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EXISTENCE OF SOLUTIONS FOR FRACTIONAL

DIFFERENTIAL INCLUSIONS WITH INTEGRAL BOUNDARY

VALUE CONDITIONS

DANDAN YANG

Abstract. In this paper, we investigate the existence of solutions for frac-
tional boundary value problems with integral boundary value conditions in
the autonomous case:

cDα
0+

y(t) ∈ F (y(t)), t ∈ (0, 1),

y(0) + y′(0) = g(y),

∫ 1

0
y(t)dt = m,

y′′(0) = y′′′(0) = ... = y(n−1)(0) = 0,

where cDα
0+

is the Caputo fractional derivatives, F : R → P(R) is a multi-

valued map, and g : C([0, 1],R) → R is a continuous function and m ∈ R,
n − 1 < α < n, n ≥ 2. By means of some standard fixed point theorems,

sufficient conditions for the existence of solutions for the fractional differential
inclusions with integral boundary value problems are presented. An example
is presented to illustrate our main result. Our result generalizes the single
known results to the multi-valued ones.

1. Introduction

Fractional calculus is a generalization of the ordinary differentiation and integra-
tion to arbitrary non-integer order, which is a wonderful technique to understand
of memory and hereditary properties of materials and processes. Some recent con-
tributions to fractional differential equations have been carried out, see the mono-
graphs ([3]-[5],[11],[13]-[15]), and the references cited therein. On the other hand,
much attention has been focused on the study of integral boundary conditions,
which are applied in different fields, such as blood flow problems, chemical engi-
neering, underground water flow, populations dynamics and so on. Problems can
be expressed as nonlocal problems with integral boundary conditions, for details,
please see([1],[3],[11],[13]-[14]) and the references therein.
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In 2014, Yan, Sun and Lu etc. in [13] considered the following fractional differ-
ential boundary value problem with integral boundary conditions:

cDα
0+x(t) = f(t, x(t),cDβ

0+x(t)), t ∈ (0, 1),

x(0) + x′(0) = y(x),

∫ 1

0

x(t)dt = m,

x′′(0) = x′′′(0) = ... = x(n−1)(0) = 0,

(1)

where cDα
0+ ,

cDβ
0+ are the Caputo fractional derivatives, f : [0, 1] × R × R → R is

a continuous function. y : C([0, 1],R) → R is a continuous function and m ∈ R,
n − 1 < α < n, n ≥ 2, 0 < β < 1 is a real number. By using the Banach fixed-
point theorem and the Schauder fixed-point theorem, some existence of solutions
are obtained.

In 2013, Ahmad, Ntouyas and Alsaedi in [1] investigated the flowing fractional
differential inclusions with anti-periodic type integral boundary conditions given by

cDqx(t) ∈ F (t, x(t)), t ∈ (0, T ), 2 < q ≤ 3,

x(j)(0) + λjx
(j)(T ) = µj

∫ T

0

gj(s, x(s))ds, j = 0, 1, 2,
(2)

where cDq denotes the Caputo derivative of fractional order q, xj denotes jth
derivative of x, F : [0, T ] × R → P(R) is a multivalued map, P(R) is the fam-
ily of all subsets of R, gj : [0, T ] × R → R are given continuous functions and
λj , µj ∈ R(λj ̸= 1). By beans of some standard fixed point theorems for inclusions,
the authors established the existence of solutions for fractional differential inclu-
sions of order q ∈ (2, 3] with anti-periodic type integral boundary conditions.

