
Journal of Fractional Calculus and Applications,

Vol. 6(2) July 2015, pp. 123-143.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

A GENERALIZED ALGORITHM BASED ON LEGENDRE

POLYNOMIALS FOR NUMERICAL SOLUTIONS OF COUPLED

SYSTEM OF FRACTIONAL ORDER DIFFERENTIAL

EQUATIONS

H. KHALIL, R. A. KHAN, M. AL. SMADI, A. FREIHAT

Abstract. In this paper, we study shifted Legendre polynomials and provide
a simple algorithm for the approximate solution of coupled system of fractional
differential equations. We generalize some operational matrices. Based on

these matrices a coupled system is analytically converted to easily solvable
algebraic equations. Two types of orthogonal systems are used, the Legendre
polynomials and Haar wavelets. The results of both the systems is compared.

The method is computer oriented and provide highly accurate solution. To
demonstrate the efficiency of the method, several examples are solved and
the results are displayed graphically. For some problems the results are also
compared with some other results available in the literature.

1. Introduction

Coupled systems of differential equations are of basic importance in modeling var-
ious phenomena like Cascades and Compartment Analysis, Pond Pollution, Home
Heating, Chemostats and Microorganism Culturing, Nutrient Flow in an Aquar-
ium, Biomass Transfer, Forecasting Prices, Electrical Network, Earthquake Effects
on Buildings see for example [2, 5, 15, 18, 23, 25] and many more. After the dis-
covery of fractional calculus it is investigated by many authors that the fractional
derivatives can best approximate the situation under consideration as compared to
ordinary derivatives. But due to computational complexities of fractional deriva-
tives the non availability of exact analytical solution is the great problem for the
researcher in the field of fractional calculus. Therefore establishment of numerical
schemes is of great importance in the current field of fractional calculus.

The operational matrix technique is a simple technique and is used widely for
solving a wide class of fractional differential equations with different kinds of condi-
tions see for example [16, 17, 20, 21, 22, 24] and the references quoted there. These
operational matrices are based on various orthogonal polynomials and wavelets.
Orthogonal polynomials are frequently applied by many mathematicians. M. M.
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Khader [7, 10, 26] used Legendre and Chebyshev polynomials to establish an ef-
ficient method for the approximate solution of some important class of fractional
differential equations. In [26] the author studied fractional order logistic equations
with two different delays and used Chebyshev polynomials to approximate the solu-
tion of the problem. In [10] M. M. Khader used Legendre polynomials and establish
an efficient algorithm to approximate the solution of high order fractional differen-
tial equations. In [10] the same author applied Legendre polynomial and efficiently
solve fractional order advection dispersion equations. In [8] the operational matrices
are used to approximate the solution of nonlinear fractional differential equations.
In [9] the orthogonal polynomials are used to establish a method for the solution
of delay differential equations.

Unfortunately the coupled system of fractional differential equations got less
attention by solving with the operational matrix techniques. In our previous paper
[11, 12] we successfully developed a scheme for a small class of coupled system of
fractional order partial differential equations with initial condition.

In this paper, we generalized the operational matrix techniques to solve a wide
class of coupled system of fractional order differential equations with initial condi-
tion. Here the most simplest one that is Legendre polynomials and Haar wavelets
are used, operational matrices are modified and a simple but highly efficient tech-
nique is developed to solve the corresponding system. The results obtained with
Legendre polynomials and Haar wavelets are compared.
The article is organized as follows : in section 2, we provide some preliminaries
of fractional calculus, orthogonal polynomials and Haar wavelets, in section 3 we
present some operational matrices of integration and differentiation for Legendre
polynomials and Haar wavelets ,in section 4 the operational matrices are used to
generalize the numerical schemes for a generalized class of coupled systems of frac-
tional order differential equations, in section 5 we solve some models and provide
the numerical results of the schemes. At last in section 6 a short conclusion is made.

2. Preliminaries

In this section, we summarizes some necessary concepts, definitions and basic
results from fractional calculus and orthogonal polynomials which are useful for
development in this paper.

Definition 2.1. [13, 23] According to Riemann-Liouville, the fractional order in-
tegral of order α ∈ R+ of a function ϕ ∈ (L1[a, b],R) on interval [a, b] ⊂ R, is
defined by

Iα
a+ϕ(t) =

1

Γ (α)

∫ t

a

(t− s)α−1ϕ(s)ds, (1)

provided that the integral on right hand side exists.

