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APPROXIMATION OF SOLUTIONS OF A STOCHASTIC
FRACTIONAL DIFFERENTIAL EQUATION WITH DEVIATING
ARGUMENT

SANJUKTA DAS, D. N. PANDEY, N.SUKAVANAM

ABSTRACT. The existence, uniqueness approximate solutions of a stochastic
fractional differential equation with deviating argument is studied. Analytic
semigroup theory and fixed point method is used to prove our results. Then
we considered Faedo-Galerkin approximation of solution and proved some con-
vergence results. We also studied an example to illustrate our result.

1. INTRODUCTION

The notion and methods of solving of differential equations involving fractional
derivatives of the unknown function is a widely explored research field. The history
of fractional calculus started almost at the same time when classical calculus was
established. Fractional differential equations arise in the theory of fractals, visco-
elasticity, seismology, polymers etc. Fractional derivatives depicts the memory and
hereditary properties of various materials and processes that are mostly overlooked
in integer-order models. We refer our readers to [6, 13, 14].

Random noise causes fluctuations in deterministic models. Stochastic problems
are better than deterministic ones as these equations incorporate the randomness
into the equations. Thus stochastic evolution equations are natural generaliza-
tions of ordinary differential equations. Lukasz Delong and Peter Imkeller [7] stud-
ied backward stochastic differential equations with time delayed generator. They
proved the existence and uniqueness of a solution for a sufficiently small time hori-
zon or for a sufficiently small Lipschitz constant of a generator. Bernt Oksendal
et.al. [1] studied optimal control problems for time-delayed stochastic differential
equations with jumps.

The approximation of a solution to a nonlinear Sobolev type evolution equation
was studied by Bahuguna and Shukla [3] in a separable Hilbert space (H, |||, (.,.)),
where the linear operator A satisfies the assumption (H1) stated in preliminaries
so that A generates an analytic semigroup. The Faedo-Galerkin approximations of
a solution to the particular determistic case of (1) where 8 =1 and f(t,u) = M(u)
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has been considered by Milleta [11]. The more general case has been dealt with by
D. Bahuguna, S.K. Srivastava and S. Singh [4].

Aftereffect or dead-time in the dynamical behavior of a system is studied through
delay differential equations. Examples of such systems are hereditary systems,
systems modeled by equations with deviating argument or differential-difference
equations. They belong to the class of functional differential equations (FDEs)
which are infinite dimensional, as against ordinary differential equations (ODEs).
In the case of ODEs, the state is a n-vector z(¢) moving in Euclidean space R™. In
order to consider an irreducible past effect, deviated time-argument is introduced.
Then the state cannot be represented by a vector z(t) defined at a discrete value
of time ¢. Therefore, in FDEs the state must be a function z; corresponding to a
past time interval. In certain real world problems, delay depends not only on the
time but also on the unknown quantity as we can see in [8]. [8, 9] can be referred
for related work with deviated argument. In this case, the state function need not
be simply a past action, but it can express a desired future goal or target.

By far the Faedo-Galerkin approximation of solution stochastic fractional differ-
ential equation with deviated argument is neglected in literature. In an attempt to
fill this gap we study the following stochastic fractional differential equation with
deviated argument in a separable Hilbert space (H, (.,.)).

CDfu(t) + Au(t) = f(t,u(t),u(h(u(t),t)))d%?, te[0,T]
u(0) = weH (1)

where 0 < < 1and 0 <T < oo. CDf denotes the Caputo fractional derivative of
order § and A: D(A) C X — H is a linear operator. A and the functions f,h are
defined in the hypotheses (H1) — (H3) of section 2.

