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SYMMETRY RESULTS FOR SOLUTIONS OF AN INTEGRAL

SYSTEM

H.X. ZHANG, W.W. WANG, J. WANG

Abstract. In this paper, we study the symmetry property of positive solu-

tions for system 
LK1u(x) = v(x)p + g1(x), x ∈ B1,

LK2
v(x) = u(x)q + g2(x), x ∈ B1,

u(x) = v(x) = 0, x ∈ Bc
1,

(1)

where p, q > 1, the domain B1 denotes the open unit ball centered at the origin

in RN (N ≥ 2) and the operator LKi
is a nonlocal operator defined by

LKi
u(x) = P.V.

∫
RN

(u(x)− u(y))Ki(x− y)dy, (2)

for i = 1, 2, where the kernel Ki satisfies that

Ki(x) =

{
|x|−N−2αi , x ∈ Br,

θi(x), x ∈ Bc
r ,

(3)

with r > 0, αi ∈ (0, 1) and θi ∈ L1(Bc
r) being a nonnegative and radially

symmetric function such that Ki is decreasing. The functions g1 and g2 are
radially symmetric and decreasing in |x|.

1. Introduction

The purpose of this paper is to study symmetry results of positive solutions for
the system 

LK1u(x) = v(x)p + g1(x), x ∈ B1,

LK2v(x) = u(x)q + g2(x), x ∈ B1,

u(x) = v(x) = 0, x ∈ Bc
1,

(4)

where p, q > 1 and B1 is the open unit ball centered at the origin in RN with N ≥ 2.
For i = 1, 2, the operator LKi is a nonlocal operator defined by

LKiu(x) = P.V.

∫
RN

(u(x)− u(y))Ki(x− y)dy, (5)
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where the kernel Ki satisfies that

Ki(x) =

{
|x|−N−2αi , x ∈ Br,

θi(x), x ∈ Bc
r ,

(6)

with r > 0, αi ∈ (0, 1) and θi ∈ L1(Bc
r) being a nonnegative and radially symmetric

function such that Ki is decreasing. We remark that the operator LKi is the
fractional Laplacian (−∆)αi when θi(x) = |x|−N−2αi . The functions g1 and g2
satisfy that

(G) For i = 1, 2, the function gi : B1 → R is radially symmetric and decreasing
in |x|.

It is of interest to study symmetry property of positive solutions for nonlinear
elliptic equations by the method of moving planes. For the problem in bound-
ed domain, radial symmetry of positive solutions has been extensively studied by
numerous authors using the method of moving planes based on the Maximum Prin-
ciple for small domain which is derived by the Aleksandrov-Bakelman-Pucci (ABP)
estimate. We mentioned the initiated work by Serrin [15], Gidas-Ni-Nirenberg [6]
and Beresticky-Nirenberg [1]. For the problem in the whole space, the Maximum
Principle for small domain is not available and then the procedure of moving planes
started in a different way. We refer to the work by Li [9], Gidas-Ni-Nirenberg [7],
Li-Ni [10] and Pacella-Ramaswamy [14]. Recently, a great attention has been fo-
cused on the study of radial symmetry of positive solutions to equations involving
fractional Laplacian or general integro-differential operator, see the results obtained
by Li [11], Chen-Li-Ou [2], Fall-Jarohs [3], Ma-Chen [12, 13], Felmer-Quaas-Tan [4]
and Sire-Valdinoci [16]. They obtained the symmetry results by the method of
moving planes in integral form where the representation formula for solution is giv-
en by the kernel plays a key role in the procedure. More recently, Felmer-Wang
[5] applied ABP estimate which has been proved by Guillen-Schwab [8] with the
method of moving planes as in [1] to obtain radial symmetry and monotonicity
properties of positive solutions for system involving the fractional Laplacian.

Motivated by the work mentioned above, we study the radial symmetry results
of positive solutions for the system (4) involving nonlocal operators by the method
of moving planes in the present paper. Before stating our theorem we make precise
the notion of solution that we use in this article. We say that a pair (u, v) ∈
C(RN ) × C(RN ) is a classical solution of system (4) if LK1u and LK2v are well
defined at any point of B1, according to the definition given in (5) and if (u, v)
satisfies the system (4) in a pointwise sense. Now we state our main theorem as
follows
Theorem 1 Suppose that p, q > 1 and the functions g1, g2 satisfy (G). If (u, v) is
a positive classical solution of system (4), then u and v are radially symmetric and
strictly decreasing in r = |x| for r ∈ (0, 1).