This paper is motivated by [13], in which the authors considered (1) with F as
a single-valued map. We study the existence of solutions to the following fractional
inclusions with integral boundary value conditions in the autonomous case:

cDα
0+y(t) ∈ F (y(t)), t ∈ (0, 1),

y(0) + y′(0) = g(y),

∫ 1

0

y(t)dt = m,

y′′(0) = y′′′(0) = ... = y(n−1)(0) = 0,

(3)

where cDα
0+ is the Caputo fractional derivatives, F : R → P(R) is a multivalued

map, and g : C([0, 1],R) → R is a continuous function and m ∈ R, n− 1 < α < n,
n ≥ 2. Sufficient conditions for the existence of solutions are given by means of
the fixed point theorem for multi-valued mapping. The methods used are well
known, but the exposition in the framework of problem is new. The rest of this
paper is organized as follows. We first present some basic definitions of fractional
calculus and multi-valued maps. In section 3, the main result on the existence of
solutions for integral boundary value problem (3) is presented. An example is given
to illustrate our main result in last section.

2. Preliminaries

In this section, we recall some notations, definitions and preliminaries about
fractional calculus ([9],[12])and multi-valued maps ([2],[6]-[8],[10]) that will be used
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in the remainder.
Definition 1. The αth fractional order integral of the function u : (0,∞) 7→ R is
defined by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

where α > 0, Γ is the gamma function, provided the right side is pointwise defined
on (0,∞).
Definition 2. The αth fractional order derivative of a continuous function u :
(0,∞) 7→ R is defined by

Dα
0+u(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

0

(t− s)n−α−1u(s)ds,

where α > 0, n = [α]+1, provided that the right side is pointwise defined on (0,∞).
Definition 3. Caputo fractional derivative of order α > 0 for a function u defined
on [0,∞) is given by

cDα
0+u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,∞). For
normed space (X, ∥ · ∥), let

Pcl(X) = {Y ∈ P(X) : Y is closed},

Pb(X) = {Y ∈ P(X) : Y is bounded}.

Pcp(X) = {Y ∈ P(X) : Y is compact},

Pcp,c(X) = {Y ∈ P(X) : Y is convex and compact}.
For each y ∈ C([0, 1],R), denote the selection set of F as

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (y(t)) a.e.t ∈ [0, 1]}.

To set the frame for our main results, we introduce the following lemmas.

Lemma 1 (Nonlinear alternative for Kakutani maps , [7]). Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0 ∈ U . Suppose
that F : Ū → Pc,cv(C) is a upper semicontinuous compact map; here Pc,cv(C)
denotes the family of nonempty, compact convex subsets of C. Then either

(i) F has a fixed point in Ū , or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) such that u ∈ λF (u).

Lemma 2 ([10]). Let X be a Banach space. Let F : [0, 1] × R → Pcp,c(X) be an
L1− Carathedory multivalued map and let H be a linear continuous mapping from
L1([0, 1], X) → C([0, 1], X). Then the operator

Θ ◦ SF : C([0, 1], X) → Pcp,c(C([0, 1], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

In order to study the problem (3), we need the following lemma,which is pre-
sented in [13], so we omit the proof here.
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Lemma 3. For a given 2 < α < 3, λ ̸= 2, h ∈ AC([0, 1],R), g ∈ C([0, 1],R), the
unique solution of the boundary value problem:

cDα
0+y(t) = h(t), t ∈ (0, 1),

y(0) + y′(0) = g(y),

∫ 1

0

y(t)dt = m,

y′′(0) = y′′′(0) = ... = y(n−1)(0) = 0,

(4)

has a unique solution

y(t) =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+2(1− t)m+(2t−1)g(y)+

2(t− 1)

Γ(α+ 1)

∫ 1

0

(1−s)αh(s)ds.

For convenience, denote

G = max
t∈[0,1]

|g(y(t))|.

3. Main results

Let us list the following assumptions:

(A1) F : R → Pcp(R) is Carathéodory and has nonempty compact and convex
values.

(A2) there exists a continuous nondecreasing function each ψ : [0,∞) → (0,∞)
and a function p ∈ L1([0, 1],R+), such that

∥F (y)∥ = sup{|f | : f ∈ F (y)} ≤ p(t)ψ(∥y∥), for y ∈ R.
(A3) There exists a constant l1 > 0 such that

|g(y1)− g(y2)| ≤ l1∥y1 − y2∥, for each y1, y2 ∈ C([0, 1],R).
Theorem 1. Suppose that (A1)− (A3) . If there exists a positive constant M > 0
such that

M

ψ(M)[
1

Γ(α)

∫ 1

0

(1− s)α−1p(s)ds+
2

Γ(α+ 1)

∫ 1

0

(1− s)α−1p(s)ds] + 2|m|+G

> 1,

(5)
then problem (3) has at least one solution on [0, 1].

