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SERIES SOLUTION FOR FRACTIONAL RICCATI

DIFFERENTIAL EQUATION AND ITS CONVERGENCE

A. ELSAID, M. S. ABDEL LATIF, F. M. KAMAL

Abstract. In this paper, we present a study of the fractional order Riccati

differential equation with variable coefficients. For the Caputo definition of

the fractional derivative, the existence and uniqueness of the solution to this
problem is proved. Then, the series solution is obtained and its convergence

analysis is performed. Finally, for the Riemann-Liouville definition of frac-

tional derivative, singularity analysis of the series solution of the considered
equation is given.

1. Introduction

Fractional calculus provides a good description for modeling a physical phenom-
enon that depends on both the time instant and the prior time history. In recent
years, fractional-order derivatives have been utilized in modeling phenomena in
several fields of applied science such as engineering, physics, chemistry and hydrol-
ogy [1–3]. Fractional differential equations (FDEs) are considered as generalizations
of the classical differential equations of integer order.

For most nonlinear FDEs, exact solutions cannot be obtained and approximate
techniques are employed to solve these equations. Several semi-analytical methods
have been utilized for obtaining series solutions for FDEs. These methods include
Adomian decomposition method [4], homotopy perturbation method [5], variational
iterative method [6], homtopy analysis method [7] and fractional differential trans-
form method [8].

One important FDE is the fractional Riccati differential equation (FRDE) which
has different applications in engineering and applied science. The applications in-
clude random processes, optimal control, and diffusion problems [9], stochastic
realization theory, optimal control, robust stabilization, network synthesis and fi-
nancial mathematics [10, 11]. Approximate solutions for this equation have been
obtained via different methods including the semi-analytic methods [12–16] and
numerical methods [17].
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In this work, we consider the FRDE in the form

Dαw(x) = a(x) + b(x)w(x) + c(x)w2(x), x > 0, 0 < α ≤ 1, (1)

with initial condition w(0) = w0, and the variable coefficients a(x), b(x) and c(x)
are continuous functions with bound L.

The convergence analysis of the fractional power series solutions for FRDE (1) is
discussed. Also, we illustrate how to numerically estimate the radius of convergence
for the series solution of FRDE (1) based on the convergence of the series solution
of the corresponding integer order problem. Finally, we study singularity behavior
for the series solution of FRDE (1) when the fractional derivative is defined in
Riemann-Liouville sense to obtain a series solution with determined pole.

2. Preliminaries

In this section, we introduce some definitions and properties that we use through
the paper. There are several operators for defining fractional order derivative.
The most common ones used in researches are the Riemann-Liouville and Caputo
fractional differential operators.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0
of a function f(x) is defined as

Iαf(x) =

∫ x

0

(x− ζ)α−1

Γ(α)
f(ζ)dζ, α > 0, I0f(x) = f(x). (2)

The operator Iα satisfies the following properties, for α, β ≥ 0 and m ≥ −1,

(1) IαIβf(x) = Iα+βf(x),
(2) IαIβf(x) = IβIαf(x),

(3) Iαxm = Γ(m+1)xm+α

Γ(m+α+1) .

Definition 2.2. The Riemann-Liouville fractional derivative operator of order α is
defined as

Dαf(x) =
1

Γ(n− α)

dn

dxn

∫ x

0

f(ζ)

(x− ζ)α−n+1
dζ, α > 0, x > 0, (3)

where n− 1 < α ≤ n, n ∈ N.

Definition 2.3. The Caputo fractional derivative operator of order α is defined in
the following form

Dα
c f(x) =

1

Γ(n− α)

∫ x

0

f (n)(ζ)

(x− ζ)α−n+1
dζ α > 0, x > 0, (4)

where n− 1 < α ≤ n, n ∈ N.

Or by fractional integral operator as

Dα
c f(x) = In−αDnf(x).

One of the main properties of Caputo fractional derivative operator is

Dα
c x

m =
Γ(m+ 1)

Γ(m− α+ 1)
xm−α, (5)

where m > 0,m ∈ R.
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3. Existence and uniqueness

In this section, we prove the existence and uniqueness of the solution of FRDE
(1) where the fractional derivative is defined in Caputo’s sense.

Let J = [0,B], B <∞ and C(J) be the class of all continuous functions defined
on J equipped with the supermum norm ‖ w ‖= supx∈J |w(x)|.

From the properties of fractional calculus [18] FRDE (1) can be written in the
following form

I1−α dw(x)

dx
= a(x) + b(x)w(x) + c(x)w2(x). (6)

Operating with Iα we obtain the integral equation

w(x) = w0 + Iα(a(x) + b(x)w(x) + c(x)w2(x)). (7)

In [20], it is shown that

Iα[a(x) + b(x)w(x) + c(x)w2(x)] |x=0= 0.

