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Abstract:

Image degraded due motion blur is an ill-posed problem that still attracts many
researchers to participate in solving such problem. The degraded image might suffer
linear or nonlinear motion blur. It may also be due to the camera motion (spatial space
invariant) or due to the motion of the target to be captured (spatially space variant). This
paper focuses on images degraded due to linear motion blur due to the camera motion. A
survey was done over several kernel estimation techniques such as Cepstral and Sinc
function whom are classified under parameter estimation approach, and Fergus[1] and
Krishnan[2] techniques who are classified under MAPh (Maximum A Posteriori over the
kernel h) estimation approach. Experiments were applied over images samples suffering
a synthetic blur and restored with several image restoration algorithms.
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1. Introduction:

Images are produced to record or display useful information. Due to imperfections in the
imaging and capturing process, the recorded image invariably represents a degraded
version of the original scene.

Overcoming these imperfections is crucial to many of the subsequent image processing
tasks. There exists a wide range of different degradations that have to be taken into
account, for instance, noise, geometrical degradations, illumination and color
imperfections (under- or over- exposure, saturation), and blur.

There are several types of blur that may cause the degradation of a captured image, e.g.,
lenses imperfections, atmospheric turbulence, and object motion. Degradation can be
either spatially invariant or variant.

In spatially-invariant degradation, all the pixels in the image are affected   exactly. Poor
lens focus or motion of the camera, are the main cause for such degradation. The pixels'
locations aren't affected by this distortion.

In spatially-variant degradations, the recorded pixel values are dependent on the spatial
location.  So they are more difficult to model than degradations that do not change with
location. Examples of these types are linear, non-linear and spiral motion blur.

This paper concentrates on removing blurriness introduced due to linear shift invariant
motion from recorded sampled (spatially discrete) images. The standard model of the
degraded image is given by this fundamental imaging equation:

nhfg +⊗=              (1)

This paper is organized as follows: section (2) introduces a brief about different types of
image restoration frameworks followed that are used to recover a latent image from its
degraded version. Section (3) discusses two major approaches of kernel estimation,
parameter estimation approach and MAP estimation approach. Section (4) discusses
some image restoration methods. Section (5) reviews the related work of some
researchers discussed that type of image degradation and what they produced in that
field to overcome blurriness due to shift invariant motion. Section (6) includes
discussions and experimental results gained from testing different image restoration
algorithms with different kernel estimation approaches over some image sample in
different circumstances. Section (7) introduces a conclusion of this paper and what is
expected to be performed in the future.
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2. Image Restoration Frameworks:

The field of image restoration (sometimes referred to as image de-blurring or image de-
convolution) is concerned with the reconstruction or estimation of the uncorrupted
image from a blurred and noisy one. Essentially, it tries to perform an operation on the
image that is the inverse of the imperfections in the image formation system.
Image restoration can be classified into two major class, blind image restoration/de-
convolution and non-blind image restoration.
When the attributes of the imperfect imaging system can be estimated before the process
of de-blurred/latent image estimation process, this combination of image restoration and
blur identification is can be noted as non-blind image de-convolution [3]. Figure (1-a)
describes the framework of the non-blind image restoration. The characteristics of the
degrading/blurring function (kernel) and the noise are assumed to be known a priori.
With the help of an image restoration algorithm, the latent image can be estimated.
In practical situations, however, one may not be able to obtain this information directly
from the image formation process. When the attributes are required to be estimated in
the same time with the de-blurred/latent image, the combination of image restoration
and blur identification is often referred to as blind image restoration/de-convolution.
Blind image restoration is the process of estimating the latent image and the kernel
simultaneously with the help of some available prior knowledge about the degraded
image and the imaging system [4]. Figure (1-b) describes the framework of the blind
image restoration. Both prior knowledge about the attributes of the imperfect imaging
system and an initializing state of the kernel have to be taken in consideration before the
estimation process. A recursive process is applied in order to estimate the blurring
function (kernel) and the latent image until a certain threshold is reached. The output of
this process is the required latent image and the kernel caused the degradation.

