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EXISTENCE OF SOLUTION FOR A NONLOCAL BOUNDARY

VALUE PROBLEM WITH FRACTIONAL Q-DERIVATIVES

A. NEAMATY, M. YADOLLAHZADEH, R. DARZI

Abstract. The authors investigate the existence of solutions to the following
boundary value problem fractional q-derivative

(Dα
q u)(t) + f(t, u(t)) = 0, t ∈ (0, 1), 1 < α ≤ 2,

u(0) = 0, (Dα
q u)(1) = βu(ξ),

where 0 < βξα−1 < 1, 0 < ξ < 1, Dα
q denotes the q-derivative of Riemmane-

Liouville type of order α. By applying generalized Banach contraction principle
and Schauder fixed point theorem some new existence and uniqueness results
of solutions are obtained. We give an example to illustrate our results.

1. Introduction

In the recent years, fractional calculus is one of the interest issues that attracts
many scientists, specially mathematics and engineering sciences. Many natural
phenomena can be present by boundary value problems of fractional differential
equations. Many authors in different fields such as chemical physics, fluid flows,
electrical networks, visco-elasticity, try to modeling of these phenomena by bound-
ary value problems of fractional differential equations [[1]-[4]]. To achieve extra
information in fractional calculus, specially boundary value problems, reader can
refer to valuable papers or books that are written by authors [[5]-[20]].
The fractional q-calculus is the q-extension of ordinary fractional calculus. Recently,
there seems to be a significant increase in study in the topic of the q-calculus due
to application of the q-calculus in mathematics statistics and physics [[21]-[24]].
Early developments for q-fractional calculus can be seen in the papers that pre-
sented by Al-Salam [[25]] and Agarwal [[26]] on the existence theory of fractional
q-difference. We can mention to the attentions of several researches [[27]-[30]].
Furthermore, some new existence study in the existence of solutions for boundary
value problems with fractional q-derivative [[31]-[34]].
In this paper, we investigate the existence and uniqueness of a positive and nonde-
creasing solution for a nonlocal boundary value problem for fractional q-derivatives
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equation of the form

(Dα
q u)(t) + f(t, u(t)) = 0, t ∈ (0, 1), 1 < α ≤ 2, (1)

u(0) = 0, (Dα
q u)(1) = βu(ξ), (2)

where Dα
q is the q-derivative of Riemann-Liouville type of order α, 0 < ξ < 1 and

0 < βξα−1 < 1, and f ∈ C([0, 1]× [0,+∞), [0,+∞)).

2. Preliminaries q-calculus and lemmas

We now given preliminaries q-calculus, definitions and lemmas that will be used
in the remainder of this paper. The presentation here can be found in, for example,
[[22],[24],[35], [36]].
Let q ∈ (0, 1) and define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a−b)n with n ∈ N0 := {0, 1, 2, ...} is defined
by

(a− b)(0) = 1, (a− b)(n) =
n−1∏
k=0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
k=0

a− bqk

a− bqα+k
, a ̸= 0.

Clearly, if b = 0, then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R− {0,−1,−2, ...},

and satisfies Γq(x+ 1) = [x]qΓq(x).
The q-derivative of a function f is defined by

(Dqf)(x) =
f(qx)− f(x)

(q − 1)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x), (Dn

q f)(x) = Dq(D
n−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =

∫ x

0

f(s)dqs = x(1− q)

∞∑
k=0

f(xqk)qk, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], then its integral from a to b is
defined by ∫ b

a

f(s)dqs =

∫ b

0

f(s)dqs−
∫ a

0

f(s)dqs.

Similar to that for derivatives, an operator Inq is given by

(I0q f)(x) = f(x), (Inq f)(x) = Iq(I
n−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf)(x) = f(x),
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and if f is continuous at x = 0, then

(IqDqf)(x) = f(x)− f(0).