Then we have

w(x) = w0 + (
xα

Γ(α+ 1)
(a0 + b0w0 + c0w

2
0)

+ Iα+1(a′(x) + b′(x)w(x) + b(x)w′(x) + c′(x)w2(x) + 2c(x)w(x)w′(x))),

from which we can infer that w ∈ C(J).
From equation (7), we can write

dw

dx
=

d

dx
Iα(a(x) + b(x)w(x) + c(x)w2(x)),

I1−α dw

dx
= I1−α d

dx
Iα(a(x) + b(x)w(x) + c(x)w2(x)),

Dα
c w(x) =

d

dx
I(a(x) + b(x)w(x) + c(x)w2(x)),

Dα
c w(x) = a(x) + b(x)w(x) + c(x)w2(x),

and
w(0) = w0 + Iα(a(x) + b(x)w(x) + c(x)w2(x)) |x=0,

which yields

w(0) = w0.

Then the integral equation (7) is equivalent to the initial value problem (1).

Let f(x,w(x)) = a(x) + b(x)w(x) + c(x)w2(x) where f(x,w) : [0,B] x R → R,
and let Qm= {w ∈ C(J) : |w(x)| ≤ wm}. Then, for w ∈ Qm we have

| ∂f
∂w
| = |b(x) + 2c(x)w(x)| ≤ L+ 2Lwm.

Then f(x,w(x)) satisfies Lipschitz condition with respect to the second argument

with Lipschitz constant L̂ = L+ 2Lwm.

Theorem 3.1. The initial value problem (1) has a unique solution w ∈ C(J).
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Proof.
Let the operator F be defined as

Fw(x) = w0 + Iα(a(x) + b(x)w(x) + c(x)w2(x)), (8)

or equivalently,

Fw(x) = w0 +

∫ x

0

(
(x− u)α−1

Γ(α)
f(u,w(u)))du.

Let w(x) ∈ Qm, x1, x2 ∈ J such that 0 < x1 < x2 then,

|Fw(x2)− Fw(x1)|

= | 1

Γ(α)

∫ x2

0

(x2 − u)α−1f(u,w(u))du− 1

Γ(α)

∫ x1

0

(x1 − u)α−1f(u,w(u))du|

= | 1

Γ(α)

∫ x1

0

(x2 − u)α−1f(u,w(u))du− 1

Γ(α)

∫ x1

0

(x1 − u)α−1f(u,w(u))du

+
1

Γ(α)

∫ x2

x1

(x2 − u)α−1f(u,w(u))du|

≤ L1

Γ(α)

∫ x1

0

(x1 − u)α−1 − (x2 − u)α−1du+
L1

Γ(α)

∫ x2

x1

(x2 − u)α−1du

=
L1

Γ(α+ 1)
(2(x2 − x1)α + xα1 − xα2 )

≤ 2L1(x2 − x1)α

Γ(α+ 1)
,

where L1 = supx∈J | f(x,w(x)) |. This implies that F : C(J)→ C(J).

Now, let w and v ∈ Qm

|Fw(x)− Fv(x)| = |
∫ x

0

(x− u)α−1

Γ(α)
(f(u,w(u))− f(u, v(u)))du|

≤ L̂
∫ x

0

(x− u)α−1

Γ(α)
|w(u))− v(u)|

‖Fw(x)− Fv(x)‖ ≤ L̂ sup
x∈J
|w(x))− v(x)|

∫ x

0

(x− u)α−1

Γ(α)
du

≤ L̂‖w(x)− v(x)‖ Bα

Γ(α+ 1)
,

if BαL̂
Γ(α+1) < 1 then the operator F defined in equation (8) is contraction and the

theorem is proved.
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4. Change of Variable

In this section, we propose a change of variable by substitution to transform the
general form of FRDE (1) to a simpler form with Caputo differential operator. Let

w(x) = c1y(x) + h(x), (9)

where c1 is a constant and consider c(x) = c2 in equation (1) is a constant.
Substituting equation (9) in equation (1), we get

Dα
c y(x) = A+By2(x), y(0) = c0, (10)

and

c3 = a(x)− b2(x)

4c2
+Dα(

b(x)

2c2
), (11)

where c3 is a constant, h(x) = − b(x)
2c2

, A = c3
c1

and B = c1c2. Equation (11) is a

constrain that relates the functions a(x) and b(x).
For the case of integer order derivative, i.e α = 1, the exact solution of equation

(10) is known [21] for the following cases

• Case 1: A = B = 1 and y(0) = 0, the exact solution is y(x) = tan(x).
• Case 2: A = 1, B = −1 and y(0) = 0, the exact solution is y(x) = tanh(x).
• Case 3: A = 0 and y(0) = 1, the exact solution is y(x) = 1

1−Bx .