We prove Theorem 1 by the method of moving planes. Our main idea is to
transform the nonlocal operator LKi into the fractional Laplacian (−∆)αi and
then using the ABP estimate for the equations involving the fractional Laplacian
to start the moving planes. The difficulty is to combine the transforming above
with a truncation technique in the procedure of moving planes.
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2. Proof of Theorem 1

In this section, we prove symmetry property of positive solutions of (4) by the
method of moving planes. First, we recall the ABP estimate for the equations
involving the fractional Laplacian which plays a key role in the procedure of moving
planes.
Proposition 1 Let Ω be an open bounded domain of RN and α ∈ (0, 1). Suppose
that h : Ω → R is in L∞(Ω) and w ∈ L∞(RN ) satisfies{

−(−∆)αw(x) ≤ h(x), x ∈ Ω,

w(x) ≥ 0, x ∈ RN \ Ω.
(7)

Then there exists C > 0 such that

− inf
Ω

w ≤ C∥h+∥L∞(Ω)|Ω|
α
N , (8)

where h+(x) = max{h(x), 0}.
Proof. By Theorem 9.1 in [8], there exists C0 > 0 such that

− inf
Ω

w ≤ C0d
α∥h+∥1−α

L∞(Ω)∥h+∥αLN (Ω)

≤ C0d
α∥h+∥L∞(Ω)|Ω|

α
N ,

where d = diam(Ω). Taking C = C0d
α, we complete the proof. �

Now we give the proof of Theorem 1 by the method of moving planes. To this
end, we denote λ ∈ (0, 1),

Σλ = {x = (x1, x
′) ∈ B1 | x1 > λ},

Tλ = {x = (x1, x
′) ∈ B1 | x1 = λ},

wλ,u(x) = u(xλ)− u(x) and wλ,v(x) = v(xλ)− v(x),

where xλ = (2λ− x1, x
′) for x = (x1, x

′) ∈ RN .

Proof of Theorem 1. We will divide this proof into four steps.
Step 1. To prove that if λ is close to 1−, then wλ,u, wλ,v > 0 in Σλ.
We first claim that wλ,u, wλ,v ≥ 0 in Σλ when λ is close to 1. In fact, let us define

Σ−
λ,u = {x ∈ Σλ | wλ,u(x) < 0}, Σ−

λ,v = {x ∈ Σλ | wλ,v(x) < 0},

w+
λ,u(x) =

{
wλ,u(x), x ∈ Σ−

λ,u,

0, x ∈ RN \ Σ−
λ,u,

w+
λ,v(x) =

{
wλ,v(x), x ∈ Σ−

λ,v,

0, x ∈ RN \ Σ−
λ,v,

and

w−
λ,u(x) = wλ,u(x)− w+

λ,u(x), w−
λ,v(x) = wλ,v(x)− w+

λ,v(x).
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We observe that w−
λ,u = 0 in Σ−

λ,u, then for x ∈ Σ−
λ,u, we have that

LK1w
−
λ,u(x) =

∫
RN

(w−
λ,u(x)− w−

λ,u(z))K1(x− z)dz

= −
∫
RN\Σ−

λ,u

w−
λ,u(z)K1(x− z)dz

= −
∫
(B1\(B1)λ)∪((B1)λ\B1)

wλ,u(z)K1(x− z)dz

−
∫
(Σλ\Σ−

λ,u)∪(Σλ\Σ−
λ,u)λ

wλ,u(z)K1(x− z)dz

−
∫
(Σ−

λ,u)λ

wλ,u(z)K1(x− z)dz

= −I1 − I2 − I3,

where, for any subset A of RN , Aλ := {xλ : x ∈ A}, the reflection of A with regard
to Tλ. Since u(z) = 0 for z ∈ (B1)λ \B1 and u(zλ) = 0 for z ∈ B1 \ (B1)λ, we have
that

I1 =

∫
(B1\(B1)λ)∪((B1)λ\B1)

(u(zλ)− u(z))K1(x− z)dz

=

∫
(B1)λ\B1

u(zλ)K1(x− z)dz −
∫
B1\(B1)λ

u(z)K1(x− z)dz

=

∫
(B1)λ\B1

u(zλ)(K1(x− z)−K1(x− zλ))dz ≥ 0,

the last inequality holds, since u(zλ) ≥ 0 and |x − zλ| > |x − z| for all x ∈ Σ−
λ

and z ∈ (B1)λ \B1. Now we study the sign of I2, we first observe that wλ,u(zλ) =
−wλ,u(z) for any z ∈ RN , then

I2 =

∫
Σλ\Σ−

λ,u

wλ,u(z)K1(x− z)dz +

∫
(Σλ\Σ−

λ,u)λ

wλ,u(z)K1(x− z)dz

=

∫
Σλ\Σ−

λ,u

wλ,u(z)(K1(x− z)−K1(x− zλ))dz ≥ 0,

the last inequality holds, since wλ,u ≥ 0 in Σλ \ Σ−
λ,u and |x− zλ| > |x− z| for all

x ∈ Σ−
λ,u and z ∈ Σλ \ Σ−

λ,u. Finally, by the fact that wλ,u(z) < 0 for z ∈ Σ−
λ,u, we

have that

I3 =

∫
Σ−

λ,u

wλ,u(zλ)K1(x− zλ)dz = −
∫
Σ−

λ,u

wλ,u(z)K1(x− zλ)dz ≥ 0.