2. PRELIMINARIES

In this section we recall a lemma, define the mild solution and few hypothe-
ses. We deal with two separable Hilbert spaces H and K. We define the space
H, as D(A®) endowed with the norm |.||o. Let (2,5, P) be a complete proba-
bility space endowed with complete family of right continuous increasing sub o—
algebras {§;,t € J} such that §; C §. A H— valued random variable is a F— mea-
surable process.We also assume that W is a Wiener process on K with covariance
operator (). Suppose @ is symmetric, positive, linear, and bounded operator with
Tr@Q < co. Let Ky = Q%(K). The space LY = Lo(Ky, H,) is a separable Hilbert
space with norm [|¢[|g = \WQ%HLQ(K,HQ)- Let Lo(Q,F, P; Hy) = L2(Q; Hy) be
the Banach space of all strongly measurable, square integrable, H,—valued ran-
dom variables equipped with the norm [ju(.)||7, = Ellu(;w)[%_. C§ denotes the
Banach space of all continuous maps from J = (0,7 into La(§2; H,) which satisfy
supre s Ellu(t)||Ze < oo. LY(Q, Hy) = {f € La(Q,Hy) = f is Fo — measurable}
denotes an important subspace. For 0 < o < 1 define

Co" = {u e CF : Ju(t) — u(s)lla—s < LIt — 5|, ¥t, s € [0, 77},

We assume the following hypotheses:

(H1) A is a closed, densely defined, self adjoint operator with pure point spec-
trum 0 < A\g < A\ < -+ < A\, < -+ with A\, = o0 and m — oo and
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corresponding complete orthonormal system of eigenfunctions ¢; such that
A¢j = Ajd)j and < ¢i,¢j >= 51'73'
(H2) The function f : [O,T] x H, x Hy—1 — L(K,H) is continuous and 3
constant Ly such that
15y, 1) — F(s,0,00) |5 < Lyl = sl + [lu— olla + Jus — v1la1]
(H3) The map h : H, x Ry — R satisfies ||h(u,t) — h(v, s)|| < Lp(|lu — v||la +
|t = s]%)
If (H1) is satisfied then —A is the infinitesimal generator of an analytic semigroup
{e7*4:¢ >0} in H. We also note that 3 constant C' such that ||S(¢)|| < Ce“* and
constants C;’s such that ||(§ltS(t)H <C;, t>0,i=1,2. Also ||[AS(t)|| < Ct~! and
A4S ()] < Cat .
Now let us define mild solution of (1) :
Definition 1 The mild solution of (1) is a continuous §; adapted stochastic process
u € C% N CE ! which satisfies the following:
(1) u(t) € H, has Cadlag paths on ¢ € [0, 7).
(2) Vt €10,T], u(t) is the solution of the integral equation

u(t) = Tﬁ(t)u(>+/O (t—5)" "S5t —s).f(s,u(s), u(h(u(s), s)))dw(s), t €[0,T] (2)

where Ss(t) = [ ¢s(0)S(t°0)d0; and Tp(t) = q [, 0¢s(0)S(t70)db; (s is a proba-
bility density function defined on (0, 00), i.e. (g(6) > 0,6 € (0, 00) and fooo Ca(0)do =
L. Also | Ta(t)ull < Cllull, 1S5(tull < w55 llull, 4 Ss(t)ull < Fizgi=agyt=lul.
Lemma 2.1[5] Let f : J x Q x Q — LY be a strongly measurable mapping with

Jo ElF@)lI5gdt < oc. Then

E||/O f(s)dw(s)||? Sls/o E||f(s)||1£gds

Vt € [0, T] and p > 2 where I is a constant containing p and T.
ls is incorporated into the constants in the following sections.

3. EXISTENCE AND UNIQUENESS OF APPROXIMATE SOLUTIONS

In this section we consider a sequence of approximate integrals and establish
the existence and uniqueness of solution for each of the approximate integral equa-
tions. For 0 < a < 1 and u € Cf,, the hypotheses (H2) — (H3), imply that
f(s,u(s),u(h(u(s),s))) is continuous on [0, Tp]. Therefore 3 a positive constant

N = 2L¢[T8* + 2R(1 + LLy) + LL,T{?] + 2Ny, No = E| £(0,ug, uo)|?

such that || f(s,u(s),u(h(u(s),s)))|]| < N, t € [0,T]. Choose Tp, 0 < Ty <T
such that

/BOQF(2—Q¢) 5 TB(l—oc)—l R
Fa+sa=ay’ Nﬁ(g_a)_l <1
L BCII(2—a) Th1—a)-1
= i pi—ay HI=a -1 3)

Let
Br={ue Cr, QC%O_l cu(0) = ug, ||u—uollTy.a < R}
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It is easy to see that Bp is a closed and bounded subset of C%)_l and complete. Let
us define the operator F, : Br :— Bpr by