3. Kernel Estimation:

The linear shift invariant motion blur is produce as a result of the translation of the
recording instrument (camera) at a constant velocity which results a movement of the
recorded pixel with distance l away of its right location with an angle θ computed from
the horizontal axis and degrading the recorded image with one-dimensional distortion.
There exist different approaches to estimate the kernel. Some of these approaches
depend on calculating the kernel parameters, the angle θ and the displacement l [5]. But
recently published papers exploit the degraded image in order to estimate the kernel by
means of mathematical approaches (e.g. a maximum a posteriori probability MAP)
[2][6][7]. This section introduces some of the well-known approaches used in kernel
estimation.
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(a)

(b)

Figure (1): Image restoration framework: (a) Framework of the non-
blind image restoration/de-convolution process. (b) Framework of the

blind image restoration process, τ=threshold.

In parameter estimation approach, the Sinc function and Cepstral method's algorithms
are discussed as an example for calculating the angle of motion and its displacement.
The algorithms produced by Fergus [1] and Krishnan [2] also introduced as examples
of MAP estimation approach.

3.1. Parameter Estimation:

Early researches [5][8][9] assumed that since the blur causing the degradation is due to a
linear motion and this kind of blur is motion invariants blur, thus by estimating the angle
of the motion and the displacement of this motion we can estimate the kernel, which is
an important term in solving the degradation problem [5]. Eq. (2) shows how the kernel
can be computed with the help of angle θ and displacement L. Several forms of solutions
were built on that equation.
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One of these forms is the Sinc function algorithm [8]. This algorithm was built
depending on the regular patterns of zeros found in the Fourier spectrum of the image
degraded by linear motion. Figure (2) shows the Fourier spectrum of the blurred image
and the used detecting function. This algorithm detects those patterns by minimizing the
correlation between the Fourier spectrum of the observed image and a function detects
the place of those patterns.

Figure (2): Sinc function estimation method (a) The Fourier spectrum of
the blurred images (vertical view). (b) The Sinc function
(horizontal view). (c) The Sinc function (vertical view).

Another algorithm was introduced based on eq. (2). This algorithm based on the
Cepstrum of the blurred image. The Cepstrum of the blurred image has large peaks with
negative values [9][10]. By calculating the distance between those two peaks and the
angle of the line connecting between those peaks, we can obtain the parameters used in
computing the kernel. Figure (3) shows the Cepstrum of an image blurred at length 20
and θ = 30. In (a) we see the two prominent negative peaks and in (b) the line through
these two peaks appear to have an angle of 30 degrees. This kernel estimation technique
is very sensitive to noise. If the noise level of the blurred image is not too high, two
peaks will be easily noticed in the Cepstrum, as show in Figure (3). In order to compute
the angle of motion blur, a straight line will be drawn from the origin to the first
negative peak. The angle of motion blur is approximated by the inverse tangent of the
slope of this line.

3.2 MAP Estimation:

One of the well-known and simplest workarounds to blind restoration/de-convolution is
a MAP estimation of the latent image f and kernel h. A pair f, h is been searched for
maximizing the posterior probability given the observed image g. The resulted pair is
expected to satisfy the convolution constraints up to noise, and will have sparse
derivatives, that is, minimize the sum of derivatives. Having such a good prior will lead

(a) (b) (c)
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to solve blind de-convolution, and it is expected that optimizing a MAPf,h score will
provide the desired sharp image.

Figure (3): Cepstral estimation method: the cepstrum of an blurred image
(a) The two noticeable peaks. (b) The two peaks in vertical view
showing a line deviated from the x-axis with angle=30.

Unfortunately, Real images contain a lot of low resolution details which acts like
impulse signals. The contrast is reduced by blur. When a natural image is blurred, this
blurriness reduces the total derivatives contrast and therefore a blurred image signal
achieves a higher probability than a sharp one. The proof of this fact will be explained
in section 5, which also explains why the use of MAPh becomes for fruitful than
MAPf, h.
In MAPf, h, the number of the unknown information is higher than the number of the
known information. This came from that the needed latent image f, which is in the same
size of the blurred image g, plus the kernel h are formatting the unknown information.
Fergus et al. [1] produced an algorithm that used the blurred image Gaussian gradients
as a prior for the restoration process. Figure (4) shows the histogram of the gradients for
both blurred image and the un-blurred image. It also shows the parametric model they
built to be used as a prior in kernel estimating process.
They estimate the kernel with the help of this prior and the blurred image g with size
NxM. The number of the unknown information is much less than the known
information. This helps to produce a better and very close to the blurring function
caused the degradation. With the help of MAPh approach, they overcame the leakage in
information that was led because of the higher number of unknowns.