The following formulas will be used later, namely, the integration by parts formula:∫ x

0

f(s)(Dqg)(s)dqs = [f(s)g(s)]s=x
s=0 −

∫ x

0

(Dqf)(s)g(qs)dqs,

and

[a(t− s)](α) = aα(t− s)(α), (3)

tDq(t− s)(α) = [α]q(t− s)(α−1), (4)

sDq(t− s)(α) = −[α]q(t− qs)(α−1), (5)

(xDq

∫ x

0

f(x, s)dqs)(x) =

∫ x

0
xDqf(x, s)dqs+ f(qx, x). (6)

where tDq denotes the derivative with respect to the variable t.
Definition 1. Let α ≥ 0 and f be a function defined on [0, 1]. The fractional
q-integral of Riemann-Liouville type is (I0q f)(x) = f(x) and

(Iαq f)(x) =
1

Γq(α)

∫ x

0

(x− qs)(α−1)f(s)dqs, α > 0, x ∈ [0, 1].

Definition 2. The fractional q-derivative of the Riemann-Liouville type of order
α ≥ 0 is defined by (D0

qf)(x) = f(x) and

(Dα
q f)(x) = (D[α]

q I [α]−α
q f)(x), α > 0,

where [α] is the smallest integer greater than or equal to α.
Lemma 1. [see [22]] Assume that α ≥ 0 and a ≤ b ≤ t, then (t−a)(α) ≥ (t− b)(α).
Lemma 2. Let α, β ≥ 0 and f be a function defined on [0, 1]. Then the following
formulas hold:

(1) (Iβq I
α
q f)(x) = (Iα+β

q f)(x),

(2) (Dα
q I

α
q f)(x) = f(x).

Lemma 3. [see [22]] Let α > 0 and n be a positive integer. Then the following
equality holds:

(Iαq D
n
q f)(x) = (Dn

q I
α
q f)(x)−

n−1∑
k=0

xα−n+k

Γq(α+ k − n+ 1)
(Dk

q f)(0).

Lemma 4. [see [24]] Let α ∈ R+, λ ∈ (−1,+∞), the following is valid:

Iαq ((t− a)(λ)) =
Γq(λ+ 1)

Γq(α+ λ+ 1)
(t− a)(α+λ), 0 < a < t < b.

Particularly, for λ = 0, a = 0, using q-integration by parts, we have

(Iαq 1)(t) =
1

Γq(α)

∫ t

0

(t− qs)(α−1)dqs =
1

Γq(α)

∫ t

0

sDq((t− s)(α))

−[α]q
dqs

= − 1

Γq(α+ 1)

∫ t

0
sDq((t− s)(α))dqs =

1

Γq(α+ 1)
t(α).
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Obviously, we have
∫ t

0
(t− qs)(α−1)dqs =

1
[α]q

t(α), and∫ t

0

(1− qs)(α−1)dqs =

∫ t

0

sDq((1− s)(α))

−[α]q
dqs

= − 1

[α]q

∫ t

0
sDq((1− s)(α))dqs =

1

[α]q
[1− (1− t)(α)].

In order to define the solution for the our problem, we need the following lemma.
Lemma 5. For given y ∈ C[0, 1], the unique solution of the boundary value
problem

(Dα
q u)(t) + y(t) = 0, t ∈ (0, 1), 1 < α ≤ 2, (7)

u(0) = 0, (Dα
q u)(1) = βu(ξ), (8)

is given by

u(t) =

∫ 1

0

G(t, qs)y(s)dqs, (9)

where G(t, qs), is

[α−1]q(1−qs)(α−2)tα−1−β(ξ−qs)(α−1)tα−1−([α−1]q−βξα−1)(t−qs)(α−1)

([α−1]q−βξα−1)Γq(α)
, 0 ≤ s ≤ t ≤ 1, s ≤ ξ,

[α−1]q(1−qs)(α−2)tα−1−([α−1]q−βξα−1)(t−qs)(α−1)

([α−1]q−βξα−1)Γq(α)
, 0 < ξ ≤ s ≤ t ≤ 1,

[α−1]q(1−qs)(α−2)tα−1−β(ξ−qs)(α−1)tα−1

([α−1]q−βξα−1)Γq(α)
, 0 ≤ t ≤ s ≤ ξ < 1,

[α−1]q(1−qs)(α−2)tα−1

([α−1]q−βξα−1)Γq(α)
, 0 ≤ t ≤ s ≤ 1, ξ ≤ s.

