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ON SOME EQUIVALENT PROBLEMS OF STOCHASTIC

DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

A. M. A. EL-SAYED, E. E. ELADDAD AND H. F. A. MADKOUR

Abstract. In this paper we study the existence of a unique mean square (m.s)
continuous solution of the stochastic functional integral equation of fractional
order β ∈ (0, 1]

X(t) = P (t) + Iβf(t,X(ϕ(t))), t ∈ [0, T ].

As an application we study the existence of mean square continuous solution
of some Cauchy’s type problems of stochastic fractional order functional dif-
ferential equations.

1. Introduction

The definition and properties of the stochastic fractional calculus have been stud-
ied in [2]-[5].
Let P be a mean square continuous second order stochastic process, ϕ : [0, T ] −→
[0, T ] be continuous real valued function and β ∈ (0, 1]. Here we study the exis-
tence of unique mean square continuous solution of the stochastic fractional order
integral equation

X(t) = P (t) + Iβf(t,X(φ(t))), t ∈ [0, T ]. (1)

As an application we prove the existence of unique m.s continuous solution for each
of the following problems{

dX
dt = f(t,X(φ(t))), t ∈ [0, T ]
X(0) = Xo.

(2){
RDαX(t) = f(t,X(φ(t))), t ∈ [0, T ]
X(0) = 0.

(3){
RDαX(t) = f(t,X(φ(t))), t ∈ [0, T ]
I1−αX(t) |t=0= 0.

(4){
RDαX(t) = f(t,X(φ(t))), t ∈ [0, T ]
t1−αX(t) |t=0= 0.

(5)

2010 Mathematics Subject Classification. for example 34K50, 34A12, 34A30, 34D20.
Key words and phrases. Mean square continuous, second order stochastic process, Riemann-

Liouville operator, Caputo derivative, Caputo via Riemann-Liouville operator, Cauchy’s type
problems, existence, uniqueness.

Submitted Sept. 29, 2014.
115



116 A. M. A. EL-SAYED, E. E. ELADDAD AND H. F. A. MADKOUR JFCA-2015/6(2){
C−RDαX(t) = f(t,X(φ(t))), t ∈ [0, T ]
X(0) = X0.

(6)

where X0 is a second order random variable i.e., E(X0
2) < ∞.

2. Preliminaries

Let I = [a, b]. Let (Ω, F, P ) be a fixed probability space, where Ω is a sample
space, F is a σ−algebra and P is a probability measure. Let X(t;ω) = {X(t), t ∈
I, ω ∈ Ω} be a second order stochastic process, i.e., E(X2(t)) < ∞, t ∈ I.
Let C = C(I, L2(Ω)) be the space of all second order stochastic processes which is
mean square (m.s) continuous on I. This space is a Banach space endowed with
the norm [6]-[8]

∥X∥C = max
t∈I

∥X∥2 where ∥X∥2 = (E(X2(t)))1/2.

Let ℜ = ℜ(I, L2(Ω)) be the class of all second order stochastic processes which is
mean square (m.s) Riemann integrable on I i.e.,

E(

∫ b

a

X2(t) dt) < ∞

The norm of X ∈ ℜ(I, L2(Ω)) is given by [6]-[8]

∥X∥ℜ =| E(

∫ b

a

X2(t) dt) |1/2

Definition 1. [2]-[5] LetX ∈ C(I, L2(Ω)) and β ∈ (0, 1). The stochastic fractional
order integral IβaX(t) is defined by

IβaX(t) =

∫ t

a

(t− s)β−1

Γ(β)
X(s) ds.

For the existence of the integral IβaX(t) we have the following theorem.
Theorem 1. [2]-[5] Let α, β ∈ (0, 1). If X ∈ C(I, L2(Ω)), then IβaX(t) exists in
m.s sense as a second order m.s continuous stochastic process IβaX ∈ C(I, L2(Ω))
with the following properties

(1) Iβa : C(I, L2(Ω)) −→ C(I, L2(Ω))
(2) Iαa I

β
aX(t) = Iβa I

α
a X(t) = Iα+β

a X(t)
(3) IβaX(t) |t=a= 0

(4) L.i.mβ→1I
β
aX(t) = IaX(t) =

∫ t

a
X(s) ds

(5) X ∈ C1(I, L2(Ω)), ⇒

L.i.mβ→ 0 IβaX(t) = X(t).