(a) (b)
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Figure (4): Gradient distributions (a) Sharp (un-blurred) and blurry
gradient distribution. (b) Parametric model of mixture of
Gaussians versus the sharp gradient distribution.

Krishnan et al. [2] used the same concept of using MAPh approach to build their own
model. They replaced the image Gaussian gradient priors with hyper-Laplacian image
priors. They used this prior to achieve kernel estimation to be as an input of any
restoration algorithm to gain the latent image [2].

4 Restoration Methods:

After showing how the kernel of the blur is computed. Hence, it will be needed to
estimate the original image f with the help of the known terms, the blurred image g and
the blur kernel h.

 A number of methods can be used for removing the blur from the recorded (blurred)
image g using the computed kernel:

- Iterative Least Squares Method.
- Iterative Constrained Least Squares Method.
- Iterative L2 Norm method.
- Iterative Total Variation Method.

The simplest form of an iterative restoration process will take the form as [11]:

                        (3)

Where β controls the convergence as well as the rate of convergence of the iteration and
0< β<2.

(a) (b)
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Eq. (3) can be re-written in the following form:

    (4)

4.1 Least Squares method:

One of the most famous basic filters used for de-blurring degraded images due to
motion is the inverse filter. This filter suffers of the instability because it is
unsuccessful when dealing with noise. This instability came from the sensitivity of the
inverse filter to overcome the presence of noise in the degraded image. A number of
restoration filters have been developed; these are collectively called least-squares filters.

According to the least squares approach, a solution to eq. (1) can be derived by
minimizing . To get that minimal, it is necessary to have the gradient of

 with respect to f is equal to zero as follows [12]:

                           (5)

 As a conclusion of both eq. (4), (5) then the iterative least square will take the
following form [11]:

                        (6)

4.2 Constrained Least Squares Method:

The method of 'constrained least-square' can be defined as the optimization of some
criterion of goodness or quality of image subject to the constraint that residual norm
between the image and the re-degraded estimated image be equal to the norm of the
noise vector[13].

The image restoration problem is an ill-posed problem, which means that matrix h is ill
conditioned. A regularization method replaces an ill-posed problem by a well-posed
problem, whose solution is an acceptable approximation to the solution of the ill-posed
problem [14]. Most regularization approaches transform the original inverse problem
into a constrained optimization problem. That means, a functional has to be optimized
with respect to the original image, and possibly other parameters.

By using the necessary condition for optimality, the gradient of the functional with
respect to the original image is set equal to zero, therefore determining the mathematical
form of Φ(f). The successive approximations iteration becomes in this case a gradient
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method with a fixed step (determined by time step ΔT) [11].

By means of minimizing the term , a restored image is supposed to be gained [13].

Operator C is used to constrain the high frequency energy of the restored image. This
leads to the restored image to be smooth.

On the other hand, the fidelity of the data is constrained with the following inequality:

              (7)

Then, the condition for a minimum is that the gradient is equal to zero, and in this case
will take the form:

                     (8)

Where 0.01< α < 1.

Application of iteration in eq. (13) then the iterative least square will take the following
form [11]:

    (9)

4.3 L2 Norm Regularization Method:

It is also known as Euclidean norm. The Euclidean norm of a complex number is the
absolute value (also called the modulus) of it. The L2 norm has the property that it is
continuously differentiable and is minimized by traditional linear optimization
techniques, but it sacrifices the quality of the resulting image. This is due to the fact that
it leads to non-directional regularizer that smooths the images blindly regardless of the
existing edges [15].