5. Power Series Solution

We use the fractional power series to solve equation (10) with Caputo differential
operator. let

y(x) =

∞∑
k=0

akx
kα. (12)

Substituting (12) into (10), we have

∞∑
k=1

Γ(kα+ 1)

Γ((k − 1)α+ 1)
akx

(k−1)α = A+B(

∞∑
k=0

akx
kα)2, (13)

or equivalently,

∞∑
k=0

Γ((k + 1)α+ 1)

Γ(kα+ 1)
ak+1x

kα = A+B

∞∑
k=0

k∑
j=0

ajak−jx
kα. (14)

For k=0, we have

a1 =
A+Ba2

0

Γ(α+ 1)
, (15)

for k ≥1 by comparing coefficients of identical power of x, we obtain

ak+1 = B
Γ(kα+ 1)

Γ((k + 1)α+ 1)

k∑
j=0

ajak−j . (16)

Then the solution of equation (10) is given by

y(x) = a0 +
A+Ba2

0

Γ(α+ 1)
xα +

∞∑
k=1

B
Γ(kα+ 1)

Γ((k + 1)α+ 1)

k∑
j=0

ajak−jx
(k+1)α. (17)

Now, consider the three cases for integer order problem



JFCA-2015/6(2) SERIES SOLUTION FOR FRDE AND ITS CONVERGENCE 191

• Case 1: equation (10) has solution [21]

y(x) =
1

Γ(α+ 1)
xα+

Γ(2α+ 1)

(Γ(α+ 1))2Γ(3α+ 1)
x3α+2

Γ(2α+ 1)Γ(4α+ 1)

Γ(α+ 1)3Γ(3α+ 1)Γ(5α+ 1)
x5α+...,

• Case 2: equation (10) has solution

y(x) =
1

Γ(α+ 1)
xα− Γ(2α+ 1)

(Γ(α+ 1))2Γ(3α+ 1)
x3α+2

Γ(2α+ 1)Γ(4α+ 1)

Γ(α+ 1)3Γ(3α+ 1)Γ(5α+ 1)
x5α+...,

• Case 3: equation (10) has solution [23] as

y(x) = 1 +
B

Γ(α+ 1)
xα + 2

B2

Γ(2α+ 1)
x2α +

(4(Γ(α+ 1))2) + Γ(2α+ 1)

(Γ(α+ 1))2Γ(3α+ 1)
B3x3α + ...

6. Convergence Analysis

In this section, we prove the convergence for series solution (17).

Theorem 6.1. [22] The classical power series
∑∞
k=0 akx

k ,−∞ < x < ∞ has
radius of convergence R if and only if the fractional power series

∑∞
k=0 akx

kα ,

x ≥0 has radius of convergence R
1
α .

Proof. See [22].
Consider the series

ŷ(x) =

∞∑
k=0

akx
k, (18)

where ak is the coefficient of fractional series solution (17) defined recursively by
(15) and (16). From recurrence relation (16), we have

|ak+1| ≤ |B|
|Γ(kα+ 1)|

|Γ((k + 1)α+ 1)|

k∑
j=0

|aj ||ak−j |,

|ak+1| ≤M
k∑
j=0

|aj ||ak−j |, (19)

where

M = max
k
{|B| |Γ(kα+ 1)|
|Γ((k + 1)α+ 1)|

}.

Define the power series

µ = P (x) =

∞∑
k=0

pkx
k,

by p0 = |a0| , p1 = |a1| and pk+1=M
∑k
j=0 pjpk−j , k=1,2,· · · .

The series P (x) is a majorant series of ŷ(x) defined in (18). Note that by easy
calculation, we have

P (x) = p0 + x

∞∑
k=0

pk+1x
k

= p0 + xM

∞∑
k=0

(

k∑
j=0

pjpk−j)x
k.
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Consider now the implicit functional equation

f(x, µ) = µ− p0 − xMµ2.

Since f is an analytic function in the (x, µ) -plane, and f(0, p0) = 0, fµ(0, p0)
=16=0, by the implicit function theorem [24,25] P (x) is analytic in a neighborhood
of the point (0, p0) of the (x, µ) -plane and with a positive radius of convergence.
This implies that power series (18) converges, hence by Theorem (6.1) series solution
(17) converges.