Proof. Since 1 < α ≤ 2, we put n = 2. In view of Definition 1 and Lemma 2, we
see that

(Dα
q u)(t) = −y(t) ⇔ (Iαq D

2
qD

2−α
q ) = −(Iαq y)(t).

Then it follows from Lemma 3 that the solution u(t) of (7) and (8) is given by

u(t) = c1t
α−1 + c2t

α−2 −
∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs, (10)

for some constants c1, c2 ∈ R. Since u(0) = 0, we have c2 = 0.
Differentiating both sides of (10) and with the help of (4) and (6), we obtain

(Dqu)(t) = [α− 1]qc1t
α−2 + [α− 2]qc2t

α−3 −
∫ t

0

[α− 1]q(t− qs)(α−2)

Γq(α)
y(s)dqs.

Using the boundary conditions Dqu(1) = βu(ξ), we get

c1 =
1

[α− 1]q − βξα−1

∫ 1

0

[α− 1]q(1− qs)(α−2)

Γq(α)
y(s)dqs

− β

[α− 1]q − βξα−1

∫ ξ

0

(ξ − qs)(α−1)

Γq(α)
y(s)dqs.
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Now, substitution of c1 into (10) gives

u(t) =
tα−1

[α− 1]q − βξα−1

∫ 1

0

[α− 1]q(1− qs)(α−2)

Γq(α)
y(s)dqs

− βtα−1

[α− 1]q − βξα−1

∫ ξ

0

(ξ − qs)(α−1)

Γq(α)
y(s)dqs

−
∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs

=

∫ 1

0

G(t, qs)y(s)dqs.

This completes the proof of the lemma.

3. Main results

Let E = C[0, 1] be a Banach space endowed with the norm ∥u∥ = max0≤t≤1 |u(t)|.
Assume that f : [0, 1] × [0,∞) → [0,∞) is continuous. Define the operator
T : E → E as follows:

(Tu)(t) =

∫ 1

0

G(t, qs)f(s, u(s))dqs = c1t
α−1 − Iαq f(t, u(t)). (11)

where c1 is the same in Lemma 5. Clearly, the fixed points of the operator T are
solutions of problem (1) and (2).
Lemma 6. [see [35]] Let α ∈ R+ and f : (0, a] → C be a function. If f ∈ L1

q[0, a]

then Iαq f ∈ L1
q[0, a] and

∥Iαq f∥1 ≤ aα

Γq(α+ 1)
∥f∥1.

Theorem 1. Suppose that f(t, u) satisfies the following condition

∥f∥ ≤ Γq(α+ 1)(
r

2
− c1), (12)

where r is a positive number and r > 2c1. Then problem (1) and (2) has at least
one positive solution.
Proof. Define the operator T : E → E by

(Tu)(t) =

∫ 1

0

G(t, qs)f(s, u(s))dqs = c1t
α−1 − Iαq f(t, u(t)).

From continuity of f and G(t, s), the operator T is continuous.
Let Br = {u ∈ E | ∥u−Iαq f(t, u(t))∥ ≤ r}, be a convex, bounded, and closed subset
of the Banach space E.
We prove that T : Br → Br. By (12) and Lemma 6, for u ∈ Br, we have

|Tu(t)− Iαq f(t, u(t))| = |c1tα−1 − Iαq f(t, u(t))− Iαq f(t, u(t))|
= |c1tα−1 − 2Iαq f(t, u(t))|
≤ 2|Iαq f(t, u(t))|+ c1|tα−1|

≤ 2∥f∥
Γq(α+ 1)

