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APPROXIMATION OF SOLUTIONS OF A STOCHASTIC

FRACTIONAL DIFFERENTIAL EQUATION WITH DEVIATING

ARGUMENT

SANJUKTA DAS, D. N. PANDEY, N.SUKAVANAM

Abstract. The existence, uniqueness approximate solutions of a stochastic

fractional differential equation with deviating argument is studied. Analytic
semigroup theory and fixed point method is used to prove our results. Then
we considered Faedo-Galerkin approximation of solution and proved some con-
vergence results. We also studied an example to illustrate our result.

1. Introduction

The notion and methods of solving of differential equations involving fractional
derivatives of the unknown function is a widely explored research field. The history
of fractional calculus started almost at the same time when classical calculus was
established. Fractional differential equations arise in the theory of fractals, visco-
elasticity, seismology, polymers etc. Fractional derivatives depicts the memory and
hereditary properties of various materials and processes that are mostly overlooked
in integer-order models. We refer our readers to [6, 13, 14].

Random noise causes fluctuations in deterministic models. Stochastic problems
are better than deterministic ones as these equations incorporate the randomness
into the equations. Thus stochastic evolution equations are natural generaliza-
tions of ordinary differential equations. Lukasz Delong and Peter Imkeller [7] stud-
ied backward stochastic differential equations with time delayed generator. They
proved the existence and uniqueness of a solution for a sufficiently small time hori-
zon or for a sufficiently small Lipschitz constant of a generator. Bernt Oksendal
et.al. [1] studied optimal control problems for time-delayed stochastic differential
equations with jumps.

The approximation of a solution to a nonlinear Sobolev type evolution equation
was studied by Bahuguna and Shukla [3] in a separable Hilbert space (H, ∥.∥, (., .)),
where the linear operator A satisfies the assumption (H1) stated in preliminaries
so that A generates an analytic semigroup. The Faedo-Galerkin approximations of
a solution to the particular determistic case of (1) where β = 1 and f(t, u) =M(u)
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has been considered by Milleta [11]. The more general case has been dealt with by
D. Bahuguna, S.K. Srivastava and S. Singh [4].

Aftereffect or dead-time in the dynamical behavior of a system is studied through
delay differential equations. Examples of such systems are hereditary systems,
systems modeled by equations with deviating argument or differential-difference
equations. They belong to the class of functional differential equations (FDEs)
which are infinite dimensional, as against ordinary differential equations (ODEs).
In the case of ODEs, the state is a n-vector x(t) moving in Euclidean space Rn. In
order to consider an irreducible past effect, deviated time-argument is introduced.
Then the state cannot be represented by a vector x(t) defined at a discrete value
of time t. Therefore, in FDEs the state must be a function xt corresponding to a
past time interval. In certain real world problems, delay depends not only on the
time but also on the unknown quantity as we can see in [8]. [8, 9] can be referred
for related work with deviated argument. In this case, the state function need not
be simply a past action, but it can express a desired future goal or target.

By far the Faedo-Galerkin approximation of solution stochastic fractional differ-
ential equation with deviated argument is neglected in literature. In an attempt to
fill this gap we study the following stochastic fractional differential equation with
deviated argument in a separable Hilbert space (H, (., .)).

cDβ
t u(t) +Au(t) = f(t, u(t), u(h(u(t), t)))

dw(t)

dt
, t ∈ [0, T ]

u(0) = u0 ∈ H (1)

where 0 < β < 1 and 0 < T < ∞. cDβ
t denotes the Caputo fractional derivative of

order β and A : D(A) ⊂ X → H is a linear operator. A and the functions f, h are
defined in the hypotheses (H1)− (H3) of section 2.

