
Journal of Fractional Calculus and Applications,

Vol. 6(2) July 2015, pp. 53-64.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

NUMERICAL AND THEORETICAL STUDY FOR SOLVING

MULTI-TERM LINEAR FRACTIONAL DIFFERENTIAL

EQUATIONS USING A COLLOCATION METHOD BASED

ON THE GENERALIZED LAGUERRE POLYNOMIALS

M. M. KHADER, N. H. SWEILAM

Abstract. In this paper, a direct solution technique for solving multi-order

linear fractional differential equations (LFDEs) with variable coefficients is
developed using a collocation method based on the generalized Laguerre poly-

nomials. Taking the advantages of the Laguerre polynomials, to introduce an

approximate formula of the derivatives of any fractional order. The fractional
derivatives are presented in terms of the Caputo sense. Special attention is

given to study the convergence analysis and estimate an upper bound of the

error of the proposed formula. The properties of Laguerre polynomials are uti-
lized to reduce LFDEs to a system of algebraic equations which can be solved

using an efficient numerical method. Several numerical examples are provided

to confirm the theoretical results and the efficiency of the proposed method.

1. Introduction

The multi-term fractional differential equations with initial values are increas-
ingly used to model problems in fluid flow, finance, engineering, and other areas
of applications. This kind of problems is more complex than ordinary differen-
tial equations. In the field of numerical treatment of this kind, a great attention
has been recently dedicated to the development efficient and accurate numerical
methods ([10], [12], [19]). In the last three decades, spectral methods such as Tau
method [2] and collocation methods ([3], [4], [7], [8], [16], [18]) have a considerable
attention to seek with this kind of problems. Orthogonal polynomials are funda-
mental concepts in approximation theory and form the basis of spectral methods
of the solution of differential equations such as shifted Chebyshev polynomials [6],
shifted Legendre polynomials [22], sinc and rational Legendre functions [14] and
the generalized Laguerre polynomials ([1], [9], [20]-[22]). The classical general-
ized Laguerre polynomials constitute a complete orthogonal set of functions on the
semi-infinite interval [0,∞). Collocation methods are efficient and highly accurate
techniques for numerical solution of linear differential equations [15]. The basic idea
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of the spectral collocation method is to assume that the unknown solution u(x) can
be approximated by a linear combination of some basis functions, called the trial
functions.

The main aim of the present paper is to introduce an approximate formula of
the Caputo fractional derivative and the application of this approach to obtain
the numerical solution of multi-order linear fractional differential equations with
variable coefficients of the form

Dνu(x) +

n−1∑
j=1

γj(x)Dβj u(x) + γn(x)u(x) = g(x), (1)

with the following initial conditions

u(j)(0) = uj , j = 0, 1, ..., n− 1, (2)

where n < ν ≤ n+ 1, n ∈ N, 0 < β1 < β2 < ... < βn−1 < ν and Dν denotes Caputo
fractional derivative of order ν and g(x) is the source term, here the functions
γi(x), i = 1, 2, ..., n are given functions.

2. Preliminaries and notations

In this section, we present some necessary definitions and mathematical prelim-
inaries of the fractional calculus theory required for our subsequent development.
2.1: The Caputo fractional derivative
Definition 1: The Caputo fractional derivative operator Dν of order ν is defined
in the following form

Dνf(x) =
1

Γ(n− ν)

∫ x

0

f (n)(t)

(x− t)ν−n+1
dt, x > 0,

where n− 1 < ν ≤ n, n ∈ N and Γ(.) is the Gamma function.
Similar to integer-order differentiation, Caputo fractional derivative operator is a
linear operation

Dν (λ f(x) + µ g(x)) = λDν f(x) + µDν g(x), (3)

where λ and µ are constants. For the Caputo’s derivative we have

Dν C = 0, C is a constant, (4)

Dν xn =

{
0, for n ∈ N0 and n < dνe;

Γ(n+1)
Γ(n+1−ν)x

n−ν , for n ∈ N0 and n ≥ dνe. (5)