Proof. Define the operator T : C([0, 1],R) → P(C[0, 1],R) as follows:

T (y) = {h(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s)ds+ 2(1− t)m+ (2t− 1)g(y)

+
2(t− 1)

Γ(α+ 1)

∫ 1

0

(1− s)αf(s)ds, h ∈ C([0, 1],R)},
(6)

for f ∈ SF,y. We shall prove that the operator T satisfies all the conditions in
Lemma 1. We shall divide the proof to several steps.

Step 1, for each y ∈ C([0, 1],R) the operator T is convex. For SF,y is convex, it
is easy to check it.

Step 2, T maps bounded sets into bounded sets in C([0, 1],R).
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For a positive number r, let Br = {y ∈ C([0, 1],R) : ∥y∥ ≤ r} be a bounded ball
in C([0, 1],R), then for h ∈ T (y), x ∈ Br, there exists f ∈ SF,y such that

h(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds+2(1−t)m+(2t−1)g(y)+

2(t− 1)

Γ(α+ 1)

∫ 1

0

(1−s)αf(s)ds,

and we have

|h(t)| ≤ ψ(∥y∥)[ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds

+
2

Γ(α+ 1)

∫ 1

0

(1− s)α−1p(s)ds] + 2|m|+G.

Thus, we obtain

∥h∥ ≤ ψ(∥r∥)[ 1

Γ(α)

∫ 1

0

(1−s)α−1p(s)ds+
2

Γ(α+ 1)

∫ 1

0

(1−s)α−1p(s)ds]+2|m|+G.

Step 3, T maps the bounded sets into equicontinuous sets of C([0, 1],R). Let
t′, t′′ ∈ [0, 1], and t′ < t′′, y ∈ Br, where Br is a bounded set inC([0, 1],R), for
h ∈ T (y), we have

|h(t′′)− h(t′)| ≤

∣∣∣∣∣
∫ t′

0

(t′′ − s)α−1 − (t′ − s)α−1

Γ(α)
f(s)ds+

∫ t′′

t′

(t′′ − s)α−1

Γ(α)
f(s)ds

∣∣∣∣∣
+ 2(1− |t′′ − t′|)m+ (2|t′′ − t′| − 1)|g(y)|

+
2|t′′ − t′| − 1

Γ(α+ 1)

∫ 1

0

(1− s)αf(s)ds.

the right side hand of above inequality tends to 0 independent of y ∈ Br as t′′ → t′.
By means of Ascoli-Arzelá Theorem, T is completely continuous.

Step 4, T has a closed graph. Set yn → y∗, hn ∈ T (yn) and hn → h∗. Then, We
shall show that h∗ ∈ T (y∗). for hn ∈ T (yn), there exist fn ∈ SF,yn such that

hn(t) =

∫ t

0

(t− s)α−1

Γ(α)
fn(s)ds+2(1−t)m+(2t−1)g(y)+

2(t− 1)

Γ(α+ 1)

∫ 1

0

(1−s)αfn(s)ds.

Thus, it suffices to show that there exists f∗ ∈ SF,y, such that for each t ∈ [0, 1],

h∗(t) =

∫ t

0

(t− s)α−1

Γ(α)
f∗(s)ds+2(1−t)m+(2t−1)g(y)+

2(t− 1)

Γ(α+ 1)

∫ 1

0

(1−s)αf∗(s)ds.

Consider the continuous linear the operator Φ : L1([0, 1],R) → C([0, 1],R) as fol-
lows:

f 7→ Φ(f)(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds+ 2(1− t)m

+ (2t− 1)g(y) +
2(t− 1)

Γ(α+ 1)

∫ 1

0

(1− s)αf(s)ds.