Definition 2.2. For a given function ϕ(x) ∈ Cn[a, b], the Caputo fractional order
derivative of order α is defined as

Dαϕ(x) =
1

Γ(n− α)

∫ x

a

ϕ(n)(t)

(x− t)α+1−n
dt, n− 1 ≤ α < n , n ∈ N, (2)

provided that the right side is pointwise defined on (a,∞), where n = [α] + 1.
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From (1),(2) it is easily deducted that

Dαxk =
Γ(1 + k)

Γ(1 + k − α)
xk−α, Iαxk =

Γ(1 + k)

Γ(1 + k + α)
xk+α and DαC = 0, for a constant C.

(3)

2.1. The shifted Legendre polynomials. The Legendre polynomials are defined
by the following recurrence relation

Li+1(z) =
2i+ 1

i+ 1
zLi(z)−

i

i+ 1
Li−1(z), i = 1, 2...., where L0(z) = 0, L1(z) = z.

These polynomials are defined on [−1, 1]. For our purpose we use the transforma-
tion z = (2x − 1)/η which transforms the interval [−1, 1] to [0, η]. The analytical
expression for the shifted Legendre polynomials on [0, η] is given by

P η
i (x) =

i∑
k=o

(−1)i+k (i+ k)!

(i− k)!

xk

(ηk)(k!)2
, i = 0, 1, ..., (4)

where P η
i (0) = (−1)i, P η

i (η) = 1. The orthogonality condition is∫ η

0

P η
i (x)P

η
j (x)dx =

{ η
2i+1 , if i = j

0, if i ̸= j.
(5)

Which implies that any f(x) ∈ C[0, η] can be approximated by Legendre polyno-
mials as follows

f(x) ≈
m∑

a=0

CaP
η
a (x), where Ca = ⟨f(x), P η

a (x)⟩ = (2a+1)

∫ η

0

f(x)P η
a (x)dx. (6)

In vector notation, we write

f(x) = KT
MΨM (x). (7)

Where M = m + 1, KM is the coefficient vector and ΨM (x) is a function vector
which contains the Legendre polynomials. M represents the order of these vectors.
For sufficiently smooth function f(x) on [0, η], the error of the approximation is
given by

∥f(x)−
m∑
i=0

ciP
η
i (x)∥2 ≤ (C1

1

MM+1
), (8)

where

C1 =
1

4
max
x∈[0,η]

| d
M+1

dxM+1
f(x)|. (9)

By the arguments given in [14, 4] we can easily prove the above equations. The
spectral accuracy and decay of the expansion coefficient can be guaranteed by the
following lemma.

Lemma 2.1. Let g(x) ∈
∏

M (x) where
∏

M (x) is the space span by first M Le-
gendre polynomials and

g(x) =

m∑
k=0

ckP
η
k (x),

then

| ck |≃ C

(λk)m
∥ g(m) ∥, (10)
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and

∥ g(x)−
m∑

k=0

ckP
η
k (x) ∥

2=
∞∑

k=m

γkc
2
k. (11)

Where λk = k(k + 1) and ck = 1

R
(α,β)
η,j

∫ η

0
y(x)P η

k (x)dx. C is a constant and m can

be chosen in a way such that y(2m) ∈
∏

M (x). Also we have the equality

g(m) = Lg(m−1)(x) = Lmg(x).

Where L is the Sturm-Liouville operator, and g(0) = g(x).

Proof. By following the steps in [6] we can easily proof this lemma. �

From above Lemma, we conclude that if the function g(x)? ∈ C?∞[0, 1], we
recover spectral decay of the expansion coefficients that is, |ck| decays faster than
any algebraic order of λk. This result is valid and independent of specific boundary
conditions on g(x).

2.2. Haar Wavelets. Haar wavelets are frequently used in many problems. For

our purpose we use the notation used in [19]. Let Ĩ = Ĩ00 = [0, η] and Ĩj,k =
[2−jkη, 2−j(k+1)η], then the Haar scaling and Wavelet function on [0, η] are defined
as follows:

ϕ(x) =
1
√
η
χĨ , ψj,k =

2j/2
√
η
(ψĨl

j,k
(x)−ψĨr

j,k
(x)), J ≥ 0, j ≤ J, k ≤ 2j−1. (12)

Where ψ0,0 = ψ1(t) =
1√
η (χ[0, η2 ]

(x)− χ[ η2 ,η]
(x)) is the mother wavelet function for

the Haar system {ψj,k = 2j/2ψ1(2
jx − k)}. An arbitrary function y ∈ L2[0, η] can

be expanded into the Haar wavelet series as follows:

ỹ(x) = ⟨y, ϕ⟩ϕ(x) +
J−1∑
j=0

2j−1∑
k=0

⟨y, ψj,k⟩ψj,k(x)

= c̃ϕ(x) +

J−1∑
j=0

2j−1∑
k=0

cj,kψj,k(x) = CT
M Ψ̂M (x).