2. Preliminaries

In this section we recall a lemma, define the mild solution and few hypothe-
ses. We deal with two separable Hilbert spaces H and K. We define the space
Hα as D(Aα) endowed with the norm ∥.∥α. Let (Ω,F, P ) be a complete proba-
bility space endowed with complete family of right continuous increasing sub σ−
algebras {Ft, t ∈ J} such that Ft ⊂ F. A H− valued random variable is a F− mea-
surable process.We also assume that W is a Wiener process on K with covariance
operator Q. Suppose Q is symmetric, positive, linear, and bounded operator with
TrQ < ∞. Let K0 = Q

1
2 (K). The space L0

2 = L2(K0,Hα) is a separable Hilbert

space with norm ∥ψ∥L0
2
= ∥ψQ 1

2 ∥L2(K,Hα). Let L2(Ω,F, P ;Hα) ≡ L2(Ω;Hα) be
the Banach space of all strongly measurable, square integrable, Hα−valued ran-
dom variables equipped with the norm ∥u(.)∥2L2

= E∥u(.;w)∥2Hα
. Cα

T denotes the
Banach space of all continuous maps from J = (0, T ] into L2(Ω;Hα) which satisfy
supt∈JE∥u(t)∥2Cα < ∞. L0

2(Ω,Hα) = {f ∈ L2(Ω, Hα) : f is F0 − measurable}
denotes an important subspace. For 0 ≤ α < 1 define

Cα−1
T = {u ∈ Cα

T : ∥u(t)− u(s)∥α−1 ≤ L|t− s|,∀t, s ∈ [0, T ]}.

We assume the following hypotheses:

(H1) A is a closed, densely defined, self adjoint operator with pure point spec-
trum 0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λm ≤ · · · with λm → ∞ and m → ∞ and
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corresponding complete orthonormal system of eigenfunctions ϕj such that

Aϕj = λjϕj and < ϕi, ϕj >= δi,j

(H2) The function f : [O, T ] × Hα × Hα−1 → L(K,H) is continuous and ∃
constant Lf such that
∥f(s, u, u1)− f(s, v, v1)∥2Q ≤ Lf [∥t− s∥θ1 + ∥u− v∥α + ∥u1 − v1∥α−1]

(H3) The map h : Hα ×R+ → R+ satisfies ∥h(u, t)− h(v, s)∥ ≤ Lh(∥u− v∥α +
|t− s|θ2)

If (H1) is satisfied then −A is the infinitesimal generator of an analytic semigroup
{e−tA : t ≥ 0} in H. We also note that ∃ constant C such that ∥S(t)∥ ≤ Ceωt and

constants Ci’s such that ∥ di

dtiS(t)∥ ≤ Ci, t > 0, i = 1, 2. Also ∥AS(t)∥ ≤ Ct−1 and
∥AαS(t)∥ ≤ Cαt

−α.
Now let us define mild solution of (1) :

Definition 1 The mild solution of (1) is a continuous Ft adapted stochastic process
u ∈ Cα

T ∩ Cα−1
T which satisfies the following:

(1) u(t) ∈ Hα has Càdlàg paths on t ∈ [0, T ].
(2) ∀t ∈ [0, T ], u(t) is the solution of the integral equation

u(t) = Tβ(t)u0+

∫ t

0

(t−s)β−1Sβ(t−s)f(s, u(s), u(h(u(s), s)))dw(s), t ∈ [0, T ] (2)

where Sβ(t) =
∫∞
0
ζβ(θ)S(t

βθ)dθ; and Tβ(t) = q
∫∞
0
θζβ(θ)S(t

βθ)dθ; ζβ is a proba-

bility density function defined on (0,∞), i.e. ζβ(θ) ≥ 0, θ ∈ (0,∞) and
∫∞
0
ζβ(θ)dθ =

1.Also ∥Tβ(t)u∥ ≤ C∥u∥, ∥Sβ(t)u∥ ≤ βC
Γ(1+β)∥u∥, ∥A

αSβ(t)u∥ ≤ βCαΓ(2−α)
Γ(1+β(1−α)) t

−αβ∥u∥.
Lemma 2.1[5] Let f : J × Ω × Ω → L0

2 be a strongly measurable mapping with∫ T

0
E∥f(t)∥p

L0
2
dt <∞. Then

E∥
∫ t

0

f(s)dw(s)∥p ≤ ls

∫ t

0

E∥f(s)∥p
L0

2
ds

∀t ∈ [0, T ] and p ≥ 2 where ls is a constant containing p and T.
ls is incorporated into the constants in the following sections.