The following equation explains how L2 norm is used in order to estimate the latent
image:

         (10)

This equation can be re-written as follows:

        (11)
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4.4: Total Variation Regularization Method:

Total variation regularization is a non-quadratic measure that achieved popularity in
recent years. Regularization is allowing the inclusion of prior knowledge to stabilize
the solution in the presence of degradation sources -such as noise- and identifying
physically meaningful and reasonable estimates [16]. The total-variation norm is a
measure of the sum of the lengths of all the level lines in the image defined for discrete
finite number of levels [15].

A regularization method is defined as an inversion method. This method depends on a
single real parameter α ≥ 0. It leads to a family of approximates solutions  with two
properties.

The first property is, for large enough α, the regularized solution is stable in the
face of disturbances or noise in the data.
The second property is, as α goes to zero the un-regularized generalized solution is
recovered:  as .

The parameter α is called the “regularization parameter” and it controls the tradeoff
between solution stability (i.e., noise propagation) and nearness of the regularized
solution f(α) to the un-regularized solution (i.e., approximation error in the absence
of noise). Since the generalized solution represents the highest possible fidelity to the
data, another way of viewing the role of α is in controlling the tradeoff between the
impact of data and the impact of prior knowledge on the solution [12].

Let's consider this family of estimates that can be obtained as the solution of the
following generalized equation:

           (12)

Where  J2 can be calculated from the following formulation:

              (13)

Combining eq. (12) and eq. (13) leads to a formulation of the total variation estimate:

              (14)
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This formulation can be re-written in a computational form as follows:

     (15)

5: Non-Blind Image Restoration: related work (past, present and future)

In kernel estimation, several participations were produced. Tanaka et al. [8] produced
the Sinc function algorithm to compute the needed parameters (angle θ, distance l) for
computing the kernel. Beimond et al. [10] and Krahmer et al. [9] used the Cepstrum of
the blurred image to compute the angle of motion blur and the displacement.

Some researchers [2][6][7][17] found that by using the blurred image, and some prior
information, the kernel can be estimated more accurately compared with the blind de-
convolution techniques.
Shan et al. [17] introduced an approach for achieving a de-blurred image using a unified
probabilistic model for estimating both blur kernel and the desired un-blurred image
using blind restoration. They built a probabilistic model using MAPf,h. In this
approach, a pair of latent image f and kernel h is used to maximize the posterior
probability given the observed blurred image g. The goal is to infer both f and h given a
single input g [7]. The maximization of the posterior probability can be gained from the
following formula shown in eq.(16):

 (16)

The resulted de-blurred images were more accurate compared to parameter estimation
techniques and some blind restoration techniques [17] but were not sufficient.
Levin et al. [7] proved that Shan's model like other blind restoration techniques using
MAPf,h led to a deadlock as MAPf,h estimation encounters some limitations that lead to
failure in estimating the latent image and the blurring kernel. The probability of the
blurred image plus delta/identity kernel pair is higher than the probability of the sharp
image with the correct kernel [2] as given in eq.(17).

 (17)

Where  is a delta or identity (unit sample) kernel.

That means, if it is given an arbitrary large image f sampled exactly from a sparse prior
and a blurred version g, then the explanation in which we set the image as the observed
blurred image g and the kernel h as delta, is more probable than the correct explanation



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE135 - 12

with the true sharp image f and true kernel h. It means that the MAPf,h approach will
always fail [7].

Levin et al. [7] reached that The failure of MAPf,h can be explained by the following
reasons. First, the lack of measurements that are needed to estimate both kernel and the
latent\de-blurred image leads to the inability to estimate the huge numbers of unknowns
[18][19]. MAPf,h depends on the blurred image with the known of its size to estimate the
unknowns of the latent image's size plus the unknowns of the kernel's size. Second,
even with presence of a perfectly correct prior –which is not applicable– the MAPf,h fails
to produce a successful estimate of both kernel and latent image. Another effective
reason for MAPf,h's failure is the choice of the estimator. With the lack of the
measurements and the favorability of the blur contents, a perfect estimator is needed in
order to reduce the disadvantages' effects of the MAPf,h.

