Journal of Fractional Calculus and Applications,
Vol. 6(2) July 2015, pp. 115- 122.

ISSN: 2090-5858.
http://fcag-egypt.com/Journals/JFCA/

ON SOME EQUIVALENT PROBLEMS OF STOCHASTIC
DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

A. M. A. EL-SAYED, E. E. ELADDAD AND H. F. A. MADKOUR

ABSTRACT. In this paper we study the existence of a unique mean square (m.s)
continuous solution of the stochastic functional integral equation of fractional
order 8 € (0,1]

X () = P(t) + I7f(t, X(¢(1))), t € [0,7].
As an application we study the existence of mean square continuous solution
of some Cauchy’s type problems of stochastic fractional order functional dif-
ferential equations.

1. INTRODUCTION

The definition and properties of the stochastic fractional calculus have been stud-
ied in [2]-[5].
Let P be a mean square continuous second order stochastic process, ¢ : [0,7] —
[0,7] be continuous real valued function and 8 € (0,1]. Here we study the exis-
tence of unique mean square continuous solution of the stochastic fractional order
integral equation

X(t)=P(t)+ I7f(t, X(p(t))), t € [0,T]. (1)
As an application we prove the existence of unique m.s continuous solution for each
of the following problems

{ 9X = (1, X (p(1)), t € [0,7] @)

X(O = Xo~

{ EDoX(t) = f(t, X(o(t))), t €10,T] (3)
X(0) =0.

{ EDaX(t) = f(t, X(e(t))), t €[0,T] (4)
I'~*X(t) [4=o= 0.

{ EDoX(t) = f(t, X(p(t))), t €10,T] (5)
1= X (1) ;o= 0.
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{ CTRDX(t) = f(t, X (p(1))), t €[0,T] ()
X(0) = Xo.

where X is a second order random variable i.e., E(X,?) < oco.

2. PRELIMINARIES

Let I = [a,b]. Let (2, F, P) be a fixed probability space, where Q is a sample
space, F' is a o—algebra and P is a probability measure. Let X (t;w) = {X (¢), t €
I,w € Q} be a second order stochastic process, i.e., B(X?(t)) < oo, t € I.

Let C' = C(I, L2(€2)) be the space of all second order stochastic processes which is
mean square (m.s) continuous on I. This space is a Banach space endowed with
the norm [6]-[8]

1Xllc = max || X[z where | X||> = (B(X*(£)))"/*.

Let R = R(I, L2(2)) be the class of all second order stochastic processes which is
mean square (m.s) Riemann integrable on I i.e.,

E(/sz(t) dt) < oo
The norm of X € R(I, L2(f2)) is gi(\lfen by [6]-[8]

b
HMM#M/X%MMW

Definition 1. [2]-[5] Let X € C(I, L2(€2)) and 8 € (0, 1). The stochastic fractional
order integral I8 X (t) is defined by

t ()81
IPX(t) :/ (tr(;)X(s) ds.

For the existence of the integral I X () we have the following theorem.
Theorem 1. [2]-[5] Let a, 8 € (0,1). If X € C(I, L2(R)), then I?X(t) exists in
m.s sense as a second order m.s continuous stochastic process I X € C(I, Ly(12))
with the following properties
1) 17 : C(I, L2(Q)) — C(I, La(2))
) IAIPX () = IPISX (1) = I3+ X (1)
) 17X () |t=a=0
4) Limg o IPX (1) = I,X(t) = [! X(s) ds

)

Limg, o IPX(t) = X(1).

Definition 2. [2]-[5] Let X(t) € R(I,L2()) and I!7*X(¢) is m.s differen-
tiable. Then the differintegral operator, Riemann-Liouville sense, of X (¢) of order
a € (0,1) is defined by the second order process ([2]),

d
EpeXx(t) = a]i_aX(t).
Definition 3. [2]-[5] Let X(¢) € C'(I, L2(9)) be a second order stochastic process
which is m.s differentiable with m.s continuous derivative). The fractional-order de-
rivative, Caputo sense, of X (t) of order o € (0,1] is defined by the second order
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process ([2]),

d
°DeX(t) = I;*"‘aX(t).

Definition 4. [5] The Caputo fractional-order derivative via the Riemann-Liouville
of the second order stochastic process X (t) is defined by

d

C—(R—L)DaX(t) _ y

I'~(X(t) — X(0)).

