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ON FRACTIONAL ORDER HIGH TEMPERATURE

SUPERCONDUCTIVITY

H. A. ABO EL-DAHAB

Abstract. It is argued that fractional order formulation is suitable for strongly
interacting systems. Also that high-temperature superconductivity is still an

open problem.that needs at least two mechanisms to explain.

1. Superconductivity and Quantum Entanglement

1.1. Quantum Entanglement [1]. Quantum entanglement: is a physical phe-
nomenon used in quantum theory to describe the way that two particles (or group)
of matter can become correlated and interact with each other regardless of the the
distance between each other.

Entanglement indicates that nonlocality should be included in formulating quan-
tum system.

1.2. Definition of Superconductivity[2]. Superconductivity: is a quantum me-
chanical phenomenon which occurs when the electrical resistance (R) completely
disappear in solids when they are cooled below a characteristic temperature. (since
the resistivity of a superconductor goes to zero). This temperature is called tran-
sition temperature or critical temperature, conductivity (→ ∞)

Since R = ρL
A and ρ = 0 then R = 0

G = σA
L , σ = 1

ρ then G = A
ρL so G→ ∞

Tc: is the critical temperature at which the resistivity of a superconductor goes
to zero. Above this temperature the material is non-superconducting, while below
it, the material becomes superconducting.

Superconductivity [2] is a phenomenon of exactly zero electrical resistance and
expulsion of magnetic fields occurring in certain materials when cooled below a
characteristic critical temperature.

1.3. Types Superconductor : 1- Low-temperature superconductors, or LTS.
2- High-temperature superconductors, or HTS.
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1.3.1. Low-Temperature Superconductors[3]. The critical temperature of the low-
temperature superconductors is below 77K and their properties are:

No electric resistance (R = 0).
No magnetic field (B = 0).

Mechanism of Low-Temperature superconductivity
Isotope effect, Tc depends on the mass of atoms

Tc ∝
1√

mass of atoms constituting the crystal lattice

Interaction between electrons and lattice atoms is critical for the existence of
superconductive state.

In LHS Tc ∝M−α , α = 0.5 so the the electron – phonon is exist
Meissner Effect[4] : is a phenomenon of exactly zero electrical resistance and

expulsion of magnetic fields occurring in certain materials when cooled below a
characteristic critical temperature.

The superconducting state is characterized by two properties: no electric resis-
tance (R = 0) and no magnetic field (B = 0).

Meissner Effect from London Equation: The London equation relates the curl of
the current density J to the magnetic field:

−→
∇ ×

−→
J = − 1

µ0λ2L

−→
B (1)

S.T
−→
J : is the current density

By relating the London equation to Maxwell’s equations, it can be shown that
the Meissner effect arises from the London equation. One of Maxwell’s equations
is

−→
∇ ×

−→
B = µ0

−→
J (2)

Using the vector calculus identity:

−→
∇ ×

(−→
∇ ×

−→
B
)
=

−→
∇ × µ0

−→
J → ∇2−→B = µ0

(
− 1

µ0λ2L

−→
B

)
(3)

∴
−→
∇2B =

1

λ2L

−→
B (4)

by substitution
Then:

∇2−→B =
B

λ2L
(5)

Since ∇2B = 0 by Maxwell’s equations, the value for B inside the supercon-
ductor must be identically zero unless the penetration depth is infinite (i.e., not
a superconductor). This is one of the theoretical approaches to explaining the
Meissner effect.

Alternatively Meissner Effect[3] is a phenomenon of expulsion of magnetic fields
occurring in certain materials when cooled below a characteristic critical tempera-
ture
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2. The Fractional Order Formalism of Superconductivity[4]

In this section we will review the linear London equations modified by fractional
derivatives for non differintial equations.