(Fnu)(t) = Ts(t)uo +/0 (t =)' 85(t — ) ful(s, uls), u(h(uls), )))dw(s). (4)

Theorem 3.1 If the hypotheses (H1),(H2) and (H3) are satisfied and uy €
L(Q)(Q,Xa)7 0 < a < 1, then 3 a unique w, € Bpg such that Fou, = uy,, V

n=0,1,2,---, i.e., u, satisfies the approximate integral equation
t
un(t) = Tp(t)uo + / (t = )77 S5(t = 5) fu (s, un(s)un (h(un(s), 5)))duw(s),
0
te[0,7T) (5)

Proof. Stepl : We need to show that F,u € C%O_l, Yu € C%)_l. It is easy to check
that F,, : C¢ — C¢. Ifu e CF. ', 0 < t; <ty <Tpand 0 < a < 1 then

E|| Foults) — Fault)||2 4

< 3E|[Ta(tz) - To(t0)luoll2_,
#3812 = )47 Salta = ) ol uls) ub(ul), 9w
38 [ Alfta =" Sp(ta = 5) = (1 = )" Sty = )

AT x (s, uls), u(h(u(s), 5)))dw(s)

2 BPOr*(2—a) [ 28(1—a)—2

< JATHPE fu (s, uls), u(h(u(s), s))|*ds

#3 [ 1Al )" 185002 =) — (01— 97 Sl — )
X |AY72|2E|| fu (s, u(s), u(h(u(s), s)))||>ds (©)

Yu € H, we can write

to ta
[S(t50) — S(t70)u = / diS(tﬁa)udt: 05t~ AS(t7)dt.

t1 t1
The first term of (6) can be estimated as follows

15 (t2) — Ta(t)]uolla—1 < (/OOO Co(0)[1S(t50) — S(t7O)[| A° uol|d6)*

fe%e] to d
<([ Ol [ 155E 0 ul.do)”
0 t1
< CFlluolla -1 (t2 = t1)? (7)
For the second term of (6) we get the following estimate

/ (ta = )20 2|, (s, u(s), ulh(u(s), 5)))]|ds

t1
N(tQ _ tl)Z,B(lfa)fl
=T 28(1—a) -1
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For the third term we will use the following estimate
[ 1Al = 977 e = )~ (01 = 9 it — P
<A 0,
< [ OGS D~ S D0
x B (s, u(s), u(hu(s), ) *ds
<[ / 42 5 - 5)78) sy s
< CAIA P (12 — 12N Ty )

Hence from inequalities (7)-(9) we see that the map F, : C%o_l — C37 1 is well-
defined. Now we prove that F,, : Bg — Bg. So for t € [0,Ty] and u € Bg.
B[ (Fau)(t) — uoll2
< 2B|[(Tp(t) — Duollz

+2E]| /0 (t—s)"""Sp(t — S)f(saU(S)7U(h(U(SLS)))dw(S)IIé

< 2B (1)~ Dol + 2 e e = [t - sypre-2)?
X Bl uls), ulhuls), ) ds
R BCT2—a) . T4 R R

<2 0 pi-a)) VAimw-1c2 T2 R

Now we show that F,, is a contraction map by using (3) in last but one inequality.
Yu,v € Bpr

B[[(Faw)(t) = (Fav)®)]2 = E| / (t—5) 71 A%S(t — 5)

% [f (s, u(s), u(h(u(s), s))) = f(s,v(s), v(h(v(s), 5)))dw(s)]I[5

BC,I'(2 — ) K a
<((+51_a 2/0 5)20(1-0)=2
x E| f(s,u(s), u(h(u(s), ) = f(s,v(s), v(h(v(s), 5)))|[*ds
BCI'(2 — o) 81 - a)
< (m)QQLf(1+2LLh)” Hiw
< Jlu— vl

This implies that there exists a unique fixed point u,, of F,,. Thus there a unique
mild approximate solution of (1) O

Lemma 3.2 Let (H1) — (H3) hold. If uy € L3(Q2, D(A%)), V0 < a < 1 < 1,
then u,(t) € D(A?) for all ¢t € [0,Tp] with 0 < v <n < 1. Also if uy € D(A), then
un(t) € D(AY) Vt € [0, Tp], where 0 < v < n < 1.