3. Existence and Uniqueness of Approximate Solutions

In this section we consider a sequence of approximate integrals and establish
the existence and uniqueness of solution for each of the approximate integral equa-
tions. For 0 ≤ α < 1 and u ∈ Cα

T0
, the hypotheses (H2) − (H3), imply that

f(s, u(s), u(h(u(s), s))) is continuous on [0, T0]. Therefore ∃ a positive constant

N = 2Lf [T
θ1
0 + 2R(1 + LLh) + LLhT

θ2
0 ] + 2N0, N0 = E∥f(0, u0, u0)∥2

such that ∥f(s, u(s), u(h(u(s), s)))∥ ≤ N, t ∈ [0, T ]. Choose T0, 0 < T0 ≤ T
such that

(
βCαΓ(2− α)

Γ(1 + β(1− α))
)2N

T
β(1−α)−1
0

β(1− α)− 1
≤ R

4
,

D = (
βCαΓ(2− α)

Γ(1 + β(1− α))
)22Lf

T
β(1−α)−1
0

2β(1− α)− 1
≤ 1 (3)

Let

BR = {u ∈ Cα
T0

∩ Cα−1
T0

: u(0) = u0, ∥u− u0∥T0,α ≤ R}
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It is easy to see that BR is a closed and bounded subset of Cα−1
T0

and complete. Let
us define the operator Fn : BR :→ BR by

(Fnu)(t) = Tβ(t)u0 +

∫ t

0

(t− s)β−1Sβ(t− s)fn(s, u(s), u(h(u(s), s)))dw(s). (4)

Theorem 3.1 If the hypotheses (H1), (H2) and (H3) are satisfied and u0 ∈
L0
2(Ω, Xα), 0 ≤ α < 1, then ∃ a unique un ∈ BR such that Fnun = un, ∀

n = 0, 1, 2, · · · , i.e., un satisfies the approximate integral equation

un(t) = Tβ(t)u0 +

∫ t

0

(t− s)β−1Sβ(t− s)fn(s, un(s),un(h(un(s), s)))dw(s),

t ∈ [0, T ] (5)

Proof. Step1 : We need to show that Fnu ∈ Cα−1
T0

, ∀u ∈ Cα−1
T0

. It is easy to check

that Fn : Cα
T → Cα

T . If u ∈ Cα−1
T0

, 0 < t1 < t2 < T0 and 0 ≤ α < 1 then

E∥Fnu(t2)−Fnu(t1)∥2α−1

≤ 3E∥[Tβ(t2)− Tβ(t1)]u0∥2α−1

+ 3E∥
∫ t2

t1

(t2 − s)β−1Aα−1Sβ(t2 − s)fn(s, u(s), u(h(u(s), s)))dw(s)∥2Q

+ 3E∥
∫ t1

0

A[(t2 − s)β−1Sβ(t2 − s)− (t1 − s)β−1Sβ(t1 − s)]

Aα−2 × fn(s, u(s), u(h(u(s), s)))dw(s)∥Q

≤ 3E∥[Tβ(t2)− Tβ(t1)]u0∥2α−1 + 3
β2C2

αΓ
2(2− α)

Γ2(1 + β(1− α))

∫ t2

t1

∥(t2 − s)2β(1−α)−2∥

× ∥A−1∥2E∥fn(s, u(s), u(h(u(s), s)))∥2ds

+ 3

∫ t1

0

∥A[(t2 − s)β−1Sβ(t2 − s)− (t1 − s)β−1Sβ(t1 − s)]

× ∥Aα−2∥2E∥fn(s, u(s), u(h(u(s), s)))∥2ds (6)

∀u ∈ H, we can write

[S(tβ2θ)− S(tβ1θ)]u =

∫ t2

t1

d

dt
S(tβθ)udt =

∫ t2

t1

θβtβ−1AS(tβθ)dt.