(13)

Where M = 2J for some fixed J ∈ N . The Haar function vector Ψ̂M (x) is given as

Ψ̂M (x) = [ϕ(x), ψ0,0(x), ψ1,0(x), ψ1,1(x), ψ2,0(x), · · · , ψJ−1,0(x), ψJ−1,1(x), · · · , ψJ−1,2J−1(x)].
(14)

It is also known that the Haar wavelet function vector can be represented in terms
of Block pulse function such as

Ψ̂M (x) = ΨM×MBM (t), (15)

where ΨM×M is the Haar matrix defined as

ΨM×M = [Ψ̂M (
η

2M
)Ψ̂M (

3η

2M
) · · · Ψ̂M (

(2M − 1)η

2M
)]. (16)

For the proof and detail study we refer the reader to [19].
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2.2.1. Convergence of Haar approximation. Babolian and Shahsavaran [1] derived
the relation for the convergence of Haar wavelets approximation in the following
form.

Lemma 2.2. Let y(x) be a differentiable function and assume that y(x) have
bounded first derivative on [0, η], that is, there exist K > 0 such that y′(x) ≤ K
then

∥y(x)− ỹ(x)∥2 ≤ K2

3

1

(2M)2
. (17)

For the proof of this relation we refer the reader to [1].

3. Operational Matrices of integration and differentiation of
fractional order

The operational matrices of integration based on Legendre polynomials is also
discussed by the famous mathematician A. Saadatmandi in [24], however these
matrices will be efficient when we are interested in [0, 1], here we want to seek the
solution on any finite domain [0, η] so a slight modification in these result will make
us comfortable with any finite domain. The following lemmas are important to
establish our result.

Lemma 3.1. Let ΨM (x) be the function vector as defined in (7) then the integration
of order α of ΨM (x) is generalized as

Iα(ΨM (x)) ≃ Hη,α
M×MΨM (x), (18)

where Hη,α
M×M is the operational matrix of integration of order α and is defined as

Hη,α
M×M =



∑0
k=0 Θ0,0,k,η

∑0
k=0 Θ0,1,k,η · · ·

∑0
k=0 Θ0,j,k,η · · ·

∑0
k=0 Θ0,m,j,η∑1

k=0 Θ1,0,k,η

∑1
k=0 Θ1,1,k,η · · ·

∑1
k=0 Θ1,j,k,η · · ·

∑1
k=0 Θ1,m,j,η

...
...

...
...

...
...∑i

k=0 Θi,0,k,η

∑i
k=0 Θi,1,k,η · · ·

∑i
k=0 Θi,j,k,η · · ·

∑i
k=0 Θi,m,k,η

...
...

...
...

...
...∑m

k=0 Θm,0,k,η

∑m
k=0 Θm,1,k,η · · ·

∑m
k=0 Θm,j,k,η · · ·

∑m
k=0 Θm,m,k,η


.

(19)
where

Θi,j,k,η =
(2j + 1)

η

j∑
l=0

(−1)i+j+k+l(i+ k)!(l + j)!(ηα+1)

(i− k)!k!Γ(k + α+ 1)(j − l)!(l!)2(k + l + α+ 1)
. (20)

Proof. Using (3) along with (4) we have

IαP η
i (x) =

i∑
k=o

(−1)i+k (i+ k)!

(i− k)!

Iαxk

(ηk)(k!)2

=

i∑
k=o

(−1)i+k(i+ k)!

(k!)(i− k)!(ηk)Γ(k + α+ 1)
xk+α.

(21)

Now approximating xk+α by m+ 1 terms of Legendre polynomials we get

xk+α ≃
m∑
j=0

bk,jP
η
j (x), (22)
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where

bk,j =
(2j + 1)

η

∫ η

0

xk+αP η
j (x)

=
(2j + 1)

η

j∑
l=0

(−1)j+l(j + l)!

(ηl)(j − l)(l!)2

∫ η

0

xk+l+α

=
(2j + 1)

η

j∑
l=0

(−1)j+l(j + l)!(η)k+l+α+1

(ηl)(j − l)(l!)2(k + l + α+ 1)
.

(23)

Using (21), and (23) we get

IαP η
i (x) =

i∑
k=o

m∑
j=0

(−1)i+k(i+ k)!

(k!)(i− k)!(ηk)Γ(k + α+ 1)
bk,jP

η
j (x).

IαP η
i (x) =

i∑
k=o

m∑
j=0

(−1)i+k(i+ k)!

(k!)(i− k)!(ηk)Γ(k + α+ 1)
(
(2j + 1)

η

j∑
l=0

(−1)j+l(j + l)!