2.1. Fractional Derivative[12]: Fractional calculus is three centuries old as the
conventional calculus, but not very popular amongst science and or engineering
community. The beauty of this subject is that fractional derivatives (and inte-
grals) are not a local (or point) property (or quantity). Thereby this considers the
history and non-local distributed effects. In other words perhaps this subject trans-
lates the reality of nature better. Fractional calculus is one of the generalizations of
the classical calculus and it has been used successfully in various fields of science
and engineering. Really there are New possibilities in mathematics and theoretical
physics appear, when the order of the differential operator or the integral operator
becomes an arbitrary parameter.In this paper we are concerned with some notes on
Riemann-Liouville fractional integral, Riemann-Liouville fractional derivative, Ca-
puto fractional derivative and Caputo via Riemann-Liouville fractional derivative
which are the most famous definitions in fractional calcuclus

2.1.1. Basic definition. We will use the notations:

Dαf (x) = f (α) (x) =
dαf (x)

dxα
, I1−α =

∫ t

0

(t− s)
−α

Γ(1− α)
ds (6)

for the fractional derivative.

2.1.2. Fractional Calculus operators:[12]. The main Fractional Calculus operators
are the following :

1) Riemann–Liouville fractional order integral
2) The Fractional-order derivative ( Caputo sense)
3) The Riemann-Liouville Fractional order derivative
4) The Caputo derivative via Riemann-Liouville derivative

Riemann–Liouville fractional order integral. Let β ∈ (0, 1). The fractional order
integral (R-L) operator is given by the singular integral operator of convolution
type

Iβf(t) =t
0

(t− s)
β−1

Γ(β)
f(s)ds , t ∈ [0, T ] (7)

or

Iβf(t) =t
0

sβ−1

Γ(β)
f(t− s)ds , t ∈ [0, T ] (8)

The Fractional-order derivative ( Caputo sense). Let α ∈ (0, 1) and f ∈ AC [0, T ] .
Then the fractional order derivative is defined by the singular integro differential
operator of convolution type.

Dαf(t) = I1−α d

dt
f(t)

= t
0

(t− s)
−α

Γ(1− α)

d

ds
f(s)ds9 (1)

Let α ∈ (n− 1, n) (one step only) and dn

dtn f ∈ AC [0, T ]. Then
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Dαf(t) = In−α d
n

dtn
f(t) (10)

Some properties;

lim
α→1

Dαf(t) =
d

dt
f(t) (11)

lim
α→0

Dαf(t) = f(t)− f(0) (12)

Dαk = 0 , k is constant (13)

Let α, β ∈ (0, 1). If f/ is bounded. Then

DαDβf(t) = Dα+βf(t) , α+ β ∈ (0, 1] (14)

Riemann–Liouville fractional derivative. The Riemann–Liouville fractional deriva-
tive of order α ∈ (n− 1, n) where n=1,2,3,.... is defined by the singular differential
integral operator of convolution type.

is defined by :

Dα
R−L (t) = Dn In−αf (t) (15)

and the derivative of order α ∈ (0, 1) , is given by :

Dα
R−L (t) =

d

dt
I1−αf (t) (16)

which exists provided that I1−αf (t) is differentiable.
Remarks:

lim
α→1

Dα
R−L f(t) ̸= d

dt
f(t) (17)

If f(t) = k ̸= 0, k is a constant, then Dα
R−Lk ̸= 0, but equal k+α

Γ(1−α)

Now, want to prove that Caputo ∼= Riemann–Liouville fractional order.

cDα
ax(t) = Dα

Rx(t) (18)

where

I1−α d

dt
x(t) =

d

dt
I1−αx(t)

if x is differentiable and x(0) = 0 then

cDαx(t) = Dα
Rx(t)

if x(0) ̸= 0 = x0 then

cDαx(t) =
−t− α

Γ(1− α)
+Dα

Rx(t)

by integrating by parts
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cDαx(t) = I1−α d

dt
x(t)

=

∫ t

0

(t− s)
−α

Γ(1− α)

d

ds
x(s)ds

let

u =
(t− s)

−α

Γ(1− α)

du =
− (t− s)