+ c1

≤ r.
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This show that T maps Br into Br. Next, we shall prove that T is completely
continuous. Let M = maxt∈[0,1],u∈Br

|f(t, u(t))|+ 1, then, for u ∈ Br, we have

|Tu(t)| = |c1tα−1 − Iαq f(t, u(t))| ≤ |Iαq f(t, u(t))|+ |c1tα−1|

≤ |f(t, u(t))|
Γq(α+ 1)

+ c1

≤ M

Γq(α+ 1)
+ c1,

hence, T (Br) is bounded. Now, we show that T (Br) is equicontinuous. For u ∈ Br

and t1, t2 ∈ [0, 1] such that t1 < t2 we get,

|Tu(t2)− Tu(t1)| ≤
∣∣∣∣∫ t2

0

(t2 − qs)(α−1)

Γq(α)
f(s, u(s))dqs−

∫ t1

0

(t1 − qs)(α−1)

Γq(α)
f(s, u(s))dqs

∣∣∣∣
+

∣∣∣∣ (tα−1
2 − tα−1

1 )

[α− 1]q − βξα−1

∫ 1

0

[α− 1]q(1− qs)(α−2)

Γq(α)
f(s, u(s))dqs

∣∣∣∣
+

∣∣∣∣∣ β(tα−1
2 − tα−1

1 )

[α− 1]q − βξα−1

∫ ξ

0

(ξ − qs)(α−1)

Γq(α)
f(s, u(s))dqs

∣∣∣∣∣
≤ M

Γq(α)

∣∣∣∣∫ t1

0

[(t2 − qs)(α−1) − (t1 − qs)(α−1)]dqs+

∫ t2

t1

(t2 − qs)(α−1)dqs

∣∣∣∣
+

M |tα−1
2 − tα−1

1 |
[α− 1]q − βξα−1

∫ 1

0

[α− 1]q(1− qs)(α−2)

Γq(α)
dqs

+
Mβ|tα−1

2 − tα−1
1 |

[α− 1]q − βξα−1

∫ ξ

0

(ξ − qs)(α−1)

Γq(α)
dqs

≤ M

Γq(α+ 1)

∣∣∣t(α)2 − t
(α)
1

∣∣∣+ M |tα−1
2 − tα−1

1 |[α− 1]q
([α− 1]q − βξα−1)Γq(α+ 1)

+
Mβξ(α)|tα−1

2 − tα−1
1 |

([α− 1]q − βξα−1)Γq(α+ 1)
.

It is easy to see that functions tα and tα−1 are uniformly continuous on [0,1]. Then,

T (Br) is equicontinuous. By the Arzela-Ascoli theorem T (Br) is compact and so
T : Br → Br, is completely continuous. The Schauder fixed point theorem now
implies that the BVP (1) and (2) has a solution.

Theorem 2. There exists a nonnegative function h ∈ C[0, 1] such that f(t, u)
satisfies

|f(t, u)− f(t, v)| ≤ h(t)|u− v|, t ∈ [0, 1], u, v ∈ [0,∞). (13)

Then, the problem (1) and (2) has a unique solution provided

A =

∫ 1

0

(1− qs)(α−2)sα−1h(s)dqs <
([α− 1]q − βξα−1)Γq(α)

2
. (14)

Proof. We shall prove that under the assumptions (13) and (14), Tn is a contrac-
tion operator for n sufficiently large. By the definition of G(t, qs), we have

G(t, qs) =
[α− 1]q(1− qs)(α−2)tα−1

([α− 1]q − βξα−1)Γq(α)
,



24 A. NEAMATY, M. YADOLLAHZADEH, R. DARZI JFCA-2015/6(2)

For u, v ∈ E, we have the estimate

|Tu(t)− Tv(t)| =

∣∣∣∣∫ 1

0

G(t, qs)[f(s, u(s))− f(s, v(s))]dqs

∣∣∣∣
≤

∫ 1

0

G(t, qs)|f(s, u(s))− f(s, v(s))|dqs

≤ ∥u− v∥
∫ 1

0

G(t, qs)h(s)dqs

=
[α− 1]q∥u− v∥tα−1

([α− 1]q − βξα−1)Γq(α)

∫ 1

0

(1− qs)(α−2)h(s)dqs

=
B[α− 1]q∥u− v∥tα−1

([α− 1]q − βξα−1)Γq(α)
,

where B =
∫ 1

0
(1− qs)(α−2)h(s)dqs.

