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Abstract

In this paper, a general non-linear psi-angle approach is presented that does not require coarse
alignment. In the psi-angle model, The SINS error models (position, velocity and attitude angles)
with large misalignment angles are derived. This error model uses Euler angles to describe the
misalignment of platform frame to navigation frame, but the derived error models are only valid
under condition that the heading uncertainty is large and the two leveling misalignment angles
are small the three misalignment angles are assumed all large. We simulate SINS large azimuth
misalignment angle on the stationary base (fixed position and multi-position) alignment also on
the movable base (In-flight) alignment in two cases (straight level flight and turn level
maneuver) based on the trajectory generator data. All these simulations are done using different
Kalman filter techniques (nonlinear discrete equations, Standard extended Kalman filter EKF,
and iterative filtering IKF) to solve the non-linear system problems.

Introduction

The alignment of a strap down inertial navigation system (SDINS) determines the transformation
matrix between body frame and navigation frame in the local-level frame. The stationary initial
alignment, which consists of a coarse alignment and a fine alignment, is usually performed when
a vehicle is at rest. In this case, if low-grade sensors are used for cost reduction, it is virtually
impossible to detect small attitude errors because its accuracy heavy depends on inertial sensors
employed in alignments. For some applications, the coarse alignment is only performed or the
initial attitude is directly obtained from other sources such as a stored attitude or a master inertial
navigation system (INS) in order to reduce the initial alignment time. In cases mentioned above,
the initial attitude errors may be very large. Large attitude errors do not guarantee the accuracy
and reliability of a system after beginning a navigation mode. INS error propagation models for
gimbal (GINS) and strap down inertial navigation units have been subject of significant research
during the past few years [7], [5], [9], [4], [8], [6]. Two main approaches are used to derive these
equations: psi-angle approach and perturbation approach [6], [9], and [7]. The INS alignment and
calibration tasks are usually based on these models. In previous works the initial orientation
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errors are assumed to be small, i.e. less than 5 degrees. The system can then be approximated
with linear models due to the small angle assumption. To satisfy these requirements good quality
gyros and external tilt and heading information has to be used. So far, few works attempted to
model large angle errors to consider, for example, large heading uncertainty of IMU orientation.
In [11] and [12] an approximate extended psi-angle model with large heading misalignment is
presented. It uses four states to describe the three-psi-angles. The model extension is very
involved, and to the best of the author knowledge it has not been used in any practical
application. Ref [10], introduced a Kalman filter mechanization for INS air start system. This
approach uses two non-linear states to describe one heading angle. It still requires coarse ground
alignment information within few degrees to estimate the wander angle. Ref [13] presents an INS
error model considering large heading uncertainty and small tilt misalignment errors using a
perturbation approach.

Non-linear Error Model for SINS

As we mentioned before, the objective of alignment process for a strap down is to determine the

direction cosine matrix n
bC which define the relationship between the inertial sensor axes and

local geographic frame [5]. The measurements provided by the inertial sensors in bode axes may
be resolved into the local geographic frame using the current best estimated of the body attitude
w.r.t. this frame. The resolved sensor measurements are then compared with the expected turn
rate and accelerations to enable the direction cosine to be calculated correctly. In the other word
SINS uses mathematical platform rather than physical one (the mathematical platform is

determined by n
bC ) we get the attitude error equations by disturbance of nominal equation, but

for GINS we get the attitude error equations by using the actual error angles. Let, the
misalignment angle  between platform frame and navigation frame is defined as:

[ ]Tzyx  = and Ψ is the skew symmetric matrix of psi-angle.
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1) Velocity error model

The SINS true velocity error in navigation frame given by:
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Where, n
b

bf C,  is the specific force in body frame and transformation matrix from body frame to

navigation frame respectively. The SINS solves the following velocity c
cV in the computational

frame:
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Where , p
b

n
b CĈ = .

nc gg ,  is the gravity vector resolved in the computational frame and navigation frame

respectively, c
cV  is the velocity vector resolved in the c-frame and can be calculated as:

VVV += n
t

c
c

bf̂  is the estimated specific force in body frame that can be written as.
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Where, b∇ is the specific force error due to accelerometer bias in (b-frame). And
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Subtract Equ. (2) from Equ. (3) yields the SINS velocity error equation:
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The above equation as a function of estimated specific force bf̂  could be written as:
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)2(CˆĈ)C(
(5)