(j − l)(l!)2(ηl)(k + l + α+ 1)
)P η

j (x),

or on rearranging we get

IαP η
i (x) =

m∑
j=0

i∑
k=o

(2j + 1)

η

i∑
l=0

(−1)i+k+j+l(i+ k)!(j + l)!(ηk+l+α+1)

(k!)(i− k)!(j − l)(l!)2(ηk+l)Γ(k + α+ 1)(k + l + α+ 1)
P η
j (x).

Or

IαP η
i (x) =

m∑
j=0

i∑
k=0

(2j + 1)

η

i∑
l=0

(−1)i+k+j+l(i+ k)!(j + l)!(ηα+1)

(k!)(i− k)!(j − l)(l!)2Γ(k + α+ 1)(k + l + α+ 1)
P η
j (x).

Setting

(2j + 1)

η

i∑
l=0

(−1)i+k+j+l(i+ k)!(j + l)!(ηα+1)

(k!)(i− k)!(j − l)(l!)2Γ(k + α+ 1)(k + l + α+ 1)
= Θi,j,k.η (24)

IαP η
i (x) =

m∑
j=0

i∑
k=0

Θi,j,k.ηP
η
j (x).

Evaluating for different i we get the desired result. �

Lemma 3.2. Let ΨM (x) be the function vector as defined in (7) then the derivative
of order β of ΨM (x) is generalized as

Dβ(ΨM (x)) ≃ Aη,β
M×MΨM (x), (25)

where Aη,β
M×M is the operational matrix of derivative of order β and is defined as

Aη,β
M×M =



∑0
k=0 Θ0,0,k,η

∑0
k=0 Θ0,1,k,η · · ·

∑0
k=0 Θ0,j,k,η · · ·

∑0
k=0 Θ0,m,j,η∑1

k=0 Θ1,0,k,η

∑1
k=0 Θ1,1,k,η · · ·

∑1
k=0 Θ1,j,k,η · · ·

∑1
k=0 Θ1,m,j,η

...
...

...
...

...
...∑i

k=0 Θi,0,k,η

∑i
k=0 Θi,1,k,η · · ·

∑i
k=0 Θi,j,k,η · · ·

∑i
k=0 Θi,m,k,η

...
...

...
...

...
...∑m

k=0 Θm,0,k,η

∑m
k=0 Θm,1,k,η · · ·

∑m
k=0 Θm,j,k,η · · ·

∑m
k=0 Θm,m,k,η


,

(26)
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where

Θi,j,k,η =
(2j + 1)

η

j∑
l=0

(−1)i+j+k+l(i+ k)!(l + j)!(ηβ+1)

(i− k)!k!Γ(k − β + 1)(j − l)!(l!)2(k + l − β + 1)
. (27)

Proof. Using (3) along with (4) we have

DβP η
i (x) =

i∑
k=o

(−1)i+k (i+ k)!

(i− k)!

Dβxk

(ηk)(k!)2
, (28)

=
i∑

k=⌈β⌉

(−1)i+k(i+ k)!

(k!)(i− k)!(ηk)Γ(k − β + 1)
xk−β . (29)

Now approximating xk−β by m+ 1 terms of Legendre polynomials we get

xk−β ≃
m∑
j=0

bk,jP
η
j (x), (30)

where

bk,j =
(2j + 1)

η

∫ η

0

xk−βP η
j (x)dx.

=
(2j + 1)

η

j∑
l=0

(−1)j+l(j + l)!

(ηl)(j − l)(l!)2

∫ η

0

xk−β+1dx.

=
(2j + 1)

η

j∑
l=0

(−1)j+l(j + l)!(η)k+l−β+1

(ηl)(j − l)(l!)2(k + l − β + 1)
, (31)

employing (28) and (31) we get

DβP η
i (x) =

i∑
k=⌈β⌉

m∑
j=0

(−1)i+k(i+ k)!

(k!)(i− k)!(ηk)Γ(k − β + 1)
bk,jP

η
j (x).

Or

DβP η
i (x) =

m∑
j=0

i∑
k=⌈β⌉

(2j + 1)

η

i∑
l=0

(−1)i+k+j+l(i+ k)!(j + l)!(ηβ+1)

(k!)(i− k)!(j − l)(l!)2Γ(k − β + 1)(k + l − β + 1)
P η
j (x).