In order to overcome that deadlock, Levin et al. [7] proposed that it will be sufficient to
use MAPh instead of MAPf,h and that leads to way back to non-blind restoration by
separating the restoration process into two stages instead of one combined iterative
stage as it is in blind restoration.
Therefore, in eq. (18), Krishnan et al. [2] and Levin et al. [7] proposed that the image
gradients can be used as the prior information for estimating the kernel for
regularization. Then, the resulted estimated kernel can be used in the second stage to de-
blur the degraded image with a non-blind restoration technique.

         (18)

Eq. (18) shows that there will be a lot of information depending on the size of the
degraded image g to estimate -the much lesser in size- the kernel h. This will overcome
a major obstacle meets MAPf,h in estimating kernel.

6: Discussions and Experimental Work:

In this section, we will discuss experimental work performed to compare between
several image restoration algorithms to estimate the latent image by means of different
kernel estimation approaches.
The kernel estimation approaches are parameter estimation approach (Sinc function and
Cepstral methods) and MAP estimation approach (Fergus and Krishnan estimation
techniques).
The image restoration algorithms used to estimate the latent image are those algorithms
discussed in section (4) (Least squares LS, Constrained Least Squares CLS, L2 Norm,
Total Variation TV) and added to them the famous Lucy-Richardson L-R.
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 Two types of images were used in these experiments. Those types can be classified into
images suffering synthetic blur and images suffering real blur.
Several measuring merits were used compute the efficiency of the image restoration
algorithms when used with different kernel estimation approaches in different cases of
linear motion blurs. Those measuring merits are Peak Signal-to-Noise Ratio PSNR,
Normalized Mean Square Error NMSE, and Maximum Absolute Error. In PSNR
comparison, as the result ratio goes higher, the success of the restoration algorithm
becomes better. While in both NMSE and Maximum Absolute Error, as the result ratio
becomes lesser, the success of the restoration algorithm becomes better.

Experiment 1: Those images used in this experiment were degraded by means of
synthetic linear motion bur with angle θ=30 and displacement l=5, 10, 15, 20. Figure (5)
shows Image samples used in the experiments for kernel estimation approaches and
restoration algorithms evaluation.
The time consuming of the Sinc function was taken in consideration so that the degree
of blur were chosen as an integer degree.  Also the image samples were used with noise
free.
After analyzing the results computed using the different used restoration techniques
with the used kernel estimation methods over images degraded with synthetic blur
(table 1- figure 7), we can conclude that:

- The Total variation TV restoration technique with the Sinc function kernel
estimation methods gives better results among the different kernel estimation
techniques.

- The L2 Norm restoration technique with the Krishnan kernel estimation
method gives a good result when comparing the two MAP kernel estimation
approach's method.

- The Cepstral kernel estimation method estimates the angle θ of the linear
motion blur very close to but does not give the exact angle due to the
calculation methods. This calculation method depends on the position of the
two peaks in a matrix of 256x256 or 512x512 of the FFT of the blurred
matrix (see figure 3).

-  The Sinc function kernel estimation method is a highly timing consuming
technique specially when dealing with fractions of angles.

Experiment 2: For more accurate evaluation, extended experiments were applied for
image samples degraded with real blur. Figure (6) shows Image samples used in these
experiments.
After analyzing the results computed using the different used restoration techniques
with the used kernel estimation methods over images degraded with real blur (table 2-
figure 8), we can conclude that:
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- The parameter estimation techniques used for kernel estimation failed to
introduce an acceptable estimate for the desired kernel. These techniques
were built depending on the linearity of the kernel.

- The kernels estimated by MAP kernel estimation approaches (figure 9) show
that in real life, there is no linearity in the kernel causing blurriness due to
linear motion. This comes from the interference of other circumstances in
the real life.

- The Total Variation then L-R restoration algorithms give best results
compared with the other algorithms used in this experiment.

- The Krishnan's kernel estimation algorithm produces more successful results
compared Fergus' algorithm.

- The key of obtaining a better estimated latent image is the use of the right
estimator to be used in a MAP kernel estimation approach.