In what follows, we propose a technique based on Theorem (6.1) to obtain an
approximation for the radius of convergence for series solution (17) numerically.
Consider the fractional series solution (17) in Case 1. Let the series

T (x) =

∞∑
k=0

bkx
k, (20)

be Taylor series of function f(x) = tan(βx). Then, series T (x) has a radius of
convergence % = π

2β . By Theorem (6.1), the series Tα(x) defined by

Tα(x) =

∞∑
k=0

bkx
kα, (21)

has a radius of convergence % = ( π2β )
1
α . We seek a value for β such that

| bk |>| ak |,

where ak is the coefficient of fractional series solution (17) in Case 1. By comparing
coefficients ak and bk for 0.1 < α < 0.9, a numerical estimate for β that guarantees
| bk |>| ak | is given by

β =
1

(0.730235α2 + 0.355273)Γ(0.730235α+ 1)
.

Then, series solution in Case 1 has a radius of convergence at least % = ( π2β )
1
α .

Figure (1) shows the graph of fractional series solution and corresponding tan(βx)
at different values of α. It illustrates how the formula obtained for β guarantees
that series T (x) is a majorant for fractional series solution in the range specified
for α.

7. Singularity Analysis

Classical integer-order Ricatti differential equation has also another two forms
of solutions namely when A = 1, B = 1, y(x) = − cot(x) and A = −1, B = 1,
y(x) = − coth(x) [21]. These two solutions have movable singularity at x = 0. In
this section, we present singularity analysis for the series solution of FRDE (10) that
corresponds to these two cases. To obtain these types of solutions, the fractional
derivative in equation (10) is considered in Riemann-Liouville differential operator.
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Figure 1. Series of solution for equation (10) Case 1 denoted for
parameter α0 by sol.(α = α0) and the corresponding dominated
series tan(βx) at different vales of α.

7.1. Singularity Behavior. The negative power term of the series solution of
equation (10) is important to know. The leading-order analysis [26] determines
this power by setting

y(x) = g(x− x0)ρ, (22)

where x0 is the location of singularity, ρ is the power to be determined later
and g is a constant. Substituting equation (22) into equation (10) using Riemann-
Liouville differential operator (3), We get

g
Γ(ρ+ 1)

Γ(ρ− α+ 1)
(x− x0)ρ−α = A+Bg2(x− x0)2ρ.

For the dominant terms,

g
Γ(ρ+ 1)

Γ(ρ− α+ 1)
(x− x0)ρ−α −Bg2(x− x0)2ρ = 0, (23)

from which we obtain

ρ = −α, (24)

and

g =
Γ(ρ+ 1)

BΓ(ρ− α+ 1)
.

Therefore the singularity is a pole of order α.
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Hence, for that case, the series solution takes the form

y(x) = a0x
−α +

∞∑
k=1

akx
kα. (25)

Substituting equation (25) into equation (10), we have

a0
Γ(−α+ 1)

Γ(−2α+ 1)
x−2α+a1Γ(α+1)+a2

Γ(2α+ 1)

Γ(α+ 1)
xα+

∞∑
k=2

ak+1
Γ((k + 1)α+ 1)

Γ(kα+ 1)
xkα

= A+B(a2
0x
−2α + 2a0a1 + 2a0a2x

α + 2a0

∞∑
k=2

ak+1x
kα +

∞∑
k=2

k−1∑
j=1

ajak−jx
kα).

(26)

Comparing coefficients of equal exponents, we find

a1 =
A

Γ(α+ 1)− 2a0B
,

and

a2(
Γ(2α+ 1)

Γ(α+ 1)
− 2a0B) = 0,

then a2 = 0. Finally, we obtain the recurrence relation

ak+1 =
BΓ(kα+ 1)

Γ((k + 1)α+ 1)− 2a0BΓ(kα+ 1)

k−1∑
j=1

ajak−j , k = 2, 3, · · ·

and the series solution is given by

y(x) =
a0

xα
+

A

Γ(α+ 1)− 2a0B
xα +

a2
1BΓ(2α+ 1)

Γ(3α+ 1)− 2a0BΓ(2α+ 1)
x3α

+
2a1a3BΓ(4α+ 1)

Γ(5α+ 1)− 2a0BΓ(4α+ 1)
x5α + · · · , (27)

where x 6= 0.
Solution (27) is referred to as psi-series solution [26] of the FRDE (10).

conclusion

In this paper, fractional order Riccati differential equation with variable coef-
ficients is considered. For the Caputo definition of the fractional derivative, the
conditions that guarantee the existence and uniqueness of the solution to this prob-
lem are deduced. Using a simple transformation, the considered equation can be
transformed into a constant coefficient Riccati equation that is considered as the
generalization to a well known integer order one. The convergence of the frac-
tional power series solution is proved using the implicit function theorem. Also, a
technique is proposed to numerically evaluate an approximation to the radius of
convergence for the fractional power series from the radius of convergence of the
corresponding integer-order series. Finally, for the Riemann-Liouville definition of
fractional derivative, singularity analysis is performed and the psi-series solution of
the fractional order Riccati differential equation is obtained.
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