Setting

(2j + 1)

η

i∑
l=0

(−1)i+k+j+l(i+ k)!(j + l)!(ηβ+1)

(k!)(i− k)!(j − l)(l!)2Γ(k − β + 1)(k + l − β + 1)
= Θi,j,k,η. (32)

DβP η
i (x) =

m∑
j=0

i∑
k=⌈β⌉

Θi,j,k.ηP
η
j (x),

or evaluating for different i we get the desired result. �

Remark 1. If f(Xn(x), , X ′′(x), X ′(x), X(x)) is any linear combination of the cor-
responding component and X(x) = KMΨ(x) then

f(Xn(x), , X ′′(x), X ′(x), X(x)) = KMQ
f
M×MΨ(x). (33)

Where
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Qf
M×M = f(Aη,n

M×M , , A
η,2
M×M , A

η,1
M×M , IM×M ). (34)

The proof of this remark is straight forward due to the linearity of f .

The following results are known and discussed in many papers.

Lemma 3.3. Let Ψ̂M (x) be the function vector of Haar Wavelets as defined in
(15), then

IαΨ̂M (x) = Bη,α
M×M Ψ̂M (x).

Where Bη,α
M×M is the operational matrix of integration and is defined as

Bη,α
M×M = ΨM×MF

η,αΨ−1
M×M .

The matrix F η,α is defined as

F η,α = (
η

M
)α

1

Γ(α+ 2)



1 ζ1 ζ2
... ζM−1

0 1 ζ1
... ζM−2

0 0 1
... ζM−3

0 0 0
. . .

...
0 0 0 · · · 1


, (35)

where ζj = (j+1)(α+1)−2j(α+1)+(j−1)(α+1), j = 1, 2 · · ·m−i+1, i = 1, 2 · · ·M+1.

Proof. For the proof of this lemma we refer the reader to [19]. �

4. Solving fractional order system of differential equations

In this section we derive a simple scheme for the solution of coupled system of
fractional differential equations using Legendre polynomials and Haar wavelets.

4.1. Scheme based on Legendre polynomials. Consider the following class of
coupled systems.

Dα
xY (x) = f1(X

n′
(x), , X ′′(x), X ′(x), X(x)) + f2(Y

n(x), , Y ′′(x), Y ′(x), Y (x)) + f3(x)

Dβ
xX(x) = g1(X

n′
(x), , X ′′(x), X ′(x), X(t)) + g2(Y

n(x), , Y ′′(x), Y ′(x), Y (x)) + g3(x)

(36)

with initial conditions

Y (n)(0) = an, X(n′)(0) = bn′ , n = 0, 1, 2...⌊α⌋, n′ = 0, 1, 2...⌊β⌋ (37)

where x ∈ [0, η], n < α ≤ n+ 1, n′ < β ≤ n′ + 1 and f1, f2, f3, g1 g2, and g3 are
the corresponding linear functions. We seek the solution of the above problem in
terms of Legendre polynomials such that

Dα
xY (x) = KMΨM (x) Dβ

xX(x) = LMΨM (x). (38)

We apply Iα and Iβ on the corresponding equation (38) and using the initial con-
ditions (37) to get

Y (x)−
n∑

s=0

asx
s = KMH

η,α
M×MΨM (x), X(x)−

n′∑
s=0

bsx
s = LMH

η,β
M×MΨM (x).

(39)
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We can also write them as

Y (x) = (KMH
η,α
M×M + F1)ΨM (x), X(x) = (LMH

η,β
M×M + F2)ΨM (x), (40)

where
∑n

s=0 asx
s(0) ≃ F1ΨM (x) and

∑n
s=0 bsx

s ≃ F2ΨM (x). For simplicity of
notation we can write

(KMH
η,α
M×M + F1) = R1

M , (LMH
η,β
M×M + F2) = R2

M . (41)

We can get Y (x) = R1
MΨM (x) and X(x) = R2

MΨM (x). Now using (33) we get

f1(X
n(x), , X ′′(x), X ′(x), X(x)) = R2

MQ
f1
M×MΨM (x), (42)

f2(Y
n(x), , Y ′′(x), Y ′(x), Y (x)) = R1

MQ
f2
M×MΨM (x), (43)

g1(X
n(x), , X ′′(x), X ′(x), X(x)) = R2

MQ
g1
M×MΨM (x), (44)

g2(Y
n(x), , Y ′′(x), Y ′(x), Y (x)) = R1

MQ
g2
M×MΨM (x), (45)

where the matrices Q ′s are defined as in (34). Using this simplified notation along
with (38) in the system we get(

KT
MΨM (x)

LT
MΨM (x)

)
=

(
R1

MQ
f2
M×MΨM (x) +R2

MQ
f1
M×MΨM (x) + F3ΨM (x)

R2
MQ

g1
M×MΨM (x) +R1

MQ
g2
M×MΨM (x) + F4ΨM (x)

)
Where F3ΨM (x) = f3(x) and F3ΨM (x) = g3(x). On further simplification we

get(
KT

MΨM (x)
LT
MΨM (x)

)
=

(
R1

MQ
f2
M×MΨM (x)

R2
MQ

g1
M×MΨM (x)

)
+

(
R2

MQ
f1
M×MΨM (x)

R1
MQ

g2
M×MΨM (x)

)
+

(
F3ΨM (x)
F4ΨM (x)

)
.