Let pn
p

bpbn
b ff ∇=∇= CC,ˆˆĈ n

b and when the attitude error is small then, the transformation

matrix p
nC can be expresses as:

[ ]×Φ−= Ip
nC (6)
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when the attitude error is small, as we know from Equ. (6) the small disturbance equations can
be written as follows:
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2) Attitude Error Model
The psi-angle model for small angle errors was presented before in [1] and [2]. This paper
presents a new psi- angle model that can be used with large angle errors.
The true transformation matrix n

bC can be written as:

[ ] [ ] n
b

n
in

b
ib

n
b

n
b CCC ×−×=    (8)

Where, [ ]×b
ib  is the skew symmetric matrix and b

ib  is the computed angular velocity of body

w.r.t. inertial frame.

The matrix p
bC  is obtained using measured gyro rates b

ib̂  provided by the IMU:
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Where, p
bC  is the transformation matrix from body to platform frame (or written as n

bĈ );
n
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n
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in
n
in  ,  is the true angular velocity and angular velocity error of

navigation frame w.r.t. inertial frame. b
ib̂  Contains gyros drift errors b

ib  that can be large,

especially when working with low cost IMU:
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C∆  can be derived from Equ. (9,10):
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C∆  can also obtained from n
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From Equ. (11,12), we get:
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Right multiply b
pC  to the above equation yield:
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It can proved that
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Replacing [ ]×= p
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n
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nC to Equ. (16):
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The three components of the Euler angle is not orthogonal so that, the relation between and
p
np can be written as [7]:
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Using Equ. (1) yields:
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In alignment, if we consider  is small and if the horizontal misalignment tilt angle yx  ,  is

also small then, the angular velocity of platform w.r.t. navigation frame will be as:
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When the horizontal misalignment angle yx  , is small as we know from Equ. (23) the SINS

attitude error equation can be written as:
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Then, Equ. (24) is the general psi-angle error model that can be used for small or large angle
errors for SINS. When the three misalignment angles are small, then the attitude error model
using Euler angle can be simplified to Φ angle as:
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Stationary Base Alignment Mode

In the stationary alignment we usually suppose that the position is known and fixed. So, the
values of velocity vector n

tV  and angular velocity vector n
en equal zero. Then Equ. (7,24) can be

written as:
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The value of angular velocity of the earth and the specific forces in navigation frame can be
written as:

[ ]Tn
ie  sincos0 ΩΩ=Ω  (28)

=nf [ ]Tg00  (29)
Substituting Equ. (28,29) into Equ. (26,27) then the platform  error model on the stationary base
can be written as:
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In-Flight Alignment Mode

In-flight alignment we usually get the INS velocity error equation from the acceleration
measurement pf̂ then, from Equ. (5) we get:
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p )2()2(CˆĈ)C( gVVfIV bb  +×+Ω−×+Ω−∇+−=

The error model in-flight augmented with sensor errors can be written as:
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A local level ENU (East-North-Up) frame is used as the navigation frame, vertical channel
included. The state vectors consists of:
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The linear part coefficient matrix )(tA is the system dynamic matrix defined as [9]:

( )tx,q  is the nonlinear part and can be computed as:
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System Jacobian matrix can be computed as:
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Filtering Mechanization
In this section we simulate SINS large azimuth misalignment angle on the stationary base, in-
flight alignment and multi-position alignment by using nonlinear discretization, Extended KF
and iterative filtering.

Nonlinear discretization

To be convenient, we write the nonlinear system states equation as:

)w(),()( ttt += xfx  (36)

Where ),( txf is the nonlinear function, )w( t is the process noise. The variant matrix:

[ ])(w)w()Q( ttt TE=

Let t∆  is the sampling time, and the solution of the scalar differential equation using Taylor

expansion of ( )Δtt +x :
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Let ( )Δtt),t( 1k +== + xxxxk , ignore 2nd order derivative term, the discretization equation can

be written as:
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Where

( ) ( )
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xf
xD k xx
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kw is the discretization process noise, and variant matrix [ ]T
kkKQ wwE=

( ) t.t ∆= QQk    (39)

We use the two horizontal velocity error measurements, and then the measurement equation can
be written as:
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kkkk vxH +=z    (40)

