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NON-HOMOGENEOUS FRACTIONAL SCHRÖDINGER

EQUATION

CÉSAR E. TORRES LEDESMA

Abstract. In this article we are interested in the non-homogeneous fractional
Schrödinger equation

(−∆)αu(x) + V (x)u(x) = f(u) + h(x) in Rn. (1)

By using mountain pass Thoerem and Ekeland’s variational principle, we prove
the existence of two solutions for (1).

1. Introduction

Recently, a great attention has been focused on the study of problems involving
the fractional Laplacian, from a pure mathematical point of view as well as from
concrete applications, since this operator naturally arises in many different contexts,
such as, obstacle problems, financial mathematics, phase transitions, anomalous
diffusions, crystal dislocations, soft thin films, semipermeable membranes, flame
propagations, conservation laws, ultra relativistic limits of quantum mechanics,
quasi-geostrophic flows, minimal surfaces, materials science and water waves. The
literature is too wide to attempt a reasonable list of references here, so we derive
the reader to the work by Di Nezza, Patalluci and Valdinoci [7], where a more
extensive bibliography and an introduction to the subject are given.

In the context of fractional quantum mechanics, non-linear fractional Schrödinger
equation has been proposed by Laskin [15], [16] as a result of expanding the Feyn-
man path integral, from the Brownian-like to the Lévy-like quantum mechanical
paths. In the last 10 years, there has been a lot of interest in the study of the
fractional Schrödinger equation

(−∆)αu+ V (x)u = f(x, u) in Rn. (2)

where the nonlinearity f satisfies some general conditions. See, for instance, Feng
[11], Chang [3], [4], Cheng [5], Dipiero, Palatucci and Valdinoci [8], Dong and Xu
[9], Felmer, Quaas and Tan [10], de Oliveira, Costa and Vaz [18] and Secchi [20],
[21].

2010 Mathematics Subject Classification. 26A33, 47J30.

Key words and phrases. Fractional laplacian, fractional Sobolev space, variational method.
Submitted Sept. 29, 2014.

108



JFCA-2015/6(2) NON-HOMGENEOUS 109

To the author’s knowledge, most of these works assumed that there exists a
trivial solution, namely 0, for (2). There seems to have been very little progress on
existence theory for (2) without trivial solutions.

This paper studies the existence of solutions u ∈ Hα(Rn) for the fractional
equation

(−∆)αu(x) + V (x)u(x) = f(u) + h(x) in Rn, n ≥ 2, (3)

where 0 < α < 1, (−∆)α stands for the fractional laplacian defined by

(−∆)αu(x) = p.v.

∫
Rn

u(x)− u(z)

|x− z|n+2α
dz.

This problem is a model for (2) without trivial solutions and present specific math-
ematical difficulties.

When α = 1 in (3), we have the classical non homogeneous nonlinear Schrödinger
equation, which has been studied extensively by many authors in the last few
decades, see, for example [2], [22], [23], and references therein, where the existence
and multiplicity results have been studied.

Troughout the paper we assume that

(V1) V ∈ C(Rn,R) and there exists a constant V0 > 0 such that V (x) ≥
V0, ∀x ∈ Rn,

(V2) lim|x|→∞ V (x) = ∞,

Regarding f we consider

(f1) f ∈ C(R), f(0) = 0,
(f2) f(t) = o(|t|) as t → 0,

(f3) f(t) = o(|t|
n+2α
n−2α ) as t → ∞,

(f4) There is a constant µ > 2 such that

0 < µF (u) = µ

∫ u

0

f(s)ds ≤ uf(u), u ̸≡ 0, (4)

and for h we consider

(H) h ∈ L2(Rn), h ̸≡ 0 and

∥h∥L2(Rn) <
ϱ

S

(
1

2
− ϵS2 − (ϵ+Kϵ)S

2∗αϱ2
∗
α−2

)
,

where ϱ > 0 is given by the first geometrical condition of the mountain pass
theorem and S is the Sobolev constant.