3. EXISTENCE OF SOLUTION

Consider the stochastic fractional order functional integral equation (1) with the
following assumptions

(i) f:[0,T) x La(2) — L2() is m.s continuous and satisfies the Lipschitz
condition

[t X(8) = f(& Y (#)]l2 < K[IX(E) = Y (#)]l2,
where K is constant
(ii) P e C(I, Ly())
(iii) ¢ :[0,7] — [0,T7] is continuous real valued function,
(iv) f(t,0) # 0 is continuous, sup, |f(¢,0) =||f]|.
The following lemma can be proved.
Lemma 1. Let the assumptions (i) and (iv) be satisfied, then

1t X ()2 < KX ()2 + [ f]]-

For the existence of solution of the stochastic fractional order integral equation (1)
we have the following theorem.

Theorem 1.  Let the assumptions (i)-(iv) be satisfied. If 1“{(67131) < 1, then
the stochastic fractional order integral equation (1) has a unique solution X €

C(I, L2(Q)).
Proof. Define the operator
FX(t) = P(t) + 1° f(t, X ((1)))-

Then we will prove that F : C(I, L2(2)) — C(I, L2(2)) and is contraction. Then
applying the Banach fixed point theorem/[1].
Firstly, let ¢1,t2 € [0,T] such that | t; —¢1 |< 0 and let X € C(I, La(€2)), then

B B to (t2 _ S)ﬁfl . . . t1 (tl _ S)ﬁfl

FX(t2)=FX(0) = (Plta)~P()+ | i (s, X o) ds— [ 22—
t1 — s B—1 [2) 9— 8 B—1
= (PP [ B s X (e st [T e X (ol9) s
/t1 (ty —s)P~1
o Wf(S:X(W(S))) ds

_ _ 2 (ty — 5)7 ! 5 ) ds Mo(ta =)t (ti—s)P ! s 1)) ds
= (Plt2)- P+ [ X)) ot [ (P s X ot d

f(s, X(0(s))) ds

t1 _8,8—1 _85—1
IFX(6)-FX(0)ll < |P(e2)-P(0) o+ T 2 =T ke X ((s)))]l2 ds

() I'(8)
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2 (ty — 5)7!
*/tl i X () ds

t1 _ g)B-1 _g)8-1
<1P() = Pl + [ TS — o + 7)) ds+

ta (t2 _ 8)5_1
/tl 1 EIXle 711 ds

RY: AV AV
< 1P(t2) = Plen)la + KX e + IS I+~ i)

£ (tz—t1)° &° (ty — t1)°
TB+1) TBE+1) TB+1) TB+1)
2(ty — ;)P (tgﬂ )
L(B+1) L(s+1)
)-

= [IP(t2) = P(t0) [l + K[ X llc + 111

]

= [[P(t2) = P(ta)ll2 + [K[[ Xlc + [IF1]

This proves that F': C(I, Ly(2)) — C(I, La(£2)

Secondly, for X,Y € C(I, Ly(£2)) we have

bt —s)f1
[FX(t) = FY(t)]2 < /O Wllf(&X((@(S))) — (s, Y ((¢(s)))ll2 ds

bt —s)P1
<K / 1K (o) = V(o) ds

t -1
(t—s)’
<K|X-Y C/ ——— ds
X =Yle J, T
K|X-Y v
< — —_—.
Hence
KT?
[FX = FY|lc < WHX — Y.
If fgfl) < 1, then F is contraction operator. By the Banach fixed point theorem

[1], there exists a unique solution X € C'(I, L2(£2)) of the integral equation (1).

Now, let P(t) = 0, f(¢t,0) =0, t € [0,7] and F{%H) < 1, then from Lemma
1 the solution of (1) satisfies the inequality

e < oot
“=T@E+1)
which implies that z(¢) = 0, t € [0,7].
We have the following corollary.
Corollary 1. Let P(t) =0, f(t,0) =0, t € [0,7] and
integral equation (1) has only the zero solution.

|z[lc

8
F(B+1) < 1, then the
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4. APPLICATIONS

Consider the three Cauchy’s type problems (3)-(5). Then we have the following
theorems.
Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then the three
Cauchy’s type problems (3)-(5) are equivalent to the stochastic fractional order
integral equation

X(t) =171(t, X (p(t))) (7)
Proof. Firstly, consider the initial value problem (3). Integrating we obtain

17X (t) — e = Tf(t, X (p(t))).
Operate with I we get

IX(1) = err— (fi o I X ).
Differentiating we obtain
a—1
X(t) = ey + 10X (20))

then at ¢ = 0 we deduce that ¢ =0 and obtain the integral equation (7).
Operate with I~ we get

I'eX(t) = If(t, X (e(1)).
Differentiating we obtain

9 P=eX () = £ X (o))
Also
X(0) =17f(t, X (¢(t))) [e=0= 0.
Hence the initial value problem (3) is equivalent to the the integral equation (7).
Secondly, consider the initial value problem (4). Integrating we obtain

I'OX(t) = I7OX (1) limo= Lf(t, X (0(1))).
Operate with 7¢ we get

IX(t) = IT f(t, X (o(1))).