Where kv  is the measurement noise and measurement matrix can be written as:

[ ]8222 0 ××= IH (41)

Extended Kalman Filter (EKF)
To use extended Kalman Filter we must linearize the nonlinear equation because the
measurement equation is linear [2]. So, we only need linearized system equation. Let Equ.(38)
rewrite as:
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Iterative filtering (IKF)
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The transition matrix with one step can be written as:
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Computer Simulation
To be convenient to compare with result using small disturbance equation we use computation to
evaluate the alignment accuracy. The initial attitude angles are chosen equal zero. The constant
and random biases of each accelerometer are chosen as g100 and g5 respectively, and the

constant and random drifts of each gyro are chosen as h/02.0 0 and h/. 0010 respectively. The

measuring error of velocity is m/s1.0 and the system measured noise smV /01.= .  The local

latitude of SINS place is 030  The sampling time chosen as msec50 .

Stationary alignment simulation

The initial pitch and roll angle errors chosen as 01 , yaw error equal 020 , we used nonlinear error
equation and small disturbance equation separately, alignment time equal sec300 . We used
nonlinear model and EKF, then the estimated error of the horizontal error angle and azimuth
error angle are shown in Fig (1), and Fig (2) shown the estimated accelerometer biases and gyro
drift. Table (1) shown the effect of the variation of initial large azimuth misalignment angle on
the static attitude error by using the EKF, IKF, and linearized Kalman filter (LKF).

Initial Azimuth [deg] Est. Error angle [sec] EKF IKF LKF

∆ -254.2412 -244.0982 215.1588

∆ -21.2108 -21.3302 -255.010510

∆ 15.7242 15.7585 150.8116

∆ -223.7322 -210.7751 1420.700

∆ -23.0430 -23.1915 -394.90015

∆ 14.6770 14.6699 138.300

∆ -191.1677 -176.0421 366.150

∆ -24.7919 -24.9570 -559.70020

∆ 13.2539 13.1829 66.600

Table (1) Effect of the variation of initial large azimuth misalignment
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Fig (1) Estimated Attitude error angles                    Fig (2) Estimated sensor bias and drift

In-flight alignment Simulation

From the From the trajectory data, under the assumption firstly, the missile flight is linear and

secondly, with horizontal level maneuver with max heading variation chosen as 030 . The missile

constant velocity m/s400 , flight direction angle chosen as o60 , and the local latitude of SINS

place is 030 .  The initial pitch, roll angle errors chosen as 01 , and heading error chosen as 010 .
The total time of alignment equal sec600 . We used nonlinear error equation and small
disturbance equation for in-flight alignment. Table (2) shown the static values of attitude error
angles by using the different model of Kalman filters (EKF, IKF and LKF) in the case of linear
flight and with turn maneuver.

 Fig (3) shows the estimated errors of the horizontal error angle and azimuth error angle in the
case of linear flight path. Fig (4) shows the estimated errors of the horizontal error angle and
azimuth error angle in the turn maneuver. Fig (5,6) shows the static values of attitude error
angles in the linear flight and with level maneuver using EKF respectively.

In-flight Cases Attitude error [sec] EKF IKF LKF

∆ -185.319 -140.9032 374.336

∆ -22.8078 -23.8795 -52.2318

Linear  Flight

∆ 15.2366 15.0149 230.385

∆ -0.0633 -0.6133 2164.6

∆ -0.1736 -0.2888 501.400

Turn Maneuver

∆ -0.0040 -0.1224 241.700

Table (2) Static Attitude Error Angle
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Fig (6,7) Estimated yaw and pitch error angles with Linear-flight

Fig (3) Estimated horizontal and azimuth error angle with linear flight

Fig (4,5) Estimated yaw and pitch error angles in turn maneuver

Conclusion
This paper presents a general nonlinear psi angles model that does not require coarse alignment.
In this model, the azimuth misalignment angle is assumed large. The velocity error model is also
presented. In this paper some SDINS error model which can be used to design an alignment
filter. Three different Kalman filter are designed based on the SINS nonlinear error model. The
model presents was validated with a set of experimental results of stationary alignment and In-
flight alignment using kinematics trajectory data to estimate all the parameters of inertial
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navigation system needed for the alignment and calibration. These results are helpful in design of
stationary alignment process to improve the performance of the INS alignment during In-flight
mode.
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