(46)
Taking the transpose of the above matrix equation we get(

KT
MΨM (x) LT

MΨM (x)
)
=
(
R1

MQ
f2
M×MΨM (x) R2

MQ
g1
M×MΨM (x)

)
+
(
R2

MQ
f1
M×MΨM (x) R1

MQ
g2
M×MΨM (x)

)
+
(
F3ΨM (x) F4ΨM (x)

)
.

(47)

On further simplification we can easily get(
KT

M LT
M

)( ΨM (x) OM

OM ΨM (x)

)
=
(
R1

M R2
M

)( Qf2
M×M OM×M

OM×M Qg1
M×M

)(
ΨM (x) OM×M

OM×M ΨM (x)

)
+
(
R1

M R2
M

)( OM×M Qg2
M×M

Qf1
M×M OM×M

)(
ΨM (x) OM

OM ΨM (x)

)
+
(
F3 F4

)( ΨM (x) OM

OM ΨM (x)

)
,

(48)

where OM×M is square matrix of order M with all entries equal to zero, and OM

is a zero vector of order M. Let

AO =

(
ΨM (x) OM

OM ΨM (x)

)
.
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Then we have(
KT

M LT
M

)
Ao =

(
R1

M R2
M

)( Qf2
M×M OM×M

OM×M Qg1
M×M

)
Ao

+
(
R1

M R2
M

)( OM×M Qg2
M×M

Qf1
M×M OM×M

)
Ao

+
(
F3 F4

)
Ao,

(49)

or

(
KT

M LT
M

)
−
(
R1

M R2
M

)( Qf2
M×M Qg2

M×M

Qf1
M×M Qg1

M×M

)
−
(
F3 F4

)
= 0.

(50)

Using (41), we get

(
KT

M LT
M

)
−
(
KM LM

)( Hη,α
M×MQ

f2
M×M Hη,β

M×MQ
g2
M×M

Hη,α
M×MQ

f1
M×M Hη,β

M×MQ
g1
M×M

)

−
(
F1 F2

)( Qf2
M×M Qg2

M×M

Qf1
M×M Qg1

M×M

)
−
(
F3 F4

)
= 0.

(51)

Now we can see that (51) is a generalized lypanov type matrix equation and can
be easily solved for the unknown Km and LM . Using KM ,LM along with (40) we
can get approximate solutions of the problem.

4.2. Scheme based on Haar wavelets. It is clear that all the functions in the
Haar function vector (14) are piecewise defined. Due to this reason we believe
that the operational matrix for fractional order derivative is impossible (or at least
difficult). The operational matrix of integration is the only mean to solve the
problem. The idea of the scheme is similar as developed in the previous subsection.
Consider the problem (36) and assume the solutions in terms of Haar wavelets such
that

Dα
xY (x) = KT

M Ψ̂M (x) Dβ
xX(x) = LT

M Ψ̂M (x). (52)

Applying integration of order α−n and β−n′ on the corresponding equations, and
using lemma 3.3 we get

Dn
xY (x) = KT

MB
η,(α−n)
M×M Ψ̂M (x)+an Dn′

x X(x) = LT
MB

η,(β−n′)
M×M Ψ̂M (x)+ bn′

(53)
On repeating the integration process, using the operational matrices and making
use of initial conditions we get

Dn−i
x Y (x) = KT

MB
η,(α−n+i)
M×M Ψ̂M (x) +

i∑
l=0

an−lx
i−l, i = 1, 2, · · ·n

Dn′−j
x X(x) = LT

MB
η,(β−n′+j)
M×M Ψ̂M (x) +

j∑
l=0

bn′−lx
j−l j = 1, 2, · · ·n′.

(54)
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Now as f1 is linear therefore in view of (53) and (54) we may write

f1(X
n′
, , X ′′, X ′, X) = LT

Mf1(B
η,(β−n′)
M×M , · · ·Bη,(β−1)

M×M , B
η,(β)
M×M )Ψ̂M (x)

+ f1(bn′ , bn′x+ bn′−1, · · ·
n′−1∑
l=0

bn′−lx
n′−1−l,

n′∑
l=0

bn′−lx
(n′−l)).