Consequently,

|(T 2)u(t)− (T 2)v(t)| = |T (Tu(t))− T (Tv(t))|

≤
∫ 1

0

G(t, qs)|f(s, Tu(s))− f(s, Tv(s))|dqs

≤
∫ 1

0

G(t, qs)h(s)|Tu(s)− Tv(s)|dqs

≤ B[α− 1]q∥u− v∥
([α− 1]q − βξα−1)Γq(α)

∫ 1

0

G(t, qs)sα−1h(s)dqs

=
B[α− 1]q∥u− v∥

([α− 1]q − βξα−1)Γq(α)

∫ 1

0

[α− 1]q(1− qs)(α−2)tα−1

([α− 1]q − βξα−1)Γq(α)
sα−1h(s)dqs

=
B([α− 1]q)

2∥u− v∥tα−1

[([α− 1]q − βξα−1)Γq(α)]2

∫ 1

0

(1− qs)(α−2)sα−1h(s)dqs

=
AB([α− 1]q)

2tα−1

[([α− 1]q − βξα−1)Γq(α)]2
∥u− v∥,

where A =
∫ 1

0
(1− qs)(α−2)sα−1h(s)dqs. By introduction, we obtain

|(Tnu)(t)− (Tnv)(t)| ≤ BAn−1([α− 1]q)
ntα−1

[([α− 1]q − βξα−1)Γq(α)]n
∥u− v∥.

From the condition (14), we get

BAn−1

[([α− 1]q − βξα−1)Γq(α)]n
=

B

A

[
A

([α− 1]q − βξα−1)Γq(α)

]n
≤ B

A
(
1

2
)n

<
1

4
,

since 0 < [α− 1]q < 1, thus for n sufficiently large, we have

∥Tnu− Tnv∥ ≤ 1

4
∥u− v∥.
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Hence, it follows from the generalized Banach contraction principle that the BVP
(1) and (2) has a unique solution.

4. An Example

Example 1. Consider the following fractional q-difference boundary value prob-
lem {

D1.5
0.5u(t) +

t2

3(1+t2) (tan
−1u+ t) = 0, 0 < t < 1,

u(0) = 0, D0.5u(1) =
1
5u(

1
2 ),

(15)

where, α = 1.5, q = 0.5, β = 1
5 , ξ = 1

2 and

f(t, u) =
t2

3(1 + t2)
(tan−1u+ t), (t, u) ∈ [0, 1]× (0,∞),

is a continuous function, and h(t) = t2

3(1+t2) . It is easy for (t, u), (t, v) ∈ [0, 1]×(0,∞)

to prove that

|f(t, u)− f(t, v)| =
t2

3(1 + t2)
|tan−1u− tan−1v|

≤ h(t)|u− v|.
By simple calculation, we get

([α− 1]q − βξα−1)Γq(α) ≈ 0.46,

and

A =

∫ 1

0

(1− qs)(α−2)sα−1h(s)dqs =

∫ 1

0

(1− qs)(α−2)sα−1 s2

3(1 + s2)
dqs

≤ 1

3

∫ 1

0

(1− qs)(α−2)sα−1dqs

≤ 1

3

∫ 1

0

(1− qs)(α−2)dqs ≈ 0.166,

which implies that

A =

∫ 1

0

(1− qs)(α−2)sα−1h(s)dqs <
([α− 1]q − βξα−1)Γq(α)

2
≈ 0.23.

Obviously, for any n ≥ 2, we have

BAn−1

[([α− 1]q − βξα−1)Γq(α)]n
≤ 0.166

0.46× 2n−1
< 0.1804 <

1

4
.

Thus, Theorem 2 implies that the boundary value problem (15) has a unique solu-
tion.
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