Figure (5): Image samples used in experiment (1) for kernel estimation
approaches and restoration algorithms evaluation: (a) Original
images. (b) Images degraded by synthetic blur with angle θ=30
and displacement l=20.

(a) Original images (baboon, kid, and fishing boat)

(b) Blurred image with θ=30 and l=20
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7: Conclusions and Future Work:

According to the discussions and the experimental work, we can conclude that:
-The parameter estimation techniques are not sufficient to get an estimate

for the kernel caused the blurriness. It can work with images degraded
with synthetic blur but it fails with images suffering real blur.

- Although that Total Variation restoration algorithm gives better results,
but it is noticed that all the restoration techniques produced acceptable
results. Since the number of the unknowns in the kernel is much less than
the number of known information in the degraded images, a good
estimate of the kernel would be reachable. With the help of that good
kernel estimation, a good result can be achieved using any restoration
algorithm.

-As a future work, the research of the MAPh kernel estimation approach can
be extended by producing a successful estimator to improve the output of
these approaches and compare this output by using several image
restoration techniques.

Figure (6): Real blurred image samples used in experiment (2)
for kernel estimation approaches and restoration algorithms

evaluation.
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Figure (7) Results of the kernel estimation and the restitution process for images
degraded by synthetic blur with angle θ=30 and displacement l=20.

(c) Testing results of fishing boat by Sinc function, Cepstral, Fergus
and Krishnan kernel estimation algorithms respectively.

(b)Testing results of kid by Sinc function, Cepstral, Fergus
and Krishnan kernel estimation algorithms respectively.

(a)Testing results of baboon by Sinc function, Cepstral, Fergus
and Krishnan kernel estimation algorithms respectively.
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Figure (8): Results of the kernel estimation and the restitution process for
images degraded by real blur.

Figure (9): The output of MAPh kernel estimation approach's techniques.

(a) Testing results of fountain by Fergus' and Krishnan kernel
estimation algorithm with L-R then by Total Variation

restoration algorithms respectively.

(b) Testing results of statue by Fergus' and Krishnan kernel
estimation algorithm with L-R then by Total Variation

restoration algorithms respectively.

(c) Testing results of fishes by Fergus' and Krishnan kernel
estimation algorithm with L-R then by Total Variation

restoration algorithms respectively.

(a) Kernels estimated by Fergus' algorithm for fountain,
lyndsey, and fishes respectively.

(b) Kernels estimated by Fergus' algorithm for fountain,
lyndsey, and fishes respectively.
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Table (1): PSNR testing Experimental Results for synthetic blurred samples.