Proof. By Theorem 3.1 we get the existence of a unique w,, € Bg, satisfying (5).
Theorem 2.6.13 of [12] implies for ¢ > 0, 0 < v < 1, S(t) : H — D(A") and for
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0<~vy<n<l1, D(A") C D(A"). It is easy to see that Holder continuity of w,, can
be proved using the similar arguments from (6)-(9). Also from Theorem 1.2.4 in
[12], we have S(t)u € D(A) if u € D(A). The result follows from these facts and
that D(A) C D(A") for 0 <~ < 1. O

Lemma 3.3 Let (H1)—(H3) hold and ug € LY(€, X,,). Then for any ¢, € (0, Tp]
3 a constant Uy, independent of n such that E|u,(t)||? < Uy, Vt € [to, To], n =
1,2, . Also if up € LY(Q, D(A)) then 3 constant Uy independent of n such that
E|lu,()||2 < Ug Vt € [to,To), n=1,2,---, VO <y <1
Proof. Let ug € LY(Q, H,). Applying A7 on both sides of (4)

Bllua ()3

< 2E|Ts(t)uoll3 + QH/O (t = )P 7" Sp(t — 5) fuls, uls), u(h(u(s), 5)))dw(s) |3
BOTR—y) N@Pt
1+B1—7) 280-7)-1 "

Also if ug € LY(2, D(A)), then we have that ug € LY(Q, D(AY)) for 0 < v < 1.
Hence,

Bllua ()13

< 203t Juol* + (5

< 2B Ts(t)uoll; + 2| /Ol(t = 8)7 7185 (t = 5) fu(s,u(s), u(h(u(s), s)))dw(s)lIE

BO,T(2 =)\, N(Tp20-1
(1+B(1=9)" 2B8(1-7)—1
Hence proved. O

- U().

<207 uol? + (5

4. CONVERGENCE OF SOLUTIONS

In this section the convergence of the solution u, € H, of the approximate
integral equation (5) to a unique solution u of (2), is discussed.
Theorem 4.1 Let the hypotheses (H1) — (H3) hold and if ug € L3(2, H,) then
Vtg € (0, T],

lim sup l|tn () = tm(t)||o = 0.
M0 {n>M,to<t<To}

Proof. Let 0 < ao <y < n. For ty € (0, Tp]
B fat, un(t), wn (h(un(t),6))) = fou (b, i (8), wm (h(um (), 1)) ||

S 2B|| f (bt (£), i (R (1 (£),£))) = o (b, i (8), tm (A (2), 1)) ||
< 2E|| fro (b, i (8), tn (At (£),£))) = frn (£, i (8), U (A (2), 1)) ||
< 2(2L4(1 + 2LL3)[E|un — um|? + E|[(P" — P™)u,, (t)]|2]) (10)
Now,
E[[(P" — P™)un (t)|* < EJ|A*7Y(P™ — P™) AVun (1)]* < #E||A7um(t)||2

)\%’Y*O‘)
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Then we have
Bl fn(t, un(t), un(h(un(t), 1)) — f (2, um(t) U (h(um (t),1)))1?

< 2(2L;(1+ 2LLy)[Ellun — umlla + 5=y EIA um ®)[7)

/\2(7 a)
For 0 < t, < to
HWA)—W@H2<2/ /|\ 5P LA S, (t — 5)|2
% B ot 0 ()t (1 (), £))) — Fon (s t1n (8), 11 (Bt (£, £))) 2

(11)
The estimate of first integral of the above inequality is

Ellun(t) = um(®)]2

to
s/\wfgﬂﬂw&@fgw
0

X E|| fu(t, un (t), tn (A(un(t), ) = fon (8w (£), i (A (um (t), 1)) | ds
< (BCLC =) 2N (to = 6ith0 2
T PA+B(1-79)) 28(1—=7v) -1