Our main result is as follows.
Theorem 1.1 Under assumptions (V1)− (V2), (f1)− (f4) and (H), (3) has at least
two solutions.

Our study is motivated by [5], [20], [21]. In [5] Cheng proved the existence of
bound state solutions to (2) with f(t) = tq and unbounded potential by using
Lagrange multiplier method and Nehari’s manifold approach. It is worth noticing
that under the assumption that potential V (x) → ∞ as |x| → ∞, the embedding
Hα

V (Rn) ↪→ Lq(Rn) is compact, where

Hα
V (Rn) =

{
u ∈ Hα(Rn)/

∫
Rn

V (x)u2(x)dx < ∞
}

and 2 ≤ q < 2n
n−2α . In [20] Secchi has studied the equation (2). Under the same

assumption on V , the existence of a ground states is obtained by Mountain pass
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Theorem. In [21], Secchi looks for a radially symmetric solution of (3), with f does
not depend on x, namely de considered

(−∆)αu(x) + V (x)u(x) = f(u)

where the nonlinearity f satisfies rather weak assumptions , which are comparable
to those in [1]. By using the monoticity trick of Struwe-Jeanjean, Secchi shows the
existence of radial solution.

Our theorem extends these result to the case h ̸= 0. Under this assumption,
the problem of existence of solutions is much more delicate, because the extra
difficulties arise in studying the properties of the corresponding action functional
I : Hα

V (Rn) → R
The problem here is as follows. We are given two sequence of almost critical

point in Hα
V (Rn). The first one, obtained by Ekeland’s variational principle, is

contained in a small ball centered at 0. Using the mountain pass geometry of
the action functional, the existence of the second sequence is established. Both
sequence are weakly convergent in Hα

V (Rn). The question is whether their limits
are equal to each other or they define two geometrically distinct solutions of (3).
The PS-condition is enough to obtain two solutions. The assumption (V2) ensure
the PS-condition at each level. In fact one needs the PS-condition only at two
levels.

This article is organized as follows. In Section §2 we present preliminaries with
the main tools and the functional setting of the problem. In Section §3 we prove
the Theorem 1.1.

2. Preliminaries

In this section, we collet some information to be used in the paper. Sobolev
spaces of fractional order are the convenient setting for our equation. A very com-
plete introduction to fractional Sobolev spaces can be found in [7].

We recall that the fractional Sobolev space Hα(Rn) is defined for any α ∈ (0, 1)
as

Hα(Rn) =

{
u ∈ L2(Rn)/

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
< ∞

}
.

This space is endowed with the Gagliardo norm

∥u∥2α =

∫
Rn

u2(x)dx+

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
.

Regarding the space Hα(Rn) we recall the following embedding theorem, whose
proof can be found in [7].
Theorem 2.1 Let α ∈ (0, 1), then there exists a positive constant C = C(n, α)
such that

∥u∥2
L2∗α (Rn)

≤ C

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dydx (5)

and then we have that Hα(Rn) ↪→ Lq(Rn) is continuous for all q ∈ [2, 2∗α].
Moreover, Hα(Rn) ↪→ Lq(Ω) is compact for any bounded set Ω ⊂ Rn and for all

q ∈ [2, 2∗α), where 2∗α = 2n
n−2α is the critical exponent.

Now we consider the Hilbert space Hα
V (Rn) defined by

Hα
V =

{
u ∈ Hα(Rn)/

∫
Rn

V (x)u2(x)dx < ∞
}
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endowed with the inner product

⟨u,w⟩V =

∫
Rn

∫
Rn

[u(x)− u(z)][w(x)− w(z)]

|x− z|n+2α
+

∫
Rn

V (x)u(x)w(x)dx,

and norm

∥u∥2V =

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
+

∫
Rn

V (x)u2(x)dx

By (V1) it is standard to prove thatHα
V (Rn) is continuously embedded inHα(Rn)

and by Theorem 2.1, we have that Hα
V (Rn) ↪→ Lq(Rn) is continuous for all q ∈

[2, 2∗α]. Moreover, we have the following compactness theorem
Theorem 2.2 [5] Suppose that (V1) and (V2) holds. Then Hα

V (Rn) ↪→ Lq(Rn) is
compact for all q ∈ [2, 2∗α).