Definition 2. [2]-[5] Let X(t) ∈ ℜ(I, L2(Ω)) and I1−α
a X(t) is m.s differen-

tiable. Then the differintegral operator, Riemann-Liouville sense, of X(t) of order
α ∈ (0, 1) is defined by the second order process ([2]),

RDα
aX(t) =

d

dt
I1−α
a X(t).

Definition 3. [2]-[5] Let X(t) ∈ C1(I, L2(Ω)) be a second order stochastic process
which is m.s differentiable with m.s continuous derivative). The fractional-order de-
rivative, Caputo sense, of X(t) of order α ∈ (0, 1] is defined by the second order
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process ([2]),

CDα
aX(t) = I1−α

a

d

dt
X(t).

Definition 4. [5] The Caputo fractional-order derivative via the Riemann-Liouville
of the second order stochastic process X(t) is defined by

C−(R−L)DαX(t) =
d

dt
I1−α(X(t)−X(0)).

3. Existence of solution

Consider the stochastic fractional order functional integral equation (1) with the
following assumptions

(i) f : [0, T ] × L2(Ω) −→ L2(Ω) is m.s continuous and satisfies the Lipschitz
condition

∥f(t,X(t))− f(t, Y (t))∥2 ≤ K∥X(t)− Y (t)∥2,

where K is constant
(ii) P ∈ C(I, L2(Ω))
(iii) φ : [0, T ] −→ [0, T ] is continuous real valued function,
(iv) f(t, 0) ̸= 0 is continuous, supt |f(t, 0) = ||f ||.

The following lemma can be proved.
Lemma 1. Let the assumptions (i) and (iv) be satisfied, then

∥f(t,X(t))∥2 ≤ K∥X(t)∥2 + ||f ||.

For the existence of solution of the stochastic fractional order integral equation (1)
we have the following theorem.

Theorem 1. Let the assumptions (i)-(iv) be satisfied. If KTβ

Γ(β+1) < 1, then

the stochastic fractional order integral equation (1) has a unique solution X ∈
C(I, L2(Ω)).
Proof. Define the operator

FX(t) = P (t) + Iβf(t,X(φ(t))).

Then we will prove that F : C(I, L2(Ω)) −→ C(I, L2(Ω)) and is contraction. Then
applying the Banach fixed point theorem[1].
Firstly, let t1, t2 ∈ [0, T ] such that | t2 − t1 |< δ and let X ∈ C(I, L2(Ω)), then

FX(t2)−FX(t1) = (P (t2)−P (t1))+

∫ t2

0

(t2 − s)β−1

Γ(β)
f(s,X(φ(s))) ds−

∫ t1

0

(t1 − s)β−1

Γ(β)
f(s,X(φ(s))) ds

= (P (t2)−P (t1))+

∫ t1

0

(t2 − s)β−1

Γ(β)
f(s,X(φ(s))) ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)
f(s,X(φ(s))) ds−∫ t1

0

(t1 − s)β−1

Γ(β)
f(s,X(φ(s))) ds

= (P (t2)−P (t1))+

∫ t2

t1

(t2 − s)β−1

Γ(β)
f(s,X(φ(s))) ds+

∫ t1

0

[
(t2 − s)β−1

Γ(β)
− (t1 − s)β−1

Γ(β)
]f(s,X(φ(s))) ds

∥FX(t2)−FX(t1)∥2 ≤ ∥P (t2)−P (t1)∥2+
∫ t1

0

| (t1 − s)β−1

Γ(β)
− (t2 − s)β−1

Γ(β)
| ∥f(s,X(φ(s)))∥2 ds
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+

∫ t2

t1

(t2 − s)β−1

Γ(β)
∥f(s,X(φ(s)))∥2 ds

≤ ∥P (t2)− P (t1)∥2 +
∫ t1

0

[
(t1 − s)β−1

Γ(β)
− (t2 − s)β−1

Γ(β)
][K∥X∥C + ∥f∥] ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)
[K∥X∥C + ∥f∥] ds