We use the ceiling function dνe to denote the smallest integer greater than or equal
to ν and N0 = {0, 1, 2, ...}. Recall that for ν ∈ N, the Caputo differential operator
coincides with the usual differential operator of integer order.
For more details on fractional derivatives definitions and its properties see ([5], [17]).
2.2: The definition and properties of the generalized

Laguerre polynomials

The generalized Laguerre polynomials [L
(α)
n (x)]∞n=0, α > −1 are defined on the

semi-infinite interval [0,∞) and can be determined with the aid of the following
recurrence formula [4]

(n+ 1)L
(α)
n+1(x) + (x− 2n−α− 1)L(α)

n (x) + (n+α)L
(α)
n−1(x) = 0, n = 1, 2, ..., (6)

where, L
(α)
0 (x) = 1 and L

(α)
1 (x) = α+ 1− x.
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The explicit formula of these polynomials of degree n is given by

L(α)
n (x) =

n∑
k=0

(−1)k

k!

(
n+ α
n− k

)
xk =

(
n+ α
n

) n∑
k=0

(−n)k
(α+ 1)k

xk

k!
, (7)

with (a)0 := 1 and (a)k := a(a+1)(a+2)...(a+k−1), k = 1, 2, 3, ... and L
(α)
n (0) =(

n+ α
n

)
. These polynomials are orthogonal on the interval [0,∞) with respect

to the weight function w(x) = 1
Γ(1+α)x

αe−x and the orthogonality relation is

1

Γ(1 + α)

∫ ∞
0

xαe−xL(α)
m (x)L(α)

n (x)dx =

(
n+ α
n

)
δmn. (8)

Also, they satisfy the differentiation formula

DkL(α)
n (x) = (−1)kL

(α+k)
n−k (x), k = 0, 1, ..., n. (9)

Any function u(x) belongs to the space L2
w[0,∞) of all square integrable functions

on [0,∞) with weight function w(x), can be expanded in the following Laguerre
series

u(x) =

∞∑
i=0

ciL
(α)
i (x), (10)

where the coefficients ci are given by

ci =
Γ(i+ 1)

Γ(i+ α+ 1)

∫ ∞
0

xαe−xL
(α)
i (x)u(x)dx, i = 0, 1, 2, ... . (11)

Consider only the first (m + 1) terms of generalized Laguerre polynomials, so we
can write

um(x) ∼=
m∑
i=0

ciL
(α)
i (x). (12)

3. The approximated fractional derivatives of L
(α)
n (x)

and its convergence analysis

The main goal of this section is to introduce the following four theorems to derive
an approximate formula of the fractional derivatives of the generalized Laguerre
polynomials and study the truncating error for the approximated formula.

The main approximate formula of the fractional derivative of u(x) is given in the
following theorem.
Theorem 1 [11]

Let u(x) be approximated by the generalized Laguerre polynomials as (12) and
also suppose ν > 0 then, its approximated fractional derivative can be written in
the following form

Dν(um(x)) =

m∑
i=dνe

i∑
k=dνe

ci w
(ν)
i, k x

k−ν , (13)

where w
(ν)
i, k is given by

w
(ν)
i, k =

(−1)k

Γ(k + 1− ν)

(
i+ α
i− k

)
. (14)
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Theorem 2 [11]
The Caputo fractional derivative of order ν for the generalized Laguerre polyno-

mials can be expressed in terms of the generalized Laguerre polynomials themselves
in the following form

DνL
(α)
i (x) =

i∑
k=dνe

k−dνe∑
j=0

Ωi j k L
(α)
j (x), i = dνe, dνe+ 1, ...,m , (15)

where

Ωi j k =
(−1)j+k (α+ i)! (k − ν + α)!

(i− k)! (α+ k)! (k − ν − j)! (α+ j)!
.

Theorem 3
The error |ET (m)| = |Dνu(x)−Dνum(x)| in approximating Dνu(x) by Dνum(x)

is bounded by [11]

|ET (m)| ≤
∞∑

i=m+1

ciΠν(i, j)
(α+ 1)j

j!
ex/2, α ≥ 0, x ≥ 0, j = 0, 1, ... , (16)

|ET (m)| ≤
∞∑

i=m+1

ciΠν(i, j)
(

2− (α+ 1)j
j!

