = 1,

for any λ > 0. This is easily verified by differentiating term-by-term and using the

fact that tp has Caputo derivative tp−β Γ(p+1)
Γ(p+1−β) for p > 0 and 0 < β ≤ 1. 0 < β < 1

is taken for slow diffusion, and is related to the parameter specifying the large-time
behavior of the waiting-time distribution function, see [7] and some of the references
cited therein.

For 0 < α < 2, (−∆)α/2u denotes the fractional Laplacian of u. It turns out that
it is easier to define it by using the spectral decomposition of the Laplace operator:
We take

{
λ̄k, ψk

}
the eigenvalues and corresponding eigenvectors of the Laplacian

operator in Ω with Dirichlet boundary conditions on ∂Ω :{
−∆ψk = λ̄kψk, in Ω,
ψk = 0, on ∂Ω.

We then define the operator (−∆)α/2 by

(−∆)α/2u :=

∞∑
k=0

ckψk(x) 7→ −
∞∑
k=0

ckλ̄
α/2
k ψk(x),

which maps Hα
0 (Ω) onto L

2(Ω), where Hα
0 is the fractional Sobolev space defined

by

Hα
0 (Ω) :=

{
u =

∞∑
n=1

anψn : ∥u
∥∥2
Hα

0
=

∞∑
n=1

a2nλ̄
α
n < +∞

}
, (3)

with the following equivalence∥∥u∥∥
Hα

0 (Ω)
=

∥∥(−∆)
α
2 u

∥∥
L2(Ω)

. (4)

If f is C1−function on [0,∞) satisfying |f ′(t)| ≤ Ctγ−1 for some γ > 0, then

by (2), the Caputo derivative ∂βf(t)
∂tβ

of f exists for all t > 0 and the derivative is
continuous in t > 0. Kilbas et al [4] and Podlubny [7] can be referred for further
properties of the Caputo derivative.

In (1) the term f(x)h(t, x) models a source term, and it is important to determine
f(x) for realizing observation data. That is to say our main goal in this paper is:
Let r > 0 be fixed. Determine u(t, x) = u(r, f)(t, x) and f(x) for t ∈ (0, T ) and
x ∈ Ω satisfying (1) and

u(T, x) = φ(x), x ∈ Ω̄. (5)

In this paper, we develop a numerical algorithm to solve the inverse source prob-
lem. The algorithm is based on the optimization of an error functional between
the output data and the additional data. The algorithm attempts to minimize the
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error functional by using polynomials of a predetermined degree n. In doing so, it is
assumed that the error functional is differentiable with respect to the coefficients of
the polynomial which enables us to use the gradient descent method. The numer-
ical experiments show that the algorithm is effective in practical use. A detailed
analysis of the factors affecting the algorithm is also given.

The remainder of this paper comprises of four sections: In the next section,
some theoretical background is recalled for the inverse source problem including
the existence and uniqueness of the solution. Our numerical method is given in
section 3. Some numerical examples are presented to show the efficiency of the
method in section 4. In section 5, analysis of the results are given.

2. Well-Posedness of the inverse source problem

The theoretical aspect of the inverse source problem is studied in [8]. In this
study, the authors have proved that the inverse problem is well-posed in the sense
of Hadamard except for a discrete set of values of diffusion constants. In this sec-
tion, for the sake of the reader we provide some relevant results from [8].

The formal solution to the direct problem (1) is given in the form (see [6] for
details)

u(t, x) =
∞∑

n=1

(∫ t

0

τβ−1Eβ,β

(
− λnr

βτβ
)⟨
f(x)h(t− τ, x), ψn(x)

⟩
dτ

)
ψn(x), (6)

where λn =
(
λ̄n

)α/2
, λ̄n and {ψn}n≥1 are eigenvalues and eigenvectors of the

classical Laplace operator−∆ respectively, i.e, −∆ψn = λ̄nψn. A simple calculation

yields λ̄n = n2π2

4 hence λn = (nπ2 )α with ψn(x) = sin
(
nπx
2

)
when n is even and

ψn(x) = cos
(
nπx
2

)
when n is odd.