The first term of (6) can be estimated as follows

∥[Tβ(t2)− Tβ(t1)]u0∥2α−1 ≤ (

∫ ∞

0

ζβ(θ)∥S(tβ2θ)− S(tβ1 θ)∥∥Aα−1u0∥dθ)2

≤ (

∫ ∞

0

ζβ(θ)[

∫ t2

t1

∥ d
dt
S(tβθ)∥dt]∥u0∥αdθ)2

≤ C2
1∥u0∥2α−1(t2 − t1)

2 (7)

For the second term of (6) we get the following estimate∫ t2

t1

(t2 − s)2β(1−α)−2E∥fn(s, u(s), u(h(u(s), s)))∥2ds

≤ N(t2 − t1)
2β(1−α)−1

2β(1− α)− 1
(8)
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For the third term we will use the following estimate∫ t1

0

∥A[(t2 − s)β−1Sβ(t2 − s)− (t1 − s)β−1Sβ(t1 − s)]∥2

× ∥Aα−2∥2E∥fn(s, u(s), u(h(u(s), s)))∥2ds

≤
∫ t1

0

(

∫ ∞

0

ζβ(θ)∥[
d

dt
S((t− s)βθ)|t=t2 −

d

dt
S((t− s)βθ)|t=t1 ]∥dθ)2

× E∥f(s, u(s), u(h(u(s), s)))∥2ds

≤
∫ t1

0

(

∫ ∞

0

ζβ(θ)[

∫ t2

t1

∥Aα−2 d
2

dt2
S((t− s)βθ)∥dt]dθ)2Nds

≤ C2
2∥Aα−2∥2(t2 − t1)

2NT0 (9)

Hence from inequalities (7)-(9) we see that the map Fn : Cα−1
T0

→ Cα−1
T0

is well-
defined. Now we prove that Fn : BR → BR. So for t ∈ [0, T0] and u ∈ BR.

E∥(Fnu)(t)− u0∥2α
≤ 2E∥(Tβ(t)− I)u0∥2α

+ 2E∥
∫ t

0

(t− s)β−1Sβ(t− s)f(s, u(s), u(h(u(s), s)))dw(s)∥2Q

≤ 2E∥(Tβ(t)− I)u0∥2α + 2(
βCαΓ(2− α)

Γ(1 + β(1− α))
)2

∫ t

0

∥(t2 − s)2β(1−α)−2∥2

× E∥fn(s, u(s), u(h(u(s), s)))∥2ds

≤ R

2
+ 2(

βCαΓ(2− α)

Γ(1 + β(1− α))
)2N

T
β(1−α)−1
0

β(1− α)− 1
≤ R

2
+
R

2
= R

Now we show that Fn is a contraction map by using (3) in last but one inequality.
∀u, v ∈ BR

E∥(Fnu)(t)− (Fnv)(t)∥2α = E∥
∫ t

0

(t− s)β−1AαSβ(t− s)

× [f(s, u(s), u(h(u(s), s)))− f(s, v(s), v(h(v(s), s)))dw(s)]∥2Q

≤ (
βCαΓ(2− α)

Γ(1 + β(1− α))
)2

∫ t

0

(t2 − s)2β(1−α)−2

× E∥f(s, u(s), u(h(u(s), s)))− f(s, v(s), v(h(v(s), s)))∥2ds

≤ (
βCαΓ(2− α)

Γ(1 + β(1− α))
)22Lf (1 + 2LLh)∥u− v∥2α

T 2β(1− α)− 1

2β(1− α)− 1

≤ ∥u− v∥2α.
This implies that there exists a unique fixed point un of Fn. Thus there a unique
mild approximate solution of (1) �

Lemma 3.2 Let (H1) − (H3) hold. If u0 ∈ L0
2(Ω, D(Aα)), ∀0 < α < η < 1,

then un(t) ∈ D(Aγ) for all t ∈ [0, T0] with 0 < γ < η < 1. Also if u0 ∈ D(A), then
un(t) ∈ D(Aγ) ∀t ∈ [0, T0], where 0 < γ < η < 1.