Differentiating we obtain

Operate with I'~% we get

I'oX(t) = If(t, X (o(1))).
Differentiating we obtain

d

S TTOX() = f(t, X(p(1)-
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Also 0
10X (£) fimo= / £(s, X (¢(s))) ds = 0.

Hence the initial value problem (4) is equivalent to the the integral equation (7).
Finally, consider the initial value problem (5). Integrating we obtain

I'eX(t) - C = If(t, X (¢(t)))
Operate with 7¢ we get

IX(t) =I1C + I f(t, X (p(t))).

i.e.,

IX(t) = mc H I f(, X (p(1))).
Differentiating we obtain

a—1
X(0) = Frg O+ 16 X (1)

AKX (W) = g+ 0T X (0),

then o
tOX () Ji=mo= (o) + T (8, X (9(1)) =0 -
H7*X(t) |i=0= F(Ca) =0.

Hence

X(t) =If(t, X (¢(1)))-
Operate with I'~% we obtain

I'=oX(t) = If(t, X ((1)))-

Differentiating we obtain

d 11—«
SIUX () = £t X (p())
Also
X () |i=o= 1T f(t, X (2(1))) =0,
then

X (t) [1=0= 0.
Hence the initial value problem (5) is equivalent to the the integral equation (7).
Therefore, the three Cauchy’s type problems (3)-(5) are equivalent to the stochastic
fractional order integral equation (7).
Then from Theorem 1 there exists a unique solution X € C(I, Ly(f2)) of each of
the problems (3)-(5) which is the solution of the integral equation (7).

Now from corollary 1 and Theorem 2 we can prove the following corollary
Corollary 2. Let the assumptions of Theorem 1 be satisfied. If p(t) = 0, f(¢,0) =

0, t €10,7] and % < 1, then the problem

{ RpeX(t) = f(t, X(¢(t))), t €[0,T] (8)
X(0) = 0.
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has only the zero solution X (t) = 0, ¢t € [0,7].
Consider now the initial value problem (6)
Theorem 3. Let the assumptions of Theorem 1 be satisfied. Then the initial value
problem (6) has a unique solution X (¢t) € C'(I, L2(£2)). This solution is the solution
of the integral equation

X(t) = Xo+17f(t, X((¢(1))) (9)

Proof. Consider the initial value problem (6). Integrating equation (6) we obtain

I'OX () = X(0)] = 'YX (1) — X(0)] o= Lf(t, X ((¢(t)))
IO [X () = X(0)] = Lf(t, X (1))
Operate with I¢ we get
IIX (1) = X(0)] = I' (£, X (((t))).

Differentiating we obtain

X(t) = X(0) = I f(t, X ((¢(1))),
then
X(t) = Xo + I7f(t, X ((0(1)))-

Now, from (9) we have
X(t) = X(0) = I f(t, X ((#(2)))-

Operate with I'~% we obtain

X () = X (0)] = Lf(t, X (((1)))-
Differentiating we obtain

d

X @) = X (O)] = f(t X ((p(1))-

Also, from (9) we have

0 (t—s)ot
X(0) %+A s

Hence the initial value problem (6) is equivalent to the integral equation (9).
Applying Theorem 1 we deduce that the problem (6) has a unique solution X (t) €
C(I,L2(€2)). This solution is the solution of the integral equation (9).
Finally consider the initial value problem (2).
Theorem 4. Let the assumptions of Theorem 1 be satisfied. Then the initial value
problem (2) has a unique solution X (t) € C'(I, L2(2)).
Proof. Letting 5 — 1 in (1) we obtain the stochastic integral equation

f(s, X((¢(s))) ds = Xo.

X®=%+Af@XW@Dw

Which is equivalent to the initial value problem (2). Then applying Theorem 1 we
obtain the results.
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5. CONCLUSION

Our results show the richness of the applications of the definition of Riemann-
Liouville fractional order derivative in Cauchy’s type problems of differential equa-
tions.
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