As a consequence, we have that LK1w
−
λ,u(x) ≤ 0 for any x ∈ Σ−

λ,u. Since the
operator LK1 is linearity, we have that

LK1w
+
λ,u(x) = LK1wλ,u(x)− LK1w

−
λ,u(x) ≥ LK1wλ,u(x), x ∈ Σ−

λ,u. (9)

Combining with (9) and (4), then for x ∈ Σ−
λ,u,

LK1w
+
λ,u(x) ≥ LK1u(xλ)− LK1u(x)

= v(xλ)
p + g1(xλ)− v(x)p − g1(x)

≥ v(xλ)
p − v(x)p, (10)
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where the last inequality holds by the condition (G).
On the other hand, by directly computation, we have that for x ∈ Σ−

λ,u,

LK1
w+

λ,u(x) =

∫
RN

(w+
λ,u(x)− w+

λ,u(z))K1(x− z)dz

= (−∆)α1w+
λ,u(x) +

∫
Bc

r(x)

(w+
λ,u(x)− w+

λ,u(z))[θ1(x− z)− |x− z|−N−2α1 ]dz

≤ (−∆)α1w+
λ,u(x) + 2C∥w+

λ,u∥L∞(Σ−
λ,u)

,

where C =
∫
Bc

r
|θ1(y) − |y|−N−2α1 |dy. Together with (10), for x ∈ Σ−

λ,u, we have

that

−(−∆)α1w+
λ,u(x) ≤ 2C∥w+

λ,u∥L∞(Σ−
λ,u)

− v(xλ)
p + v(x)p

= 2C∥w+
λ,u∥L∞(Σ−

λ,u)
− φ(x)wλ,v(x),

where φ(x) = v(xλ)
p−v(x)p

v(xλ)−v(x) if v(xλ) ̸= v(x) and φ(x) = 0 if v(xλ) = v(x). We

observe that φ is bounded. Moreover, by the definition of w+
λ,v, we have that for

x ∈ Σ−
λ,u,

−(−∆)α1w+
λ,u(x) ≤ 2C∥w+

λ,u∥L∞(Σ−
λ,u)

− φ(x)w+
λ,v(x)

≤ C̄(∥w+
λ,u∥L∞(Σ−

λ,u)
+ ∥w+

λ,v∥L∞(Σ−
λ,v)

),

where C̄ = 2C + ∥φ∥L∞(B1). By the definition of w+
λ,u, we observe that w+

λ,u = 0

in RN \ Σ−
λ,u and then use Proposition 1, there exists C1 > 0 such that

∥w+
λ,u∥L∞(Σ−

λ,u)
≤ C1|Σ−

λ,u|
α1
N (∥w+

λ,u∥L∞(Σ−
λ,u)

+ ∥w+
λ,v∥L∞(Σ−

λ,v)
). (11)

Similarly, we can obtain that

∥w+
λ,v∥L∞(Σ−

λ,v)
≤ C1|Σ−

λ,v|
α2
N (∥w+

λ,v∥L∞(Σ−
λ,v)

+ ∥w+
λ,u∥L∞(Σ−

λ,u)
). (12)

Therefore, by (11) and (12), we have that

∥w+
λ,u∥L∞(Σ−

λ,u)
+ ∥w+

λ,v∥L∞(Σ−
λ,v)

≤ C1(|Σ−
λ,u|

α1
N + |Σ−

λ,v|
α2
N )(∥w+

λ,u∥L∞(Σ−
λ,u)

+ ∥w+
λ,v∥L∞(Σ−

λ,v)
).

Now we take λ close enough to 1 such that C1(|Σ−
λ,u|

α1
N + |Σ−

λ,v|
α2
N ) < 1

2 , then

∥w+
λ,u∥L∞(Σ−

λ,u)
= ∥w+

λ,v∥L∞(Σ−
λ,v)

= 0, that is, |Σ−
λ,u| = |Σ−

λ,v| = 0. Since Σ−
λ,u and

Σ−
λ,v are open, then Σ−

λ,u and Σ−
λ,v are empty. Thus, wλ,u, wλ,v ≥ 0 in Σλ if λ close

to 1.
Next we continue to prove that wλ,u, wλ,v > 0 in Σλ for λ close to 1. If this con-

clusion is not true, we may assume that there exists x0 ∈ Σλ such that wλ,u(x0) = 0.
We denote Aλ = {(x1, x