−α−1

Γ(−α)
ds

and

dv =
d

ds
x(s)ds

v = x(s)

cDαx(t) =
(t− s)

−α

Γ(1− α)
x(s)

∣∣∣∣∣
t

0

+

∫ t

0

(t− s)
−α−1

Γ(−α)
x(s)ds

=
−t−α

Γ(1− α)
x(0) +

d

dt

∫ t

0

(t− s)
−α

Γ(1− α)
x(s)ds

=
−t−α

Γ(1− α)
x(0) +

d

dt
I1−αx(t)

=
−t−α

Γ(1− α)
x(0) +Dα

Rx(t)

if x(0) = 0

cDαx(t) = Dα
Rx(t)

ThenCaputo ∼= Riemann–Liouville fractional order.
The Caputo fractional order derivative via Riemann-Liouville derivative. Let x ∈
AC[0, T ], the relation between the Riemann-Liouville and Caputo derivative is given
by

C−R−LDαx(t) =R−L Dα[x(t)− x(0)] (19)

In the case when x /∈ AC[0, T ], we simulate (or can define) the Caputo derivative
via Riemann-Liouville one by the relation

In many recent papers the Caputo via Riemann-Liouville fractional derivative is
called modified Riemann-Liouville fractional derivative

Some advantages can be cited, first of all, by using the CVR difinition it is
found that derivative of constant is zero, and second, it is can be used so much for
differentiable as non differentiable functions.

Simple rules:
1-

DαK = 0 (20)

Since:
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Dαx(t) =
1

Γ (1− α)

d

dt

∫ t

0

(t− s)
−α

(x (s)− x (0)) ds; 0 ≺ α ≺ 1. (21)

If x(t) = K ,
then

x (s) = K and x (0) = K

Dαx(t) =
1

Γ (1− α)

d

dt

∫ t

0

(t− s)
−α

(K −K) dt = 0 ; 0 ≺ α ≺ 1.

Then

DαK = 0

By using The Caputo fractional order derivative via Riemann-Liouville deriva-
tivewe we want to proof that :

Dαtα =
Γ (γ + 1)

Γ (γ − α+ 1)
tγ−α (22)

since x (t) = tγ so x (s) = sγ and x (0) = 0 then eq. (21) can be written as

Dαtγ =
1

Γ (1− α)

d

dt

∫ t

0

(t− s)
−α

sγ ds ;

Let, s = tx

Dαxγ =
1

Γ (1− α)

d

dt

∫ 1

0

(1− x)
−α

t−α (tx)
γ
xdt;

=
1

Γ (1− α)

d

dt

[
tγ−α+1

] ∫ 1

0

(1− x)
−α

xγdx;

=
1

Γ (1− α)

[
(γ − α+ 1) tγ−α

] ∫ 1

0

(1− x)
(1−α)−1

x(γ+1)−1dx; 23(2)

Since the definition of Beta function is

B (α, γ) =

∫ 1

0

(1− x)
α−1

xγ−1dx

=
Γ (α) Γ (γ)

Γ (α+ γ)
24 (3)

So eq. (23) becomes

Dαtγ = tγ−α (γ − α+ 1)
1

Γ (1− α)

Γ (1− α) Γ (1 + γ)

Γ (γ − α+ 1 + 1)

= tγ−α Γ (1 + γ)

Γ (γ − α+ 1)
25 (4)
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2.2. Linear Fractional London Equation[6]. To investigating the magnetic-
field distribution feature in the fractional formalism, we need the modified London
equation. for comparison with that in the integer case we will first review the
derivation of the modified london equation which is usually written as[7]:

B + λ2∇× (∇×B) = 0 (27)

where λ is the London penetration depth and B is the magnetic induction vector
field. With the standard form[8],

λ2∇2B (r)−B (r) = −Φ0δ
(2) (r) ź, (28)

here Φ0 = 2π~/e∗ is the quantum flux and ∇2 is the vectorial Laplacian. The
magnetic field is in ź direction and depends only on radial coordinates r.