(55)

Equation (55) can be written in simplified form as

f1(X
n′
, , X ′′, X ′, X) = LT

MQ
f1Ψ̂M (x) + F̂1

T

M Ψ̂M (x), (56)

where F̂1
T

M Ψ̂M (x) is the Haar wavelets approximation of the 2nd term of (55) which
is known function. By the similar arguments we can write

f2(Y
n, , Y ′′, Y ′, Y ) = KT

MQ
f2Ψ̂M (x) + F̂2

T

M Ψ̂M (x), (57)

g1(X
n′
, , X ′′, X ′, X) = LT

MQ
g1Ψ̂M (x) + Ĝ1

T

M Ψ̂M (x), (58)

g2(Y
n, , Y ′′, Y ′, Y ) = KT

MQ
g2Ψ̂M (x) + Ĝ2

T

M Ψ̂M (x). (59)

Using the estimates (52), (56), (57), (58) and (59) in the problem (36) we get(
KT

MΨM (x)
LT
MΨM (x)

)
=

 KT
MQ

f2
M×MΨM (x) + LT

MQ
f1
M×MΨM (x) +

︷︸︸︷
FT
M ΨM (x)

LT
MQ

g1
M×MΨM (x) +KT

MQ
g2
M×MΨM (x) +

︷︸︸︷
GT

M ΨM (x)

 .

Where
︷︸︸︷
FT
M = F̂1

T

M+F̂2
T

M+F̂3
T

M , and F̂3
T

M is the Haar wavelets coefficients vector of

the source term f3(x).
︷︸︸︷
GT

M is analogously defined. Repeating the same procedure
( (47) to (51)) we get the resulting system of algebraic equations.(

KT
M LT

M

)
−
(
KT

M LT
M

)( Qf2
M×M Qg2

M×M

Qf1
M×M Qg1

M×M

)
−
( ︷︸︸︷
FT
M

︷︸︸︷
GT

M

)
= 0.

(60)

Equation (60) can be solved for the unknowns K and L and using them in (54)
(setting i = n,j = n′) will lead us to the approximate solution of the problem.

5. Examples

We check the efficiency of the proposed techniques with some example whose
exact solution is known and as expected we get high accuracy of the approximate

solution. In the figures
︷ ︸︸ ︷
X(x)L represents the approximate solution obtained using

Legendre polynomials and
︷ ︸︸ ︷
X(x)H represents solution obtained using Haar wavelets.

Example 5.1. Consider the fractional order two tank mixing problem.

Dα
t Y (t) = −0.02(Y (t)) + 0.02(X(t)) (61)

Dα
t X(t) = 0.02(Y (t))− 0.02(X(t)) (62)

with initial condition Y (0) = 150 and X(0) = 0 the exact solution for α = 1 is

Y (t) = 75 + 150e−0.04t
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Figure 1. Comparison of exact and approximate solution of Ex-
ample 1 by setting α = 1,η = 150. (a) Comparison of X(x) with
approximate solution of Legendre and Haar wavelets.(b) Compar-
ison of Y (x) with approximate solution of Legendre and Haar
wavelets.

and
X(t) = 75− 150e−0.04t.

We simulate the problem with the new techniques developed in the paper.We observe
that the solutions obtained with the Legendre polynomials are more accurate as
compare to the Haar wavelets. Fig. (1) shows the comparison of the approximate
solutions with the exact solutions. We see that Legendre polynomials solutions at
M = 6 is more accurate as compare to Haar wavelet solution atM = 32. It is known
that the solution of fractional differential equations approaches to the solution at
integer order as the order of derivative approaches from fractional to integer. We
approximate the solution at different value of α and observe the solution obtained
with Legendre polynomials and Haar wavelets approaches to the solution at α = 1
as α → 1. Fig. (2) shows the approximate solutions at different value of α. We
observe that both the solutions obtained with Legendre and Haar wavelets agree at
fractional value of α.We also study the convergence of approximate solution for both
the schemes.We see that Fig. (3) Legendre polynomials converge more rapidly to
the exact solution as compare to the Haar wavelets ( Fig. (4)). The absolute error
at M = 8 is much more less than 10−4 for Legendre polynomials, however that of
Haar wavelets is less than 10−3 at scale level M = 64.