Moreover we consider the following Lemma
Lemma 2.1 [13] Suppose the β > 1 and the function f ∈ C(R) satisfies

f(t) = o(|t|) as |t| → 0 and f(t) = o(|t|β) as |t| → ∞

If {uk}k is a bounded sequence in Lβ+1(Rn) and uk → u in L2(Rn) then∫
Rn

|f(uk)(uk − u)|dx → 0 as k → ∞.

3. Proof of Theorem 1.1

In this section, our goal is to prove the existence of solutions of equation (3). We
start with a precise definition of the notion of solutions for equation (3).
Definition 3.1 We say that u ∈ Hα

V (Rn) is a weak solution of (3) if

⟨u,w⟩V =

∫
Rn

(f(u(x)) + h(x))w(x)dx, for all w ∈ Hα
V (Rn).

We prove the existence of weak solution of (3) finding a critical point of the
functional I : Hα

V (Rn) → R defined by

I(u) =
1

2
∥u∥2V −

∫
Rn

F (u(x))dx−
∫
Rn

h(x)u(x)dx. (6)

Using the properties of the Nemistky operators and the compact embedding The-
orem 2.2, we can prove that the functional I ∈ C1(Hα

V (Rn),R) and we have

I ′(u)w = ⟨u,w⟩V −
∫
Rn

f(u(x))w(x)dx−
∫
Rn

h(x)w(x)dx, ∀ w ∈ Hα
V (Rn) (7)

In order to prove Theorem 1.1 we use the mountain pass Theorem (see [19] The-
orem 2.2) and Ekeland’s variational principle (see [17] Theorem 4.1 and Corollary
4.1). The proof will be divided into a sequence of Lemmas.
Lemma 3.1 Suppose that (V1), (V2), (f1)−(f4) and (H) holds. Then the functional
I : Hα

V (Rn) → R satisfies the Palais-Smale condition.
Proof. Let {uk} be a sequence in Hα

V (Rn) such that

|I(uk)| ≤ C, I ′(uk) → 0 in (Hα
V (Rn))∗ as k → ∞. (8)

There exists k0 such that for k ≥ k0

|I ′(uk)uk| ≤ ∥uk∥V .
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Then

C + ∥uk∥V ≥ I(uk)−
1

µ
I ′(uk)uk

=

(
1

2
− 1

µ

)
∥uk∥2V +

∫
Rn

(
1

µ
f(uk)uk − F (uk))dx

−
(
1− 1

µ

)∫
Rn

h(x)uk(x)dx

≥
(
1

2
− 1

µ

)
∥u∥2V −

(
Ce −

Ce

µ

)
∥h∥L2∥uk∥V ,

so, {uk} is bounded in Hα
V (Rn). By Theorem 2.2, Hα

V (Rn) ↪→ L2(Rn), compactly

and Hα
V (Rn) ↪→ L2∗α(Rn) continuously. Then, there exists a subsequence, still

denoted by {uk} such that

uk ⇀ u in Hα
V (Rn),

uk → u in L2(Rn).

By another hand

∥uk∥2V − ⟨uk, u⟩V = I ′(uk)(uk − u) +

∫
Rn

f(uk)(uk − u)dx

+

∫
Rn

h(x)(uk(x)− u(x))dx.

Hence, by Lemma 2.1 and (8)

lim
k→∞

(∥uk∥2V − ⟨uk, u⟩V ) = 0.