⟨
· , ·

⟩
denotes the standard inner product on

L2(Ω) and Eα,β(z) is the generalized Mittag-Leffler function defined as follows

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0 and β ∈ R are arbitrary constants. We note that {λ̄n}n≥1 is a sequence
of positive numbers 0 < λ̄1 ≤ λ̄2 ≤ · · · , {ψn}n≥1 is an orthonormal basis for L2(Ω).
It is proved in [6] that (6) is the generalized solution to the problem (1) that can be
interpreted as the solution in the classical sense under certain additional conditions.
We note that if one uses the substitution τ⋆ = t− τ (later replace τ⋆ by τ) in (6),
we get the following useful formula for the solution of (1)

u(t, x) =
∞∑

n=1

(∫ t

0

(t− τ)
β−1

Eβ,β

(
− λnr

β(t− τ)β
)

×
⟨
f(x)h(τ, x), ψn(x)

⟩
dτ

)
ψn(x).

(7)

For the direct problem, the following theorem has been proved in [8].
Theorem 1 Let f(x) ∈ L2(Ω), h(t, x) ∈ C1([0, T ];L∞(Ω)). Then there exists

a unique weak solution of the problem (1) such that u ∈ L2(0, T ;H
α
0 (Ω)) and
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∂β

∂tβ
u ∈ L2((0, T )× Ω). Moreover, there exists a constant C such that the following

inequality holds∥∥u∥∥
L2(0,T ;Hα

0 (Ω))
+
∥∥∂βt u∥∥L2((0,T )×Ω)

≤ C
∥∥f∥∥

L2(Ω)
. (8)

Now we reformulate the inverse problem. For this purpose, we define the follow-
ing operator equation

Arf(x) + Θ(x) = f(x), (9)

where Ar(f) : L2(Ω) −→ L2(Ω), Ar(f) and Θ(x) defined by

Arf(x) =

∂β

∂tβ
u(r, f)(T, x)

h(T, x)
, Θ(x) =

rβ(−∆)α/2φ(x)

h(T, x)
, (10)

respectively. Here we denote u = u(r, f) to emphasize the dependence of the
solution u(t, x) of (1) to both r > 0 and f(x). The following lemma indicates the
relationship between the operator equation (9) and the inverse problem (1), (5).

Lemma 1 [8] Let I ⊂ (0,∞) and r ∈ I be fixed. Then the operator equation
(9) has a solution (a unique solution) f ∈ L2(Ω) if and only if the inverse problem

(1), (5) has a solution (a unique solution)

{
u(r, f), f

}
∈ L2(0, T ;H

α
0 (Ω))×L2(Ω).

Theorem 2 [8] Ar satisfies the following properties:

(i) For r ∈ I, the operator Ar : L2(Ω) → L2(Ω) is a compact operator.

(ii) Arf : I → L2(Ω), defined by (10), is real analytic in r ∈ I for arbitrarily fixed
f ∈ L2(Ω).

(iii) There exists a constant 0 < C(r) < 1 such that

||Arf ||L2(Ω) ≤ C(r)||f ||L2(Ω),

where R⋆ < r and R⋆ > 0 is a large number. Consequently, 1 is not an eigenvalue
of the operator Ar for large r > 0.

By using the above properties of the operator Ar and Analytic Fredholm Theo-
rem [9], the following existence and uniqueness theorem can be proved, see [8] for
details. This theorem also guarantees that the inverse source problem considered
here is well-posed in the sense of Hadamard.

Theorem 3 [8] There exists a finite set S ⊂ I such that for r ∈ I \ S and
φ ∈ Hα

0 (Ω), the inverse problem (1), (5) has a unique solution. Moreover there
exists a constant C12 > 0 such that∣∣|f ∣∣|L2(Ω) +

∣∣|u∣∣|L2(0,T ;Hα
0 (Ω)) +

∣∣|∂βt u∣∣|L2(0,T ;L2(Ω)) ≤ C12

∣∣|φ∣∣|Hα
0 (Ω). (11)