Sinc Cepstral Fergus Krishnan Sinc Cepstral Fergus Krishnan Sinc Cepstral Fergus Krishnan
L. S. 25.16492 25.046 20.85242 20.81114 33.30956 33.86511 30.02822 28.29673 29.30262 29.25953 26.12637 25.01253
C.L.S. 25.32834 24.7633 21.20514 21.18311 33.69998 34.25164 30.12373 27.95094 30.14736 30.36164 26.11498 24.84737
L2 Norm 23.88298 23.7713 21.4545 22.05851 32.81922 33.08525 30.21824 30.08839 28.7458 28.76466 26.17624 26.10693
T.V. 27.97509 26.44143 20.72714 20.38016 33.60577 35.47268 29.53843 28.41357 31.00937 31.97291 25.91988 24.63174
L-R 25.09193 24.02571 20.35321 20.10209 32.23028 30.5393 28.9725 26.72897 29.37184 29.56297 25.49126 24.06318
L. S. 22.58218 22.56243 19.19213 20.34644 30.34839 30.06731 25.12148 27.11726 26.06148 25.81147 26.06191 23.49479
C.L.S. 23.31031 23.2879 19.15984 19.87355 32.81507 31.65643 24.8217 26.96222 28.54556 27.56684 28.17847 22.8154
L2 Norm 21.87831 21.87188 19.66403 20.88706 29.99995 29.85152 25.35999 28.33929 25.76288 25.62671 25.77837 24.14664
T.V. 25.26192 25.20132 18.7787 19.42641 34.39888 32.04019 24.62388 27.70258 30.1771 28.12881 29.06424 22.65528
L-R 22.62097 22.61293 18.55716 19.51639 28.11554 28.38714 24.38852 25.50227 25.38325 25.40002 25.28113 22.64558
L. S. 21.58083 21.11041 19.92083 20.16327 28.69708 28.64446 24.85292 26.73116 24.74591 24.49084 23.02145 22.83647
C.L.S. 22.00051 21.40027 20.12366 19.47965 31.42719 31.34455 24.44324 26.90772 27.11631 25.8398 23.27608 22.08166
L2 Norm 21.1306 20.94064 20.1505 20.38813 28.45419 28.40808 25.06227 27.46549 24.50451 24.3349 23.07949 23.18248
T.V. 23.62964 21.20896 19.89658 19.3845 32.55898 32.37683 24.37199 27.59749 28.41481 26.17384 23.09498 21.95361
L-R 21.40625 20.56441 19.32829 19.34739 26.34649 26.3975 23.99739 24.64367 23.67992 23.1807 21.88702 22.11079
L. S. 23.7856 23.80128 23.2722 22.40282 27.53709 27.41759 25.78189 26.19559 23.7856 23.80128 23.2722 22.40282
C.L.S. 25.77978 25.88305 23.96212 21.75289 30.28502 29.83319 24.70092 26.60698 25.77978 25.88305 23.96212 21.75289
L2 Norm 23.61628 23.62568 23.21803 22.64072 27.34762 27.26313 25.89549 26.69426 23.61628 23.62568 23.21803 22.64072
T.V. 26.97866 27.08326 24.11333 21.7123 31.06008 30.25232 24.59611 27.2588 26.97866 27.08326 24.11333 21.7123
L-R 22.71279 22.65545 21.87613 21.57437 25.36609 25.31816 24.14156 24.02416 22.71279 22.65545 21.87613 21.57437

fishingboat

Parameter est. MAP est.

baboon

Le
ng

th
=

5
Le

ng
th

=
10

Le
ng

th
=

15
Le

ng
th

=
20

kid

Parameter est. MAP est.Parameter est. MAP est.

Table (2): Experimental Results testing real-blurred images.

L. S. C.L.S. L2 Norm T.V. L-R

Fergus 2.771363 3.308195 2.739454 3.41934 3.165174Std. Dev.
Krishnan 2.827855 3.397921 2.762944 3.439504 3.636333
Fergus 6.993518 7.094207 6.958414 7.120901 7.115927

Fountain
Entropy

Krishnan 7.034619 7.146747 6.994677 7.172354 7.172404
Fergus 6.92772 6.841682 6.657381 6.967482 6.723073Std. Dev.

Krishnan 6.70691 6.574094 6.350984 6.76003 6.653942
Fergus 6.11875 6.114636 6.143836 6.086975 6.107174

Lyndsey
Entropy

Krishnan 6.149692 6.149255 6.13035 6.150782 6.139687
Fergus 5.874557 5.871465 5.889488 5.851086 6.588245Std. Dev.

Krishnan 6.012697 6.111344 5.961051 6.079441 7.239815
Fergus 7.313567 7.321651 7.29558 7.336833 7.354114

Fishes
Entropy

Krishnan 7.444771 7.500474 7.39646 7.530764 7.528223
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Nomenclatures:
f …
h …
n …
⊗ …

…
k…
β…
I…
.T…
C…
α…
ΔT…

…
J1…

J2...
…

D…
Nf...
ζ…

…

The latent image.
The blur kernel (PSF).
The added noise.
Mathematical operator denoting for the convolution process.
The circular convolution shift.
The iteration processed number.
Relaxation parameter.
Identity matrix.
The transpose of a matrix.
High pass operator.
Regularization parameter.
The time step.
The spatial gradient of f.
General distance measure between the data and the its prediction based on
the estimated f.
General regularizing penalty.
Sum of absolute value of the elements (L1 norm).
Discrete approximation to the gradient operator.
Length of vector f.
Image curvature (Laplacian derivative operator).
Delta or identity (unit sample) kernel.