≤ ∥P (t2)− P (t1)∥2 + [K∥X∥C + ∥f∥][−(t1 − s)β

Γ(β + 1)
|t10 +

(t2 − s)β

Γ(β + 1)
|t10 − (t2 − s)β

Γ(β + 1)
|t2t1 ]

= ∥P (t2)−P (t1)∥2+[K∥X∥C+∥f∥][ tβ1
Γ(β + 1)

+
(t2 − t1)

β

Γ(β + 1)
− t2

β

Γ(β + 1)
+
(t2 − t1)

β

Γ(β + 1)
]

= ∥P (t2)− P (t1)∥2 + [K∥X∥C + ∥f∥][ 2(t2 − t1)
β

Γ(β + 1)
− (t2

β − t1
β)

Γ(β + 1)
].

This proves that F : C(I, L2(Ω)) −→ C(I, L2(Ω)).

Secondly, for X,Y ∈ C(I, L2(Ω)) we have

∥FX(t)− FY (t)∥2 ≤
∫ t

0

(t− s)β−1

Γ(β)
∥f(s,X((φ(s)))− f(s, Y ((φ(s)))∥2 ds

≤ K

∫ t

0

(t− s)β−1

Γ(β)
∥X((φ(s))− Y ((φ(s))∥2 ds

≤ K∥X − Y ∥C
∫ t

0

(t− s)β−1

Γ(β)
ds

≤ K∥X − Y ∥C
tβ

Γ(β + 1)
.

Hence

∥FX − FY ∥C ≤ KT β

Γ(β + 1)
∥X − Y ∥C .

If KTβ

Γ(β+1) < 1 , then F is contraction operator. By the Banach fixed point theorem

[1], there exists a unique solution X ∈ C(I, L2(Ω)) of the integral equation (1).

Now, let P (t) = 0, f(t, 0) = 0, t ∈ [0, T ] and KTβ

Γ(β+1) < 1, then from Lemma

1 the solution of (1) satisfies the inequality

||x||C ≤ KT β

Γ(β + 1)
||x||C

which implies that x(t) = 0, t ∈ [0, T ].
We have the following corollary.

Corollary 1. Let P (t) = 0, f(t, 0) = 0, t ∈ [0, T ] and KTβ

Γ(β+1) < 1, then the

integral equation (1) has only the zero solution.
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4. Applications

Consider the three Cauchy’s type problems (3)-(5). Then we have the following
theorems.
Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then the three
Cauchy’s type problems (3)-(5) are equivalent to the stochastic fractional order
integral equation

X(t) = Iαf(t,X(φ(t))) (7)

Proof. Firstly, consider the initial value problem (3). Integrating we obtain

I1−αX(t)− c = If(t,X(φ(t))).

Operate with Iα we get

IX(t) = c
tα

Γ(1 + α)
+ Iα+1f(t,X(φ(t))).

Differentiating we obtain

X(t) = c
tα−1

Γ(α)
+ Iαf(t,X(φ(t))),

then at t = 0 we deduce that c = 0 and obtain the integral equation (7).
Operate with I1−α we get

I1−αX(t) = If(t,X(φ(t))).

Differentiating we obtain

d

dt
I1−αX(t) = f(t,X(φ(t))).

Also

X(0) = Iαf(t,X(φ(t))) |t=0= 0.

Hence the initial value problem (3) is equivalent to the the integral equation (7).
Secondly, consider the initial value problem (4). Integrating we obtain

I1−αX(t)− I1−αX(t) |t=0= If(t,X(φ(t))).

Operate with Iα we get

IX(t) = Iα+1f(t,X(φ(t))).

Differentiating we obtain

X(t) = Iαf(t,X(φ(t))).

Operate with I1−α we get

I1−αX(t) = If(t,X(φ(t))).

Differentiating we obtain

d

dt
I1−αX(t) = f(t,X(φ(t))).
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Also

I1−αX(t) |t=0=

∫ 0

0

f(s,X(φ(s))) ds = 0.