)
ex/2, −1 < α ≤ 0, x ≥ 0, j = 0, 1, ... ,

(17)

where, Πν(i, j) =

i∑
k=dνe

k−ν∑
j=0

Ωi j k.

4. Procedure of solution for the multi-order LFDEs

Consider the multi-order linear fractional differential equation of type given in
Eq.(1). Let w(x) = 1

α!x
αe−x be a positive weight function on the interval I = [0,∞)

and L2
w(I) is the weighted space L2 with inner product

(u, v)w =

∫ ∞
0

w(x)u(x)v(x)dx,

and the associated norm ‖u‖w = (u, u)
1
2
w. It is well known that [L

(α)
n (x) : n ≥ 0]

forms a complete orthogonal system in L2
w(I), so if we define

Sm(I) = Span[L
(α)
0 (x), L

(α)
1 (x), ..., L(α)

m (x)], (18)

then, the Laguerre spectral solution of Eq.(1) is to find um ∈ Sm(I) such that
Eq.(12) achieved. From Eq.(1) and (12) and Theorem 1 we have

m∑
i=dνe

i∑
k=dνe

ci w
(ν)
i, k x

k−ν +

r−1∑
j=1

γj(x)
( m∑
i=dβje

i∑
k=dβje

ci w
(βj)
i, k xk−βj

)

+ γr(x)

m∑
i=0

ci L
(α)
i (x) = g(x).

(19)
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We now collocate Eq.(19) at (m+ 1− dνe) points xp, p = 0, 1, ...,m− dνe as

m∑
i=dνe

i∑
k=dνe

ciw
(ν)
i, kx

k−ν
p +

r−1∑
j=1

γj(xp)
( m∑
i=dβje

i∑
k=dβje

ci w
(βj)
i, k x

k−βj
p

)

+ γr(xp)

m∑
i=0

ciL
(α)
i (xp) = g(xp).

(20)

For suitable collocation points we use roots of the generalized Laguerre polynomial

L
(α)
m+1−dνe(x).

Also, by substituting Eq.(9) in the initial conditions (2) and using the property

L
(α)
i (0) =

(
α+ i
i

)
we can obtain dνe of equations

m∑
i=0

ci (−1)j
(
α+ i
i− j

)
= uj , j = 0, 1, 2, ...,m− 1. (21)

Eqs.(20) together with dνe equations of the initial conditions (21), give (m+ 1) of
linear algebraic equations which can be solved, for the unknowns ci, i = 0, 1, ...,m,
using a suitable numerical method, as described in the following section 6.

5. Error estimate of the collocation method for
non-homogenous linear FDEs

In this section, we introduce some necessary notations and prove the theorems
of error estimate. Consider the following form of non-homogenous linear FDEs

[Dnν + a1D
(n−1)ν + ...+ an−1D+ an]u(x) = f(x), Dju(0) = 0, j = 0, 1, ...,m− 1,

(22)
where, m is the smallest integer greater than or equal to nν and x ∈ [0,∞).
Theorem 4

Let f(x) be a piecewise continuous on (0,∞), integrable and of exponential order
on [0,∞). Let P (t) = tn + a1t

n−1 + ... + an be the indicial polynomial of LFDE
(22) and let K(x) is the fractional Green function defined by

K(x) = `−1[P (sν)]−1, (23)

where `−1 is the inverse Laplace transform. Then,

u(x) =

∫ x

0

K(x− ζ)f(ζ)dζ, (24)

is the unique solution of (22).
For more details about this theorem, its proof and the fractional Green function
see [13].
Theorem 5

The truncation error of the spectral Laguerre solution (12) of the non-homogenous
linear FDEs (22) is estimated using the following integral form

e(x) =

∫ x

0

K(x− ζ)δf(ζ)dζ. (25)

Proof.
We may analyze the error of the preceding Laguerre collocation method by the

use of backward error analysis. Let u(x) denotes the exact solution of the problem
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(22). Let um(x) which defined by (12) be the approximate solution obtained by
collocation method and let fn(x) be the nν-th derivative of um(x). Then um(x) is
itself the exact solution to the following similar problem

[Dnν+a1D
(n−1)ν+...+an−1D+an]um(x) = fm(x), Djum(0) = 0, j = 0, 1, ...,m−1.