Proof. By Theorem 3.1 we get the existence of a unique un ∈ BR, satisfying (5).
Theorem 2.6.13 of [12] implies for t > 0, 0 ≤ γ < 1, S(t) : H → D(Aγ) and for
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0 ≤ γ < η < 1, D(Aη) ⊂ D(Aγ). It is easy to see that Holder continuity of un can
be proved using the similar arguments from (6)-(9). Also from Theorem 1.2.4 in
[12], we have S(t)u ∈ D(A) if u ∈ D(A). The result follows from these facts and
that D(A) ⊂ D(Aγ) for 0 ≤ γ < 1. �

Lemma 3.3 Let (H1)−(H3) hold and u0 ∈ L0
2(Ω, Xα). Then for any t0 ∈ (0, T0]

∃ a constant Ut0 , independent of n such that E∥un(t)∥2γ ≤ Ut0 ∀t ∈ [t0, T0], n =

1, 2, · · · . Also if u0 ∈ L0
2(Ω, D(A)) then ∃ constant U0 independent of n such that

E∥un(t)∥2γ ≤ U0 ∀t ∈ [t0, T0], n = 1, 2, · · · , ∀ 0 < γ ≤ 1.

Proof. Let u0 ∈ L0
2(Ω,Hα). Applying A

γ on both sides of (4)

E∥un(t)∥2γ

≤ 2E∥Tβ(t)u0∥2γ + 2∥
∫ t

0

(t− s)β−1Sβ(t− s)fn(s, u(s), u(h(u(s), s)))dw(s)∥2Q

≤ 2C2
γt

−2γβ
0 ∥u0∥2 + (

βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2
N(T0)

2β(1−γ)−1

2β(1− γ)− 1
= Ut0 .

Also if u0 ∈ L0
2(Ω, D(A)), then we have that u0 ∈ L0

2(Ω, D(Aγ)) for 0 ≤ γ < 1.
Hence,

E∥un(t)∥2γ

≤ 2E∥Tβ(t)u0∥2γ + 2∥
∫ t

0

(t− s)β−1Sβ(t− s)fn(s, u(s), u(h(u(s), s)))dw(s)∥2Q

≤ 2C2∥u0∥2 + (
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2
N(T0)

2β(1−γ)−1

2β(1− γ)− 1
= U0.

Hence proved. �

4. Convergence of Solutions

In this section the convergence of the solution un ∈ Hα of the approximate
integral equation (5) to a unique solution u of (2), is discussed.
Theorem 4.1 Let the hypotheses (H1) − (H3) hold and if u0 ∈ L0

2(Ω,Hα) then
∀t0 ∈ (0, T ],

lim
m→∞

sup
{n≥M,t0≤t≤T0}

∥un(t)− um(t)∥α = 0.

Proof. Let 0 < α < γ < η. For t0 ∈ (0, T0]

E∥fn(t, un(t), un(h(un(t), t)))− fm(t, um(t), um(h(um(t), t)))∥2

≤ 2E∥fn(t, un(t), un(h(un(t), t)))− fn(t, um(t), um(h(um(t), t)))∥2

≤ 2E∥fn(t, um(t), um(h(um(t), t)))− fm(t, um(t), um(h(um(t), t)))∥2

≤ 2(2Lf (1 + 2LLh)[E∥un − um∥2α + E∥(Pn − Pm)um(t)∥2α]) (10)

Now,

E∥(Pn − Pm)um(t)∥2 ≤ E∥Aα−γ(Pn − Pm)Aγum(t)∥2 ≤ 1

λ
2(γ−α)
m

E∥Aγum(t)∥2
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Then we have

E∥fn(t, un(t), un(h(un(t), t)))− fm(t, um(t), um(h(um(t), t)))∥2

≤ 2(2Lf (1 + 2LLh)[E∥un − um∥2α +
1

λ
2(γ−α)
m

E∥Aγum(t)∥2])