Notice that

∥hn(t)− h∗(t)∥ = ∥
∫ t

0

(t− s)α−1

Γ(α)
(fn(s)− f∗(s))ds

+
2(t− 1)

Γ(α+ 1)

∫ 1

0

(1− s)α(fn(s)− f∗(s))ds∥ → 0,
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as n → ∞. Thus, by Lemma 2, Φ ◦ SF is a closed graph operator. Moreover, we
have hn(t) ∈ Φ(SF,yn). By yn → y∗, we get

h∗(t) =

∫ t

0

(t− s)α−1

Γ(α)
f∗(s)ds+2(1−t)m+(2t−1)g(y)+

2(t− 1)

Γ(α+ 1)

∫ 1

0

(1−s)αf∗(s)ds,

for some f∗ ∈ SF,y∗ .

Step 5, there exists a open set U ⊂ C([0, 1],R), y ∈ T (y) for λ ∈ (0, 1), y ∈ ∂U.
Let η ∈ (0, 1), y ∈ ηT (y). Then for t ∈ [0, 1], there exists f ∈ L1([0, 1],R), with
f ∈ SF,y such that for t ∈ (0, 1), we have

h(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds+2(1−t)m+(2t−1)g(y)+

2(t− 1)

Γ(α+ 1)

∫ 1

0

(1−s)αf(s)ds.

Similar to the discussion of step 2, we have

∥h∥ ≤ ψ(∥y∥)[ 1

Γ(α)

∫ t

0

(t−s)α−1p(s)ds+
2

Γ(α+ 1)

∫ 1

0

(1−s)α−1p(s)ds]+2|m|+G.

Thus,

∥y∥

ψ(∥y∥)[ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds+
2

Γ(α+ 1)

∫ 1

0

(1− s)α−1p(s)ds] + 2|m|+G

≤ 1.

By (5), there exist M such that ∥y∥ ≠M. Let

U = {y ∈ C([0, 1],R) : ∥y∥ < M + 1}.
Note that the operator T : Ū → P(C([0, 1],R)) is upper semicontinuous and com-
pletely continuous. By the choice of U , there is no y ∈ ∂U such that y ∈ ηT (s) for
some η ∈ (0, 1). Thus, by means of Lemma 1, we can get the conclusion that there
exists a fixed point y ∈ Ū , that is, it is a solution of problem (3). We complete the
proof.

4. Application

In this section, we present an example to illustrate our main result.
Consider the fractional differential inclusion with integral boundary value con-

ditions
cD

5
2

0+y(t) ∈ F (y(t)), t ∈ (0, 1),

y(0) + y′(0) =
n∑

i=1

ci,

∫ 1

0

y(t)dt = 1,

y′′(0) = y′′′(0) = ... = y(n−1)(0) = 0,

(7)

where Σn
i=1ci <

1

5
. Set α =

5

2
. Obviously, condition (A3) is satisfied.

y → F (y(t)) := [
|y|5

|y|5 + 3
+ 4,

|y|
|y|+ 1

+ 2], y ∈ R,

|f | ≤ max(
|y|5

|y|5 + 3
+ 4,

|y|
|y|+ 1

+ 1 + 2) ≤ 5, y ∈ R,

and

∥F (y)∥ := sup{|v| : v ∈ F (y)} ≤ 5 := p(t)ψ(|y|), y ∈ R,
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where p(t) = 1, ψ(|y|) = 5, we can find a positive constant M such that

M

5[
1

Γ(52 )

∫ 1

0

(1− s)
3
2 ds+

2

Γ(72 )

∫ 1

0

(1− s)
3
2 ds] + 2 +

1

5

> 1,

that is, M > 4.90811. All the conditions in Theorem 1 are satisfied. Therefore,
fractional differential inclusion with integral boundary value conditions (7) has at
least one solution.
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