(26)
Since Eqs.(22) and (26) are both linear, and have the same initial conditions and
the error e(x) := u(x)−um(x) must be the solution of the non-homogeneous initial-
value problem

[Dnν + a1D
(n−1)ν + ...+ an]e(x) = δf(x), Dje(0) = 0, j = 0, 1, ...,m− 1, (27)

where

δf(x) = f(x)− fm(x). (28)

The solution of Eq.(27) corresponds to Theorem 5 can be rewritten in the integral
form (24) which leads to the desired result.

6. Numerical simulation and comparison

In order to illustrate the effectiveness of the proposed method, we implement it
to solve the linear multi-term fractional orders differential equations with different
four examples.

Example 1:

Consider the following linear fractional initial value problem

D2u(x) + x
1
2D1.234u(x) + x

1
3Du(x) + x

1
4D0.333u(x) + x

1
5u(x) = g(x), (29)

where, g(x) = −1− x1.266

Γ(1.766) − x
4
3 − x1.817

Γ(2.766) + x
1
5 (2− x2

2 ),

with the following initial conditions

u(0) = 2, u′(0) = 0. (30)

The exact solution for this problem is u(x) = 2− 1
2x

2.
We apply the suggested method with m = 3, and approximate the solution u(x) as
follows

u3(x) =

3∑
i=0

ci L
(α)
i (x). (31)

Using Eq.(19), with ν = 2, β1 = 1.234, β2 = 1.0, β3 = 0.333, and α = −0.5, we
have

3∑
i=2

i∑
k=2

ci w
(2)
i, k x

k−2 + x
1
2

3∑
i=2

i∑
k=2

ci w
(1.234)
i, k xk−1.234 + x

1
3

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1

+ x
1
4

3∑
i=1

i∑
k=1

ci w
(0.333)
i, k xk−0.333 + x

1
5

3∑
i=0

ci L
(α)
i (x) = g(x).

(32)
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Now, we collocate Eq.(32) at the roots xp as

3∑
i=2

i∑
k=2

ci w
(2)
i, k x

k−2
p + x

1
2
p

3∑
i=2

i∑
k=2

ci w
(1.234)
i, k xk−1.234

p + x
1
3
p

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1
p

+ x
1
4
p

3∑
i=1

i∑
k=1

ci w
(0.333)
i, k xk−0.333

p + x
1
5
p

3∑
i=0

ci L
(α)
i (xp) = g(xp),

(33)

where xp are the roots of the generalized Laguerre polynomial L
(α)
2 (x), i.e.,

x0 = 2 + α−
√

2 + α = 0.275255, x1 = 2 + α+
√

2 + α = 2.72474 .

By using Eqs.(21) and (33) we obtain the following linear system of algebraic equa-
tions

3∑
i=2

i∑
k=2

ci w
(2)
i, k x

k−2
0 + x

1
2
0

3∑
i=2

i∑
k=2

ci w
(1.234)
i, k xk−1.234

0 + x
1
3
0

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1
0

+ x
1
4
0

3∑
i=1

i∑
k=1

ci w
(0.333)
i, k xk−0.333

0 + x
1
5
0

3∑
i=0

ciL
(α)
i (x0) = g(x0),

(34)

3∑
i=2

i∑
k=2

ci w
(2)
i, k x

k−2
1 + x

1
2
1

3∑
i=2

i∑
k=2

ci w
(1.234)
i, k xk−1.234

1 + x
1
3
1

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1
1

+ x
1
4
1

3∑
i=1

i∑
k=1

ci w
(0.333)
i, k xk−0.333

1 + x
1
5
1

3∑
i=0

ci L
(α)
i (x1) = g(x1),

(35)

r0c0 + r1c1 + r2c2 + r3c3 = 2, (36)

s0c0 + s1c1 + s2c2 + s3c3 = 0, (37)

where, ri =

(
α+ i
i

)
, si =

(
α+ i
i− 1

)
, i = 0, 1, 2, 3.