The estimate of second integral is

ty, 0<d <1 (12)

t
Bllun(t) — um ()3 S/ I(t = 5)7 1 A%Ss(t - )|
to

X Bl fn(t, un(t), un(h(un(t), 1)) = fon(t; wm(t), wm (h(um(t), )))H ds

BCL(2—7) 2 ! _ \28(a—1)-2
S(N1+BO—VD>¢¥t °)
E|| AVt ()2
X ALy (14 2LLy)[Ellun — um |2 + W
BCL(2—7) 2 ! o 28(a—1)-2
<ALp(1+ 2LLh)(—F(1 T 7))) [/t/ (t—s)

Ui, TOZ,B(l—a)—l

A20—2) 2B8(1 — @) — 1

lds

X Bty — tp||%ds +

] (13)

Substituting inequalities (12),(13) in (11) we get
Ellun(t) — um(t)Hi
<( BOT(2—7) 94N (to — d1t))2PU=)=2
T+ (1 -7) 26(1 =7) -1

(2 - t

+8L(1+ QLLh)(m)Q[/t/ (t — 5)26(a-D-2
U, TOQB(l—a)—l

A2 28(1 — o) — i

to

)

x Ellu, — um||§ds +
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By using Gronwall’s inequality, there exists a constant D such that

(2 — AN (to — 01tp)*P0-1=2
Bllun(t) ~ (12 < (g g — oV gty
SOL@=) o Uy T

+8Ly(1+ 2LLy)( ] x D

2
T+ A0 ) 2 2801 —a) 1
Let m — oo. Taking supremum over [tg, To] we get the following inequality.
BOT(2—7) G4N(tg — d1t})?P0=1=2
Elun(t) = um (]2 < [(rar— ) —— o
I(1+p(1-7) 26(1—7) -1

Since t{, is arbitrary, the right hand side can be made infinitesimally small by
choosing t{, sufficiently small. Thus the lemma is proved. O

ty] x D

Corollary 4.2 If 4y € D(A), then lim sup Ellun(t) —um®)||2 =0
M0 n>m, 0<t<Tp}

Proof. By using Lemma (3.2) and Lemma (3.3) we can take to = 0 in the proof of
Theorem 4.1 and hence the corollary follows. (I

Theorem 4.3 Let us assume that (H1) — (H3) are satisfied and suppose ug €
L3(2, X,). Then for t € [0,Tp], there exists a unique function u,, € Br where
un(t) = Toto + [o (t = 8)°71S5(t = 5) fu(s, wn(s), tn(n (un(s), 5)))duw(s),
and u(t) € Br, where
u(t) = Tpup + fot(t — S)B_ng(t — 5)f(s,u(s),u(h(u(s),s)))dw(s),t € [0,Tp], such
that u, — u as n — oo in Bgr and u satisfies (2) on [0, Tp].

Proof. By using above Corollary, Theorem 3.1 and Theorem 4.1 it is to see that
3 u(t) € Bg such that
limy, 00 E|lun(t) — u(t)||2 = 0 on [0,Tp]. Now

Eljun(t) —T5UO+/ (t =)' 85(t = 8) fu(s, un(8), un(hn(un(s), 5)))duw(s)||?

<EII/ (t = 5)7 7 Sa(t = 8) f (8, tn (), tn (P (1n(5), 8)))dw(s)]||*
BC T2
< (g Vagal
Let n — oo then
Ellun(t) — Tpuo +ff (t — )P St — 5) fu(s, un(s), un (hn(un(s), s)))dw(s)|?

< (%)QNTM 5 to and since tg is arbitrary we conclude u(t) satisfies (2). Unique-

ness follows easily from Theorem 3.1, Theorem 4.1 and Gronwall’s inequality. [

(14)

5. FAEDO-GALERKIN APPROXIMATIONS
We know from the previous sections that for any 0 < Ty < T', we have a unique
u € Cf, satisfying the integral equation
u(t) = Taug + fot(t — s)ﬂ_lSﬁ(t — 5)f(s,u(s),u(h(u(s),s)))dw(s), t € [0,Ty] Also,
3 a unique solution u, € Cf; of the approximate integral equation

un(t) = Tguo + [y (t = 8)P71Sa(t = ) fuls, un(s), un (h(un(s), 8)))dw(s), ¢ € [0, Tp].
Faedo-Galerkin approximation @, = P™u, is given by
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Pruy (t) = tin(t) = Ts(t) P ug
—|—fg(t—s)5_15’5(t—s)P”f(s,un(s),un(h(un( ),8)))dw(s),t € [0, Tp]. If the solution
u(t) to (2) exists on [0, Tp] then it has the representation