3. Overview of the method

In this section, a numerical method is proposed for the inverse source problem
(1), (5). The essence of the method is to approximate the source term f(x) by
polynomials. Since f(x) ∈ L2(Ω), there exists a sequence of polynomials converging
to f(x). However, finding such a sequence which guarantees the solution of the
inverse problem is difficult. Our starting point is that the correct f(x) will yield
the solution satisfying the condition (5), hence f(x) will minimize the following
functional:
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F (c) = ∥u(c, T, x)− g(x)∥22 , (12)

where u(c, t, x) is the solution of the direct problem (1), in which f(x) is replaced
by the term c(x) = c0+ c1x+ · · ·+ cnxn. Hence, the solution strategy is to approx-
imate f(x) by a polynomial of degree n that minimizes F (c) for the desired n. We
associate c(x) to the vector c = (c0, · · · , cn), hence F (c) is a real valued function
of n variables.

The method for minimizing F (c) depends on the properties of u(c, T, x). In our
case, the convexity or differentiability of F (c) is not clear due to the term u(c, x, t).
However, we do not envision a major drawback in assuming the differentiability of
F (c) in numerical implementations. For this reason, we proceed the minimization
of F (c) by the steepest descent method which will utilize the gradient of F .

In this method, the algorithm starts with an initial point b0, then the point
providing the minimum is approximated by the points

bi+1 = bi +△bi,

where △bi is the feasible direction which minimizes

E(△b) = F (bi +△b).

This procedure is repeated until a stop criterion is satisfied, i.e, ∥△bi∥ < ϵ or
|F (bi+1)− F (bi)| < ϵ or a certain number of iterations. In the minimization of
E(△b), we use the following estimate on u(bi +△b, T, x)

u(bi +△b, T, x) ≃ u(bi, T, x) +∇u(bi, T, x) · △b,
where ∇denotes the gradient of u(b, T, x) with respect to b. Hence E(△b) turns out
to be

E(△b) = ∥∇u(bi, T, x) · △b+ u(bi, T, x)− g(x)∥22 .
In numerical calculations, we note that ∥·∥2 can be discretized by using a finite

number of points in [−1, 1], i.e., for x1 = 0 < x2 < · · · < xq = 1, hence E(△b) has
its new form as

E(△b) ≃
q∑

k=1

(u(bi, T, xk) +∇u(bi, T, xk) · △b− g(xk))
2. (13)

Now the minimization of this problem is a least squares problem whose solution
leads to the following normal equation (see [5])

AAT△b = ATK,

where

A =
[
∇u(bi, T, x1)T · · ·∇u(bi, T, xq)T

]
,

and

K = [u(bi, T, x1)− g(x1) · · ·u(bi, T, xq)− g(xq)]
T
.

Now the optimal direction is found by

△b = (ATA)−1ATK. (14)
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In forming A, the computation (or estimation ) of sth component of the vector
∇u(bi, T, xk) can be obtained by

u(bi + hes, T, xk)− u(bi, T, xk)

h
, (15)

where es is the standard unit vector whose sth component is 1 and h is the differ-
ential step.

Our algorithm consists of the following steps:

Step 1. Set b0, n and a stop criterion k or ϵ (iteration number or size of △bi).

Step 2. Calculate △bi using 14 and set bi+1 = bi +△bi.

Step 3. Stop when the stop criterion is achieved.

4. Numerical examples

In this section we examine the algorithm with two inverse problems. In imple-
menting the algorithm, finding u(c, T, x) is a crucial step and its precision directly
affects the efficiency of the algorithm. In finding u(c, T, x), the formula (7) is used.

In our examples, the correct f(x) is predetermined and the corresponding g(x)
is obtained from the numerical solution of the direct problem where r, T = 1 and
h(t, x), α, β are predetermined. The expected solution is the nth degree Taylor
polynomial approximation of f(x) for the given n. The computations have been
carried out in MATLAB.

Due to the discretization of the problem, many variables emerge in computations.
These variables and their values in our computations are listed below:

(1) The dimension of c in F (c) to approximate f(x): n = 2, 3, 4, 5, 6 and 7 are
taken in the examples.

(2) Initial guess for c: All initial guesses for the coefficients are taken to be
vectors composed of 1’s in order to get an objective observation.