By solving the system of Eqs.(34)-(37) using conjugate gradient method we obtain

c0 =
13

8
, c1 =

3

2
, c2 = −1, c3 = 0.

Therefore,

u(x) =
(

13
8 , 3

2 , −1 , 0
)

1
−x+ 0.5

0.5x2 − 1.5x+ 0.375
−0.1667x3 + 1.25x2 − 1.875x+ 0.313

 = 2−1

2
x2,

which is the exact solution of this problem.
It is clear that in this example the presented method can be considered as an
efficient method.
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Example 2:

In this example, we consider the following Cauchy initial value problem

D1.5u(x) + 2Du(x) + 3
√
xD0.5u(x) + (1− x)u(x) = g(x), (38)

where g(x) = 2
Γ(1.5)x

0.5+4x+ 4
Γ(1.5)x

2+(1−x)x2 and subject to the initial conditions

u(0) = u′(0) = 0. (39)

The exact solution of this example is u(x) = x2.
To solve this example, by applying the proposed technique described in section 4
with m = 3, we approximate the solution as

u3(x) = c0L
(α)
0 (x) + c1L

(α)
1 (x) + c2L

(α)
2 (x) + c3L

(α)
3 (x).

Using Eq.(19), with ν = 1.5, β1 = 1, β2 = 0.5 and α = −0.25 we have

3∑
i=2

i∑
k=2

ci w
(1.5)
i, k xk−1.5 + 2

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1 + 3
√
x

3∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5

+ (1− x)

3∑
i=0

ciL
(α)
i (x) = g(x).

(40)

Now, we collocate Eq.(40) at the roots xp as

3∑
i=2

i∑
k=2

ci w
(1.5)
i, k xk−1.5

p + 2

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1
p + 3

√
xp

3∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5

p

+ (1− xp)
3∑
i=0

ciL
(α)
i (xp) = g(xp),

(41)

where xp are roots of the generalized Laguerre polynomial L
(α)
2 (x).

By using Eqs.(21), (39) and (41) we obtain the following linear system of algebraic
equations

3∑
i=2

i∑
k=2

ci w
(1.5)
i, k xk−1.5

0 + 2
3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1
0 + 3

√
x0

3∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5

0

+ (1− x0)

3∑
i=0

ciL
(α)
i (x0) = g(x0),

(42)

3∑
i=2

i∑
k=2

ci w
(1.5)
i, k xk−1.5

1 + 2

3∑
i=1

i∑
k=1

ci w
(1)
i, k x

k−1
1 + 3

√
x1

3∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5

1

+ (1− x1)

3∑
i=0

ciL
(α)
i (x1) = g(x1),

(43)

r0c0 + r1c1 + r2c2 + r3c3 = 0, (44)

s0c0 + s1c1 + s2c2 + s3c3 = 0, (45)
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where, ri =

(
α+ i
i

)
, si =

(
α+ i
i− 1

)
, i = 0, 1, 2, 3 .

By solving Eqs.(42)-(45) we obtain

c0 =
3

4
, c1 = −3, c2 = 2, c3 = 0.

Therefore,

u(x) =
(

3
4 , −3 , 2 , 0

)
1

−x+ 0.5
0.5x2 − 1.5x+ 0.375

−0.1667x3 + 1.25x2 − 1.875x+ 0.313

 = x2,

which is the exact solution of this problem.

Example 3:

In this example, we consider the following linear fractional differential equation

D2u(x) + sin(x)D
1
2u(x) + xu(x) = g(x), (46)

where, f(x) = x9 − x8 + 56x6 − 42x5 + sin(x)
(

32768
6435 x

15
2 − 2048

429 x
13
2

)
,

and subject to the initial conditions

u(0) = u′(0) = 0. (47)

The unique analytical solution for this problem is u(x) = x8 − x7.
To solve this example, by applying the proposed technique with m = 8, we approx-
imate the solution as follows

u8(x) =

8∑
i=0

ci L
(α)
i (x).