u(t) = Zai(t)@, where a;(t) = (u(t), ¢;) for i =0,1,2,3,--- and

i= O
Un(t Za t)¢i, where ol (t) = (G, (t), ¢;) for i =0,1,2,3,- -

Asa Conbequence of Theorem 3.1 and Theorem 4.1, we have the following result.
Theorem 4.4 Let us assume that (H1) — (H3) are satisfied and suppose ug €
L3(Q, X,). Then for t € [0,7p], 3 a unique function u,, € Br where
un(t) = TsPuo + [y (¢ = $)° 71 S5(t = 8) P fi (5, n (), un (h(tn(s), 5)) )duw(s),
and u(t) € Bgr, where
u(t) = Tpuo + fg(t - S)Bflsﬁ(t —8)f(s,u(s), u(h(u(s), s)))dw(s),t € [0,Tp], such
that u, — u as n — oo in By and u satisfies (2) on [0, Tp].
Now the convergence of al’(t) — «a;(t) is shown. It is easily seen that

A2[u(t) — a, (1)) = A°| Z{az O] + A4 Y ailt)es
i=n—+1
:ZA?{ai(t) )y + Z A& (t)p;. Thus we have
) i=n-+1

BJA°[u(t) = (B> = T X Ela (1) — o (1)
Theorem 4.5 Let us assume (H1) — (H3) hold.

n

(i) If up € LY(2, X,,) then lim  sup [Z N (2Bl (t) — o (1)) =

N0 tefto, To]

(i3) If ug € L3(92, D(A)) then lim  sup ZA ()2 E|lay(t) — a(t)||*] = 0. The
N0 te(0,T0]
theorem 4.5 follows from the facts mentloneci) above the theorem. Corollary 4.6
Let us assume (H1) — (H3) hold.
(i) If ug € L3(Q, X,) then lim sup B A%, (t) — @m()]]* =
N=00 tefty,To],n>m
(ii) If up € LY(Q, D(A)) then lim sup B A% (t) — tm(t)]]]? =

N0 ¢€[0,To],n>m

Proof.

Bl A [ (t) = G (D) = B P un(t) — P um (t)]13

&

< 2B|[ P [un(t) — um ]2 + 2EII( P — P )ym(t)|I2

< 2B|[un(t) — um Bl + 25=5 Ell A7 um (6)]

>\7n

Then the result (i) follows from theorem 4.1 and result (iz) follows from corollary
4.2. (]
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6. EXAMPLE

Consider the following stochastic fractional differential equation with deviating
argument. Suppose for t >0, x € (0,1),0 < <1

cDﬁvt(um) = Vo (L, ) + F(t, v(t, av),v(h(t,v(z;gc))))dqgil(f)7
v(t,z) =vo, t=0, z € (0,1) and v(t,0) =v(¢t,1) =0, t >0 (15)

Let F' is an appropriate Holder continuous function satisfying (H2) in
LY(K,(0,1)). w is a standard Lz (0, 1) valued Weiner process.

Let us define A = fdd—;, f = F, v(t,x) = u(t) and assume o = 1/2. Let
D(A) = HA0,1) N H?(0,1), D(A'Y?) = H}(0,1), i.e. the Banach space endowed
with the norm

|2l /2 = [|AV22|,, = € D(AY?).

We denote this space by X /5.
Also denote C’tl/2 = C(t,0; D(A'/?)) endowed with sup norm

|2le1/2 = sup [|@(s)||1j2, @ € CF°.
0<s<t

When v € D(A), A € R with Av = —v"” = Av we have < Av,v >=< dv,v >, ie.
< "0 >= |2 = Aol
Therefore the solution v of Av = Av is of the form
v(z) = Ccos(VAzx) + Dsin(vVAz)

From the conditions v(0) = v(1) = 0 imply that C =0 and X\ = \,, = n?7% n € N.
So, for each n the solution is

vn () = Dsin(y/Anz).