For 0 < t′0 < t0

E∥un(t)− um(t)∥2α ≤ 2(

∫ t′0

0

+

∫ t

t′0

)∥(t− s)β−1AαSβ(t− s)∥2

× E∥fn(t, un(t), un(h(un(t), t)))− fm(t, um(t), um(h(um(t), t)))∥2ds
(11)

The estimate of first integral of the above inequality is

E∥un(t)− um(t)∥2α

≤
∫ t′0

0

∥(t− s)β−1AαSβ(t− s)∥2

× E∥fn(t, un(t), un(h(un(t), t)))− fm(t, um(t), um(h(um(t), t)))∥2ds

≤ (
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2
2N(t0 − δ1t

′
0)

2β(1−γ)−2

2β(1− γ)− 1
t′0, 0 < δ < 1 (12)

The estimate of second integral is

E∥un(t)− um(t)∥2α ≤
∫ t

t′0

∥(t− s)β−1AαSβ(t− s)∥2

× E∥fn(t, un(t), un(h(un(t), t)))− fm(t, um(t), um(h(um(t), t)))∥2ds

≤ (
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2

∫ t

t′0

(t− s)2β(α−1)−2

× 4Lf (1 + 2LLh)[E∥un − um∥2α +
E∥Aγum(s)∥2

λ2(γ − α)
]ds

≤ 4Lf (1 + 2LLh)(
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2[

∫ t

t′0

(t− s)2β(α−1)−2

× E∥un − um∥2αds+
Ut0

λ
2(γ−α)
m

T
2β(1−α)−1
0

2β(1− α)− 1
] (13)

Substituting inequalities (12),(13) in (11) we get

E∥un(t)− um(t)∥2α

≤ (
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2
4N(t0 − δ1t

′
0)

2β(1−γ)−2

2β(1− γ)− 1
t′0

+ 8Lf (1 + 2LLh)(
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2[

∫ t

t′0

(t− s)2β(α−1)−2

× E∥un − um∥2αds+
Ut0

λ
2(γ−α)
m

T
2β(1−α)−1
0

2β(1− α)− 1
]
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By using Gronwall’s inequality, there exists a constant D such that

E∥un(t)− um(t)∥2α ≤ [(
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2
4N(t0 − δ1t

′
0)

2β(1−γ)−2

2β(1− γ)− 1
t′0

+ 8Lf (1 + 2LLh)(
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2

Ut0

λ
2(γ−α)
m

T
2β(1−α)−1
0

2β(1− α)− 1
]×D

Let m→ ∞. Taking supremum over [t0, T0] we get the following inequality.

E∥un(t)− um(t)∥2α ≤ [(
βCγΓ(2− γ)

Γ(1 + β(1− γ))
)2
4N(t0 − δ1t

′
0)

2β(1−γ)−2

2β(1− γ)− 1
t′0]×D

Since t′0 is arbitrary, the right hand side can be made infinitesimally small by
choosing t′0 sufficiently small. Thus the lemma is proved. �

Corollary 4.2 If u0 ∈ D(A), then lim
m→∞

sup
{n≥m, 0≤t≤T0}

E∥un(t)− um(t)∥2α = 0

Proof. By using Lemma (3.2) and Lemma (3.3) we can take t0 = 0 in the proof of
Theorem 4.1 and hence the corollary follows. �

Theorem 4.3 Let us assume that (H1) − (H3) are satisfied and suppose u0 ∈
L0
2(Ω, Xα). Then for t ∈ [0, T0], there exists a unique function un ∈ BR where

un(t) = Tβu0 +
∫ t

0
(t− s)β−1Sβ(t− s)fn(s, un(s), un(hn(un(s), s)))dw(s),

and u(t) ∈ BR, where

u(t) = Tβu0 +
∫ t

0
(t − s)β−1Sβ(t − s)f(s, u(s), u(h(u(s), s)))dw(s), t ∈ [0, T0], such

that un → u as n→ ∞ in BR and u satisfies (2) on [0, T0].