Using Eq.(19), with ν = 2, β1 = 0.5, α = −0.75 we have

8∑
i=2

i∑
k=2

ci w
(2)
i, k x

k−2 + sin(x)

8∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5 + x

8∑
i=0

ci L
(α)
i (x) = g(x). (48)

Now, we collocate Eq.(48) at the roots xp as

8∑
i=2

i∑
k=2

ci w
(2)
i, k x

k−2
p + sin(xp)

8∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5

p + xp

8∑
i=0

ci L
(α)
i (xp) = g(xp),

(49)

where xp are roots of the generalized Laguerre polynomial L
(α)
7 (x), i.e.,

x0 = 0.039, x1 = 0.649, x2 = 1.988, x3 = 4.134, x4 = 7.237, x5 = 11.614, x6 = 18.089.

By using Eqs.(21), (47) and (49) we obtain a linear system of algebraic equations
and by solving it we obtain

c0 = 1991.7011, c1 = −65009.1247, c2 = 371189.3555, c3 = −1.00888× 106,

c4 = 1.581398× 106, c5 = −1.51593× 106, c6 = 88200, c7 = −28728, c8 = 40320.

Therefore, u(x) has the form

u(x) '
8∑
i=0

ci L
(α)
i (x) = x8 − x7 .
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It is clear that in this example the presented method can be considered as an
efficient method.

Example 4:

In this example, we consider the following linear fractional differential equation

D
1
2u(x)− aD 1

4u(x) = sin(bx), (50)

where a and b are arbitrary constants and subject to the following initial condition

u(0) = 0. (51)

The exact solution for this problem is

u(x) =
b

a8 + b2

5∑
j=2

aj−2[a4Ex(jν, a4)− a4Cx(jν, b) + bSx(jν, b)].

To solve the above problem, by applying the proposed technique with m = 5, we
approximate the solution as

u5(x) ∼=
5∑
i=0

ci L
(α)
i (x).

Using Eq.(19), with ν = 0.5, β1 = 0.25, and α = −0.75 we have

5∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5 − a

5∑
i=1

i∑
k=1

ci w
(0.25)
i, k xk−0.25 = sin(bx). (52)

Now, we collocate Eq.(52) at the roots xp as

5∑
i=1

i∑
k=1

ci w
(0.5)
i, k xk−0.5

p − a
3∑
i=1

i∑
k=1

ci w
(0.25)
i, k xk−0.25

p = sin(bxp), (53)

where xp are roots of the generalized Laguerre polynomial L
(α)
5 (x), i.e.,

x0 = 0.055, x1 = 0.908, x2 = 2.829, x3 = 6.075, x4 = 11.383.

By using Eqs.(21), (51) and (53) we obtain a linear system of algebraic equations
and by solving it we obtain

c0 = 0.1239, c1 = 0.1688, c2 = 0.0453, c3 = −0.0005, c4 = −0.0009, c5 = 0.0001.

Therefore, u(x) has the form

u(x) ∼= 0.3009x1.5 + 0.2487x1.75 + 0.2x2 + 0.1569x2.25 + 0.6018x2.5 + 0.4522x2.75

+0.3333x3 + 0.2414x3.25 − 0.5158x3.5 − 0.3617x3.75 + 0.01667x4 − 0.2667x4

−0.1704x4.25 − 0.1146x4.5 − 0.0762x4.75 − 0.0533x5 − 0.0324x5.25 .

The approximate solutions of this example are presented in the figure 1, with dif-
ferent values of m, (m = 5, 8, 10). From this figure it is clear that the presented
method can be considered as an efficient method and more applicable to solve
numerically for such problems.
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Figure 1. The behavior of the exact solution and the approximate solutions
at m = 5, 8 and 10.

7. Conclusion and remarks

We have presented a complete analysis for the collocation method based on the
generalized Laguerre polynomials to solve LFDEs. A special family of the gener-
alized Laguerre polynomials was used as an approximation basis. Some error esti-
mates are derived to demonstrate the spectral accuracy for the proposed method.
The numerical solutions obtained from this approach show that LFDEs can be
solved effectively. In addition, a small number of Laguerre polynomials is needed
to achieve the satisfactory result. All numerical results are obtained by building
fast algorithms using Matlab 7.1.
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