(3) Differential step h in (15): h = 0.1 are taken on the examples.
(4) Number of the points taken on [−1, 1], i.e., q in (13): q = 20 and q = 40

are taken in the first example and the second example respectively.
(5) Sensitivity of Eβ,β : is taken to be 10−6.
(6) Upper bound for summing index in u(c, t, x): is taken to be 20 and 40 for

the first and second example respectively.
(7) Stop criterion: ∥△bi∥ < ϵ or maximum iteration number M with ϵ = 0.01

and M = 100.

Example 1. α = 1.5, β = 0.5, h(t, x) = 1, f(x) = sinx. The expected solutions
are the Taylor polynomials for sinx. See Table 1.

Example 2. α = 1.5, β = 0.5, h(t, x) = t, f(x) = e−x. The expected solutions are
the Taylor polynomials for e−x. See Table 2.
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Table 1. Initial guesses for n = 2, 3,4,5,6 and 7

Initial guesses Coefficients of the Taylor Polynomials of the solution
(1,1) (0.0000 1.0972 )
(1,1,1) (-0.0000 1.0972 0.0002)
(1,1,1,1) (-0.0000 0.9579 0.0002 0.3518)
(1,1,1,1,1) ( 0.0001 0.9579 -0.0011 0.3519 0.0018)
(1,1,1,1,1,1) (0.0001 0.9901 -0.0010 0.1395 0.0016 0.2488)
(1,1,1,1,1,1,1) (-0.0 0.9901 -0.0002 0.1393 0.0034 0.2490 -0.0048)

Table 2. Initial guesses for n = 2, 3,4,5 and 6

Initial guesses Coefficients of the Taylor Polynomials of the solution
(1,1) (0.9874, -1.1858)
(1,1,1) (0.7355 -1.1858 1.4319)
(1,1,1,1) (0.7355 -0.7727 1.4320 -1.0864)
(1,1,1,1,1) (0.7744 -0.7727 0.7757 -1.0864 1.0964 )
(1,1,1,1,1,1) (0.7744 -0.8633 0.7758 -0.4587 1.0963 -0.7605)
(1,1,1,1,1,1,1) (0.7683 -0.8632 0.9705 -0.4588 0.2912 -0.7605 0.7618 )

5. Analysis of Results

The experimental results provide coarse approximations of the functions sought
and are satisfactory to some extent, especially with the given initial guesses. Since
the analytical solution u(c, t, x) includes infinite sum, integration for each t and the
inner product in L2 which is also an integration over the real line, the computational
errors contribute much to the results. In finding the solution of the direct problem
u(c, t, x), the upper bound for the summing index seems to be the most important
among the other computational factors. The experiments show that using a higher
summing index does not enhance the result. This is due to the rising of total error
because of the errors coming from each summand.

In addition to the complexity of the analytical form of the solution of the direct
problem, the error functional is not known to satisfy some properties which guaran-
tees the convergence of the algorithm. Since the error functional F (c) given by 12 is
not convex, it is most likely that there are many local minimizers of the error func-
tional which requires the initial guesses to be close enough to the Taylor coefficients
of the correct solution in a given dimension. This makes the problem ill-posed to
some extent. In the experiments, the initial guesses are taken to be relatively far
from the Taylor coefficients of the functions sought and same initial guesses are
tested to get an objective result. Related to this issue, one other important point is
the dimension of c. It seems that using higher dimensions of c enhances the results
to some extent however the computation time severely increases.

Another fact about the algorithm is that the implementation of the algorithm
requires the differentiability of the error functional with respect to c. This is as-
sumed in deriving the algorithm but it is not theoretically clear as pointed in the
previous section. In the implementation, the differential step is taken to be h = 0.1,
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however the results with h = 0.01, not presented above, does not show a significant
difference.

As a result the high computational complexity of the form of the analytical so-
lution of the direct problem, the lack of some properties such as convexity and/or
differentiability of the error functional and using only polynomial approximations
in error functional are the main setbacks of the algorithm. Hence, the coarseness
of these results is expected. The properties of the error functional for certain prop-
erties of h(t, x) should be investigated and finding a more computational friendly
form of the solution of the direct problem will contribute much to the numerical
solutions of the inverse problem.
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