Proof. By using above Corollary, Theorem 3.1 and Theorem 4.1 it is to see that
∃ u(t) ∈ BR such that
limn→∞E∥un(t)− u(t)∥2α = 0 on [0, T0]. Now

E∥un(t)− Tβu0 +

∫ t

t0

(t− s)β−1Sβ(t− s)fn(s, un(s), un(hn(un(s), s)))dw(s)∥2

≤ E∥
∫ t0

0

(t− s)β−1Sβ(t− s)fn(s, un(s), un(hn(un(s), s)))dw(s)∥2

≤ (
βC

Γ(1 + β)
)2N

T 2β−2
0

2β − 2
t0 (14)

Let n→ ∞ then
E∥un(t)− Tβu0 +

∫ t

t0
(t− s)β−1Sβ(t− s)fn(s, un(s), un(hn(un(s), s)))dw(s)∥2

≤ ( βC
Γ(1+β) )

2N
T 2β−2
0

2β−2 t0 and since t0 is arbitrary we conclude u(t) satisfies (2). Unique-

ness follows easily from Theorem 3.1, Theorem 4.1 and Gronwall’s inequality. �

5. Faedo-Galerkin Approximations

We know from the previous sections that for any 0 ≤ T0 ≤ T , we have a unique
u ∈ Cα

T0
satisfying the integral equation

u(t) = Tβu0 +
∫ t

0
(t − s)β−1Sβ(t − s)f(s, u(s), u(h(u(s), s)))dw(s), t ∈ [0, T0] Also,

∃ a unique solution un ∈ Cα
T0

of the approximate integral equation

un(t) = Tβu0 +
∫ t

0
(t− s)β−1Sβ(t− s)fn(s, un(s), un(h(un(s), s)))dw(s), t ∈ [0, T0].

Faedo-Galerkin approximation ūn = Pnun is given by
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Pnun(t) = ūn(t) = Tβ(t)P
nu0

+
∫ t

0
(t−s)β−1Sβ(t−s)Pnf(s, un(s), un(h(un(s), s)))dw(s), t ∈ [0, T0]. If the solution

u(t) to (2) exists on [0, T0] then it has the representation

u(t) =
∞∑
i=0

αi(t)ϕi, where αi(t) = (u(t), ϕi) for i = 0, 1, 2, 3, · · · and

ūn(t) =
n∑

i=0

αn
i (t)ϕi, where α

n
i (t) = (ūn(t), ϕi) for i = 0, 1, 2, 3, · · · .

As a consequence of Theorem 3.1 and Theorem 4.1, we have the following result.
Theorem 4.4 Let us assume that (H1)− (H3) are satisfied and suppose u0 ∈

L0
2(Ω, Xα). Then for t ∈ [0, T0], ∃ a unique function un ∈ BR where

un(t) = TβP
nu0 +

∫ t

0
(t− s)β−1Sβ(t− s)Pnfn(s, un(s), un(h(un(s), s)))dw(s),

and u(t) ∈ BR, where

u(t) = Tβu0 +
∫ t

0
(t − s)β−1Sβ(t − s)f(s, u(s), u(h(u(s), s)))dw(s), t ∈ [0, T0], such

that un → u as n→ ∞ in BR and u satisfies (2) on [0, T0].
Now the convergence of αn

i (t) → αi(t) is shown. It is easily seen that

Aα[u(t)− ūn(t)] = Aα
[ n∑
i=0

{αi(t)− αn
i (t)}ϕi

]
+Aα

∞∑
i=n+1

αi(t)ϕi

=
n∑

i=0

λαi {αi(t)− αn
i (t)}ϕi +

∞∑
i=n+1

λαi αi(t)ϕi. Thus we have

E∥Aα[u(t)− ūn(t)∥2 ≥
∑n

i=0 λ
2α
i E|αi(t)− αn

i (t)|2.
Theorem 4.5 Let us assume (H1)− (H3) hold.