Hence the initial value problem (4) is equivalent to the the integral equation (7).
Finally, consider the initial value problem (5). Integrating we obtain

I1−αX(t)− C = If(t,X(φ(t)))

Operate with Iα we get

IX(t) = IαC + Iα+1f(t,X(φ(t))).

i.e.,

IX(t) =
tα

Γ(α+ 1)
C + Iα+1f(t,X(φ(t))).

Differentiating we obtain

X(t) =
tα−1

Γ(α)
C + Iαf(t,X(φ(t))),

t1−αX(t) =
C

Γ(α)
+ t1−αIαf(t,X(φ(t))),

then

t1−αX(t) |t=0=
C

Γ(α)
+ t1−αIαf(t,X(φ(t))) |t=0 .

i.e.,

t1−αX(t) |t=0=
C

Γ(α)
= 0.

Hence
X(t) = Iαf(t,X(φ(t))).

Operate with I1−α we obtain

I1−αX(t) = If(t,X(φ(t))).

Differentiating we obtain

d

dt
I1−αX(t) = f(t,X(φ(t))).

Also
t1−αX(t) |t=0= t1−αIαf(t,X(φ(t))) |t=0,

then
t1−αX(t) |t=0= 0.

Hence the initial value problem (5) is equivalent to the the integral equation (7).
Therefore, the three Cauchy’s type problems (3)-(5) are equivalent to the stochastic
fractional order integral equation (7).
Then from Theorem 1 there exists a unique solution X ∈ C(I, L2(Ω)) of each of
the problems (3)-(5) which is the solution of the integral equation (7).

Now from corollary 1 and Theorem 2 we can prove the following corollary
Corollary 2. Let the assumptions of Theorem 1 be satisfied. If p(t) = 0, f(t, 0) =

0, t ∈ [0, T ] and KTβ

Γ(β+1) < 1, then the problem{
RDαX(t) = f(t,X(φ(t))), t ∈ [0, T ]
X(0) = 0.

(8)
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has only the zero solution X(t) = 0, t ∈ [0, T ].
Consider now the initial value problem (6)
Theorem 3. Let the assumptions of Theorem 1 be satisfied. Then the initial value
problem (6) has a unique solution X(t) ∈ C(I, L2(Ω)). This solution is the solution
of the integral equation

X(t) = X0 + Iαf(t,X((φ(t))) (9)

Proof. Consider the initial value problem (6). Integrating equation (6) we obtain

I1−α[X(t)−X(0)]− I1−α[X(t)−X(0)] |t=0= If(t,X((φ(t)))

i.e.,

I1−α[X(t)−X(0)] = If(t,X((φ(t))).

Operate with Iα we get

I[X(t)−X(0)] = I1+αf(t,X((φ(t))).

Differentiating we obtain

X(t)−X(0) = Iαf(t,X((φ(t))),

then

X(t) = X0 + Iαf(t,X((φ(t))).

Now, from (9) we have

X(t)−X(0) = Iαf(t,X((φ(t))).

Operate with I1−α we obtain

I1−α[X(t)−X(0)] = If(t,X((φ(t))).

Differentiating we obtain

d

dt
I1−α[X(t)−X(0)] = f(t,X((φ(t))).

Also, from (9) we have

X(0) = X0 +

∫ 0

0

(t− s)α−1

Γ(α)
f(s,X((φ(s))) ds = X0.

Hence the initial value problem (6) is equivalent to the integral equation (9).
Applying Theorem 1 we deduce that the problem (6) has a unique solution X(t) ∈
C(I, L2(Ω)). This solution is the solution of the integral equation (9).
Finally consider the initial value problem (2).
Theorem 4. Let the assumptions of Theorem 1 be satisfied. Then the initial value
problem (2) has a unique solution X(t) ∈ C(I, L2(Ω)).
Proof. Letting β −→ 1 in (1) we obtain the stochastic integral equation

X(t) = X0 +

∫ t

0

f(s,X(φ(s))) ds.

Which is equivalent to the initial value problem (2). Then applying Theorem 1 we
obtain the results.
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5. conclusion

Our results show the richness of the applications of the definition of Riemann-
Liouville fractional order derivative in Cauchy’s type problems of differential equa-
tions.
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