Example 5.2. Consider the following couple system fractional differential equa-
tions [3]

Dα
xY (x) = Y (x) +X(x) (63)

Dβ
xX(x) = Y (x)−X(x) (64)

with initial condition X(0) = 0 and Y (0) = 1. The exact solution at α = 1, β = 1 is
X(x) = exsin(x) and Y (x) = excos(x). In [3] Shaher Momani solved this problem



JFCA-2015/6(2) COUPLED SYSTEMS OF FDES 135

0 50 100 150
0

10

20

30

40

50

60

70

80

0 50 100 150
70

80

90

100

110

120

130

140

150

α = 0.6

α = 0.6

α = 0.7

α = 0.7

α = 0.8

α = 0.8

α = 0.9

α = 0.9

ExactX(x)

Exact Y (x)

(a) (b)

Figure 2. (a) Comparison of approximate X(x) of Haar wavelets
(square dots), Legendre polynomials (dashed lines) at different
value of α with the exact solution ( red circles).(b) Comparison of
approximate Y(x) of Haar wavelets (square dots), Legendre poly-
nomials (dashed lines) at different value of α with the exact solu-
tion (green circles).
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Figure 3. (a) Absolute error inX(x) at different value ofM using
Legendre polynomials.(b) Absolute error in Y (x) at different value
of M using Legendre polynomials.
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Figure 4. (a) Absolute error inX(x) at different value ofM using
Haar wavelets. (b) Absolute error in Y (x) at different value of M
using Haar wavelets.

using differential transform method. We fix α = β = 1 and approximate the solution
using Legendre polynomials.We compare it with the exact solutions and the solutions
obtained in [3] (Fig. (5)). It is clear that the approximate solutions with the new
method is in good agreement with the exact solution. We compare the absolute error
of the presented method at M = 8 with the absolute error of differential transform
method at k = 10 in Fig. (6) and observe that the new technique provide more
accurate solution. In [3] this problem is also solved at α = 0.9 and β = 0.7. We
compare our solution at these values with the approximate solution reported in [3]
and observe that our solution is in good agreement with that in [3], see Fig. (7) .

Example 5.3. Consider the mathematical model of fractionally damped coupled
system of two masses. The governing equation is

m1 D
α
xY (x) = −(c1+c2)

dY (x)

dx
−(k1+k2)Y (x)+c2

dX(x)

dx
+k2X(x)+F1(x), (65)

m2 D
α
xX(x) = c2

dY (x)

dx
+ k2Y (x)− c2

dX(x)

dx
− k2X(x) + F2(x). (66)

Where 1 ≤ α ≤ 2 ,c1, c2, c3 are the damping parameter k1, k2, k3 are the spring
constant.Where

F1(x) =
21 sin(π x)

200
− 9 cos(π x)

100
+

119π cos(π x)

100
+

171π sin(π x)

200
− 7π2 sin(π x)

10

and

F2(x) =
153 cos(π x)

200
− 7 sin(π x)

100
− 133π cos(π x)

200
− 63π sin(π x)

50
− 9π2 cos(π x)

10
.



JFCA-2015/6(2) COUPLED SYSTEMS OF FDES 137

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

x

 

 

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

x

 

 

ExactX(x)

ApproximateX(x) reported in [3]

ApproximateX(x)atM = 6

Exact Y (x)

Approximate Y (x) reported in [3]

Approximate Y (x)atM = 6

(a) (b)

Figure 5. Comparison of approximate solution of example 2 with
the exact solution at scale level M = 6,α = 1,β = 1.
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Figure 7. Comparison of approximate solution of example 2
with the solutions reported in [3], fixing α = 0.7, β = 0.9.

For α = 2,m1 = 1,m2 = 1, c1 = 0.75, c2 = 0.95, c3 = 0.45, k1 = 0.05, k2 =
0.1 and k3 = 0.75 along with the initial conditions

X(0) = 9/10 and X ′(0) = 0, Y (0) = 0 and Y ′(0) = 7π/10

the exact solution to the problem is

Y (x) =
7 sin(π x)

10
,

and

X(x) =
9 cos(π x)

10
.

We solve the problem with our new technique and as expected we get highly accurate
solution. As evident from Fig. (8) as we increase the scale level the approximate
result become more and more accurate. We also approximate the solution of the
problem with Haar wavelets and compare it with the solution obtained with Legendre
polynomials. We see that the solution of Haar wavelets are less accurate as compare
with Legendre polynomials, see Fig. (9). We approximate the solution at different
value of α and the same conclusion is made see Fig. (10) and Fig. (11). We
approximate the absolute error at different value of M and observe that the amount
of absolute error is much more less than 10−3 see Fig. (12) and Fig. (13).

6. Conclusion

From the above results and observations we conclude that the Legendre poly-
nomials provide a very good approximation to the problem as compare to Haar
wavelets. The results we obtained are in good agreement with the results obtained
with differential transform method. It is also expected that the scheme may provide
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a more accurate solution if other orthogonal polynomials like Bernstein or Jacobi
polynomials are used. If it is necessary to approximate the solution on half line then
Laguerre polynomials can be efficiently applied in the scheme. Our future work is
related to solve the same problem under different types of boundary conditions.
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