(i) If u0 ∈ L0
2(Ω, Xα) then lim

n→∞
sup

t∈[t0,T0]

[
n∑

i=0

λi(t)
2αE∥αi(t)− αn

i (t)∥2] = 0

(ii) If u0 ∈ L0
2(Ω, D(A)) then lim

n→∞
sup

t∈[0,T0]

[
n∑

i=0

λi(t)
2αE∥αi(t) − αn

i (t)∥2] = 0. The

theorem 4.5 follows from the facts mentioned above the theorem. Corollary 4.6
Let us assume (H1)− (H3) hold.
(i) If u0 ∈ L0

2(Ω, Xα) then lim
n→∞

sup
t∈[t0,T0],n≥m

E∥Aα[ūn(t)− ūm(t)]∥2 = 0

(ii) If u0 ∈ L0
2(Ω, D(A)) then lim

n→∞
sup

t∈[0,T0],n≥m

E∥Aα[ūn(t)− ūm(t)]∥2 = 0

Proof.

E∥Aα[ūn(t)− ūm(t)]∥2 = E∥Pnun(t)− Pmum(t)∥2α
≤ 2E∥Pn[un(t)− um(t)]∥2α + 2E∥(Pn − Pm)ym(t)∥2α

≤ 2E∥[un(t)− um(t)]∥2α + 2
1

λγ−α
m

E∥Aγum(t)∥2

Then the result (i) follows from theorem 4.1 and result (ii) follows from corollary
4.2. �
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6. Example

Consider the following stochastic fractional differential equation with deviating
argument. Suppose for t ≥ 0, x ∈ (0, 1), 0 < β ≤ 1

cDβvt(t, x) = vxx(t, x) + F (t, v(t, x), v(h(t, v(t, x))))
dw(t)

dt
,

v(t, x) = v0, t = 0, x ∈ (0, 1) and v(t, 0) = v(t, 1) = 0, t ≥ 0 (15)

Let F is an appropriate Holder continuous function satisfying (H2) in
L0
2(K, (0, 1)). w is a standard L2(0, 1) valued Weiner process.

Let us define A = − d2

dx2 , f := F, v(t, x) = u(t) and assume α = 1/2. Let

D(A) = H1
0 (0, 1) ∩ H2(0, 1), D(A1/2) = H1

0 (0, 1), i.e. the Banach space endowed
with the norm

∥x∥1/2 := ∥A1/2x∥, x ∈ D(A1/2).

We denote this space by X1/2.

Also denote C
1/2
t = C(t, 0;D(A1/2)) endowed with sup norm

∥x∥t,1/2 := sup
0≤s≤t

∥x(s)∥1/2, x ∈ C
1/2
t .

When v ∈ D(A), λ ∈ R with Av = −v′′ = λv we have < Av, v >=< λv, v >, i.e.

< −v′′, v >= ∥v′∥2L2 = λ∥v∥2L2 .

Therefore the solution v of Av = λv is of the form

v(x) = C cos(
√
λx) +D sin(

√
λx)

From the conditions v(0) = v(1) = 0 imply that C = 0 and λ = λn = n2π2, n ∈ N.
So, for each n the solution is

vn(x) = D sin(
√
λnx).

Also note that < vn, vm >= 0 for n ̸= m and < vn, vn >= 1. Therefore D =
√
2.

For v ∈ D(A), ∃ a sequence of real numbers {an} such that

v(x) =
∑
n∈N

anvn(x),
∑
n∈N

(an)
2 <∞,

∑
n∈N

(λ)2(an)
2.

So, A1/2v(x) =
∑

n∈N

√
λnanvn(x), with v ∈ D(A1/2).

X−1/2 = H1(0, 1) is a Sobolev space of negative index with equivalent norm

∥.∥−1/2 =
∑∞

n=1 ∥ < ., vn > ∥2. Then (15) can be reformulated into (1). Now
from Theorem 3.1 and Theorem 4.1 we can similarly prove the existence, unique-
ness and approximation of the mild solution of (15).

7. Conclusion

Existence and uniqueness of approximate solutions of a prototype of stochastic
fractional differential equation with deviating argument is established. By Faedo-
Galerkin approximation of solution we proved some convergence results.
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