′) ∈ RN | x1 > λ}. One hand, by directly computation, we
obtain that

LK1wλ,u(x0) = −
∫
RN

wλ,u(y)K1(x0 − y)dy

= −
∫
Aλ

wλ,u(y)(K1(x0 − y)−K1(x0 − yλ))dy < 0, (13)
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where the last inequality holds since K1 is decreasing and wλ,u ≥ 0, wλ,u ̸≡ 0 in
Aλ for λ close to 1. On the other hand, by the linearity of the operator LK1 and
(4), we have that

LK1wλ,u(x0) = LK1u((x0)λ)− LK1u(x0)

= v((x0)λ)
p + g1((x0)λ)− v(x0)

p − g1(x0)

≥ v((x0)λ)
p − v(x0)

p ≥ 0,

where the first inequality holds by (G) and x0 ∈ Σλ, the second inequality holds
by x0 ∈ Σλ and wλ,v ≥ 0 in Σλ for λ close to 1. This is impossible with (13). Then
wλ,u > 0 in Σλ for λ close to 1. Similarly, we can obtain that wλ,v > 0 in Σλ for λ
close to 1.

Step 2. We prove that λ0 := inf{λ ∈ (0, 1) | wλ,u, wλ,v > 0 in Σλ} = 0.
Proceeding by contradiction, we may assume that λ0 > 0, then wλ0,u, wλ0,v ≥ 0
and wλ0,u, wλ0,v ̸≡ 0 in Σλ0 . Thus, by the same argument in Step 1, we obtain that
wλ0,u, wλ0,v > 0 in Σλ0 .

Now we claim that if wλ,u, wλ,v > 0 for λ ∈ (0, 1), then there exists ϵ ∈ (0, λ)
such that wλϵ,u, wλϵ,v > 0 in Σλϵ , where λϵ = λ0 − ϵ. Indeed, let Dµ = {x ∈
Σλ | dist(x, ∂Σλ) ≥ µ} for µ > 0 small. Since wλ,u, wλ,v > 0 in Σλ and Dµ is
compact, then there exists µ0 > 0 such that wλ,u, wλ,v ≥ µ0 in Dµ. By continuity
of wλ,u(x) and wλ,v(x) respect to λ, for ϵ > 0 small enough, we have that

wλϵ,u, wλϵ,v ≥ 0 in Dµ,

then Σ−
λϵ,u

,Σ−
λϵ,v

⊂ Σλϵ \Dµ, |Σ−
λϵ,u

| and |Σ−
λϵ,v

| are small if ϵ and µ are small.
We repeat the arguments in Step 1 to obtain

∥w+
λ,u∥L∞(Σ−

λϵ,u
) + ∥w+

λϵ,v
∥L∞(Σ−

λϵ,v
)

≤ C1(|Σ−
λϵ,u

|
α1
N + |Σ−

λϵ,v
|
α2
N )(∥w+

λϵ,u
∥L∞(Σ−

λϵ,u
) + ∥w+

λϵ,v
∥L∞(Σ−

λϵ,v
)),

where C1 > 0. We choose ϵ and µ small such that

C1(|Σ−
λϵ,u

|
α1
N + |Σ−

λϵ,v
|
α2
N ) <

1

2
,

then ∥w+
λϵ,u

∥L∞(Σ−
λϵ,u

) = ∥w+
λϵ,v

∥L∞(Σ−
λϵ,v

) = 0. Therefore,

wλϵ,u, wλϵ,v ≥ 0 in Σλϵ ,

repeating the argument in Step 1, we obtain that wλϵ,u and wλϵ,v are positive in
Σλϵ . This provides a contradiction with the definition of λ0.

Step 3. From Step 2, we obtain that u(−x1, x
′) ≥ u(x1, x

′) for x1 ≥ 0. Using
the same argument from the other side, we conclude that u(−x1, x

′) ≤ u(x1, x
′) for

x1 ≥ 0. Thus, u(−x1, x
′) = u(x1, x

′) for x1 ≥ 0. Repeating this procedure in all
directions, we obtain symmetry property of u.

Step 4. To prove that u(r) and v(r) are strictly decreasing in r ∈ (0, 1).

Indeed, let 0 < x1 < x̃1 < 1 and λ = x1+x̃1

2 . By the same arguments above, we have
that wλ,u and wλ,v are positive in Σλ. We observe that (x̃1, 0, · · · , 0) ∈ Σλ and 2λ−
x̃1 = x1, then u(x1, 0, · · · , 0) > u(x̃1, 0, · · · , 0) and v(x1, 0, · · · , 0) > v(x̃1, 0, · · · , 0).
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By the symmetry properties of u and v, then we conclude the monotonicity of u
and v. �
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