Also note that < v,,v,, >= 0 for n # m and < v,,v, >= 1. Therefore D = V2.
For v € D(A), 3 a sequence of real numbers {a,,} such that

v(@) =D apva(z), Y (an)® <oo, Y (N)3(an)’.

neN neN neN
So, A'/?u(z) = Y oneN VAnanv, (), with v € D(AY?).
X_ 120 = H 1(0,1) is a Sobolev space of negative index with equivalent norm

[=1/2 = Ypei | < ;vn > ||>. Then (15) can be reformulated into (1). Now
from Theorem 3.1 and Theorem 4.1 we can similarly prove the existence, unique-
ness and approximation of the mild solution of (15).

7. CONCLUSION

Existence and uniqueness of approximate solutions of a prototype of stochastic
fractional differential equation with deviating argument is established. By Faedo-
Galerkin approximation of solution we proved some convergence results.



170 SANJUKTA DAS, D. N. PANDEY, N.SUKAVANAM JFCA-2015/6(2)

REFERENCES

[1] Bernt Oksendal, Agnes Sulem, Tusheng Zhang, Optimal Control of Stochastic Delay Equations
and Time-Advanced Backward Stochastic Differential Equations, Adv. Appl. Prob. 43, 572-
596, 2011.

[2] D. Bahuguna, M. Muslim, Approximation of solutions to retarded differential equations with
applications to population dynamics, Journal of Applied Mathematics and Stochastic Analysis,
01 (2005),1-11.

[3] D. Bahuguna, R. Shukla, Approximations of solutions to nonlinear sobolev type evolution
equation, Electronic Journal of Differential Equations, no. 31 (2003), 1-16.

[4] D. Bahuguna, S. K. Srivastava, S. Singh, Approximations of solutions to semilinear inte-
grodifferential equations, Numerical Functional Analysis and Optimization 22, no. 5-6 (2001),
487-504.

[5] Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Math-
ematics and Its Applications, Cambridge: Cambridge University Press, 1992.

[6] M. Bragdi, M. Hazi: Existence and controllability result for an evolution fractional integrod-
ifferential systems. Int. J. Contemp. Math. Sci. 5(19), 901-910 (2010)

[7] Lukasz Delong, Peter Imkeller, Backward Stochastic Differential Equations with Time Delayed
Generators -Results and Counterexample, The Annals of Applied Probability, 2010, Vol. 20,
No. 4, 1512-1536, DOI:10.1214/09-AAP663, Institute of Mathematical Statistics.

[8] M. Muslim, R. P. Agarwal, Exact Controllability of an Integro-Differential Equation with
Deviated Argument, Functional Differential Equations, Volume 21, No. 1-2, 31-45, 2014.

[9] Wagdy G. El-Sayed, Solvability of a Neutral Differential Equation with Deviated Argument,
Journal of Mathematical Analysis and Applications, Volume 327, Issue 1, 1 March 2007,
3427350, doi:10.1016/j.jmaa.2006.04.023.

[10] Ciprian G. Gal, Nonlinear Abstract Differential Equations with Deviated Argument, Journal
of Mathematical Analysis and Applications, Volume 333, Issue 2, 15 September 2007, 9717983,
doi:10.1016/j.jmaa.2006.11.033.

[11] P. D. Miletta, Approximation of solutions to evolution equations, Mathematical Methods in
the Applied Sciences 17, no. 10 (1994), 753-763.

[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, 1983.

[13] Shujie Yang, Bao Shi, Qiang Zhang, Complete controllability of nonlinear stochastic impulsive
functional systems, Applied Mathematics and Computation 218 (2012) 5543-5551.

[14] J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Non-
linear Anal., vol. 12, 262-272, 2011.

SANJUKTA DAs
DEPARTMENT OF MATHEMATICS, IIT ROORKEE, UTTARAKHAND 247667, INDIA
E-mail address: dassanjukta44@gmail.com

D. N. PANDEY
DEPARTMENT OF MATHEMATICS, IIT ROORKEE, UTTARAKHAND 247667, INDIA
E-mail address: dwijpfma@iitr.ac.in

N. SUKAVANAM
DEPARTMENT OF MATHEMATICS, IIT ROORKEE, UTTARAKHAND 247667, INDIA
E-mail address: nsukvfma@iitr.ac.in