Then limk→∞ ∥uk∥V = ∥u∥V and, therefore, the sequence {uk} converges to u
strongly in Hα

V (Rn). �
Lemma 3.2 Suppose that (V1)− (V2), (f1)− (f4) and (H) holds. There are ϱ > 0
and τ > 0 such that

I(u) ≥ τ for ∥u∥V = ϱ

Proof. By continuous embedding

∥u∥L2(Rn) ≤ Ce∥u∥V , ∥u∥L2∗α (Rn) ≤ Ce∥u∥V . (9)

By (f2) and (f3), for every ϵ there exists ρ, δ > 0 such that

|f(t)| ≤ ϵ|t|
n+2α
n−2α for |t| ≥ ρ, and

|f(t)| ≤ ϵ|t| for |t| ≤ δ.

Therefore we have

|f(t)| ≤ ϵ(|t|+ |t|
n+2α
n−2α ) +Kϵ|t|

n+2α
n−2α ,

where Kϵ = δ−
n+2α
n−2α maxδ≤|t|≤ρ |f(t)|. Then we have

|F (t)| ≤ ϵ(|t|2 + |t|2
∗
α) +Kϵ|t|2

∗
α . (10)

Let 0 < ϵ < 1
2C2

e
. By (9) and (10) we have∫

Rn

F (u)dx ≤ ϵ
(
∥u∥2L2(Rn) + ∥u∥2

∗
α

L2∗α (Rn)

)
+Kϵ∥u∥

2∗α
L2∗α (Rn)

≤ ϵC2
e∥u∥2V + (ϵ+Kϵ)C

2∗α
e ∥u∥2

∗
α

V
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and

I(u) ≥
(
1

2
− ϵC2

e

)
∥u∥2V − (ϵ+Kϵ)C

2∗α
e ∥u∥2

∗
α

V − Ce∥h∥L2(Rn)∥u∥V . (11)

Taking ∥u∥V = ϱ then I(u) ≥ τ > 0 by (H). �
Lemma 3.3 Suppose that (V1) − (V2), (f1) − (f4) and (H) holds. There is e ∈
B(0, ϱ)

c
such that I(e) ≤ 0

Proof. Since h ̸≡ 0, we can choose a function φ ∈ Hα(Rn) such that∫
Rn

h(x)φ(x)dx > 0.

By (f4) it follows that there exists a constant m > 0 such that

F (u) ≥ m|u|µ if |u| ≥ 1, (12)

so, for λ ∈ (0,+∞), we have

I(λφ) =
λ2

2
∥φ∥2V −

∫
Rn

F (λφ)dx− λ

∫
Rn

h(x)φ(x)dx

≤ λ2

2
∥φ∥2V −mλµ

∫
{|u|≥1}

|φ|µdx− λ

∫
Rn

h(x)φ(x)dx.

Since µ > 2, I(λφ) → −∞ as λ → +∞. Hence, there is λ ∈ (0,+∞) such that

∥λφ∥V > ϱ and I(λφ) ≤ 0.

�
Proof of Theorem 1.1

Since I(0) = 0 and I satisfies Lemmas 3.1 - 3.3, it follows by the mountain pass
Theorem that I has a critical value c given by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1],Hα
V (Rn))/ γ(0) = 0, I(γ(1)) ≤ 0}. By definition , it

follows that c ≥ ϱ > 0.
From (11), we conclude that I is bounded from below on B(0, ϱ). Set

c = inf
∥u∥V ≤ϱ

I(u). (13)

Hence I(0) = 0 implies c ≤ 0. Thus c < c. By Ekeland’s variational principle, there

is a minimizing sequence {wk} ⊂ B(0, ϱ) such that

I(wk) → c and I ′(wk) → 0 as k → ∞.

From Lemma 3.1, c is a critical value of I. Consequently, I has at least two critical
points. �

References

[1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,
Arch. Rational Mech. Anal. 82, n? 4, 313-345(1983).

[2] D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equa-

tion in Rn, Proc. Roy. Soc. Edinburgh Sect. A, 126, 443-4631996.
[3] X. Chang, Ground state of fractional Schrödinger equation on Rn, Proc. Edinb. Math. Soc.

(to be published).

[4] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations,
J. Math. Phys., 54, 061504(2013).
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