This equation have a well known exact solution given by:

B =
Φ0

2πλ
K0

( r
λ

)
, (29)

where K0 is the zero order Hankel function.
With this 2-D geometry we can write the operator ∇2 as

1

r

d

dr

(
r
d

dr

)
(30)

letting to rewrite eq. (28) as

− λ2

r

d

dr

(
r
dB

dr

)
+B (r) = Φ0δ

(2) (r − r0) . (31)

In order to rewrite the equation above with fractional derivatives we use a gen-
eralized fractional Laplacian, in the MRL’s sense, of a form given by[9], [10]

1

rα
Dα

r (rαDα
rB (r)) .

With this fractional operator we can write the fractional London equations as

λ2α

rα
Dα

r (rαDα
rB (r)) +B (r) = Φ0δ

(2) (r − r0) . (32)

3. Fractional quantum field theory, path integral, and stochastic
differential equation for strongly interacting many-particle

systems[11]

We Explain Low-temperature Superconductors, and weak ineractions ,by using
Equation (1-15)(Ginzburg – Landau theory [3]).

F = F0 + a (T − Tc) |ψ|2 +
b

2
|ψ|2 , a , b ≻ 0, T ≻ Tc

but in high- Tc superconductivity can use The fractional Schrodinger equation ,
The fractional Schrodinger equation It was discovered by Nick Laskin (1999)

,which is[12]:

ih
∂Ψ(r, t)

∂t
= Dα(−h2

∂2

∂r2
)

α
2 Ψ(r, t) + V (r, t)Ψ(r, t) (33)
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where : r is the 3-dimensional position vector, h is the reduced Planck constant,
Ψ(r, t) is the wavefunction, which is the quantum mechanical probability amplitude
for the particle to have a given position r at any given time t, V (r, t) is a potential

energy, ∂2

∂r2 is the Laplace operator. Dαis a scale constant with physical dimension

[Dα] = [energy]1−α·[length]α[time]−α, at α = 2, D2 = 1/2m, where m is a

particle mass and the operator (- h2 ∂2

∂r2 )
α
2 is the 3-dimensional fractional quantum

Riesz derivative. The fractional Schrodinger equation is a fundamental equation
of fractional quantum mechanics. . The fractional Schrodinger equation has many
problems, such as the nonvalidity of the quantum superposition law, the violation of
unitarity of the time evolution, and the violation of probability conservation which
can produce nonsensical probabilities ≻ 1. However, these problems exist only if we
restrict ourselves only to the free effective action, and this is meaningless, since the
entire theory is only defined by the effective action in the strong-coupling limit and
this contains necessarily additional nonquadratic terms. Hence it does not possess
free quasiparticles as in the time-honored Landau theory of Fermi liquids. There
is always an interaction that invalidates the standard discussion of Schrödinger
equations. In fact, the theory of high- Tc superconductivity must probably be
build as a true strong-coupling theory of this type with electrons being non-fermi
liquids.

4. High-temperature superconductors:

4.1. Weak Nonzero Isotopic Effect. The critical temperature of the high-temperature
superconductors is above 77K, The first high-Tc superconductor was discovered in
1986 by IBM researchers Karl Müller and Johannes Bednorz , [3],and their proper-
ties are:

1- planar (Exist in two dimensions and the third dimension is an insulator
2- No magnetic field (B = 0).
3- At T ≻ Tc → ρ =0
4- Tc ¿ 90 K

Mechanism of high-temperature superconductivity
Isotope effect, Tc depends on the mass of atoms

Tc ∝
1√

mass of atoms constituting the crystal lattice
(34)

In HTS
Tc ∝M−α, α ∼= 0.05 (35)

so the electron-phonon exists.
There has to be a further strong interaction since

Tc > 90K (36)

We think that, we need two interactions to explain high temperature supercon-
ductivity.
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