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1. Introduction

Weighted distributions are used in many researches related to reliability analysis of family data,
biomedicine and ecology. They provide us way to deal with model specification and data interpreta-
tion problem. This distribution was first introduced by Fisher [1]. He studied an effect of ascertain-
ment methods on the form of the distribution for recorded observations and then Rao [2] introduced
it in general form for modeling statistical data when the usual using of standard distributions were
unsuitable. Patil and Rao [3] proposed statistical applications on weighted distribution and studied
length biased (size biased) sampling related to human families and wildlife populations with applica-
tions. The weighted distribution is referred to length-biased distribution when the weight function is
the length of the units, size biased distribution as generalization of length biased-sampling and dou-
bly weighted distribution when using two weight functions. There are many researches have been
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discussed many researches on weighted distributions with application included important results on
weighted distributions. Gupta and Kundu [4] introduced shape parameter to exponential distribution
depends on Azzalini’s method [5]. Saghir et al. [6] developed length–biased weighted exponenti-
ated inverted Weibull distribution (LBWEIWD) and applied maximum likelihood estimation (MLE)
method in estimation Alqallaf et al. [7] applied various methods of estimation for two parameters
weighted exponential distribution (TPWED) which introduced by Gupta and Kundu [4]. Oguntunde
[8] presented the exponentiated weighted exponential distribution (EWED) and discussed its statistical
properties. Helal et al. [9] discussed statistical properties of weighted Shanker distribution. MLE
and method of moments (MOM) were used for estimating the parameters of the model. Nasiru [10]
presented another weighted Weibull distribution (WWD) based on Azzalini’s [5] family with statistical
properties and MLE was used in parameters estimation. Sobhi and Mashail [11] discussed moments
of dual generalized order statistics and characterization for transmuted exponential mode. Rezzoky
and Nadhel [12] proposed a weighted generalized exponential distribution (WGED).They estimated its
scale parameter by using MOM and MLE.

Oguntunde et al. [13] presented a two parameter inverted weighted exponential distribution, dis-
cussed its statistical properties and estimated its unknown parameters Ocloo et al. [14] discussed exten-
sion of the Burr XII distribution with its applications and regression model. Almutiry [15] introduced
inverted length-biased exponential distribution with statistical properties. The maximum likelihood
strategy used to estimate the model parameters in the case of complete and Type II censored samples.
Abubakari et al. [16] introduced Chen Burr-Hatke exponential distribution with its properties, regres-
sions and biomedical applications. Haj Ahmad et al. [17] discussed statistical analysis of alpha power
inverse Weibull distribution under hybrid censored scheme with applications to ball bearings technol-
ogy and biomedical data. Almetwally [18] discussed Type I and Type II censoring under Marshall
olkin alpha power extended Weibull distribution.

Ilori and Jolayemi [19] introduced weighted exponentiated inverted exponential distribution
(WEIED) with statistical properties and estimation parameters by MLE. The probability density func-
tion (pdf) of WEIED is given by:

fw(x) =
(αλ)(1+β)

Γ (1 + β)
x−(2+β)e

−αλ
x ; x > 0, α, β, λ > 0, (1.1)

where α,λare scale parameters and β is the shape parameter.
The associated cumulative density function (cdf) is shown as below:

Fw(x) =
Γ
(
1 + β, αλx

)
Γ (1 + β)

; x > 0, α, β, λ > 0, (1.2)

where Γ (β, t) is the upper incomplete gamma function and it is defined asΓ (β, t)=
∫ ∞

t
tβ−1e−t dt.

The corresponding survival function is:

s(x) = 1 −
Γ
(
1 + β, αλx

)
Γ (1 + β)

; x > 0. (1.3)

The corresponding hazard function is given by:

h (x) =
(αλ)(1+β) x−(2+β)e

−αλ
x

Γ (1 + β) − Γ
(
1 + β, αλx

) , x > 0 , α > 0, β > 0.. (1.4)
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Possible plots for the pdf and the hazard function at various parameters values are as shown in Figure
1.

Figure 1. pdf plot (left) and Hazard plot (right) of the weighted exponentiated inverted
exponential distribution

From Figure 1, the pdf and hazard rate function of WEIED is right skewed and decreasing at varied
values of parameters.

The objective of this paper is to introduce the length-biased weighted exponentiated inverted ex-
ponential distribution (LBWEIED) to gain more flexibility for fitting life time data and estimate the
unknown parameters by using MLE under complete and censored sample data. The asymptotic con-
fidence intervals of unknown parameters are obtained. Simulation study is performed to examine the
behavior of provided estimates. Finding variance-covariance matrix. Calculating confidence intervals
of simulated estimates. Applying real data set to illustrate the applicability of the new distribution and
compare LBWEIED with another competitive distributions.

The paper is organized as follows: in section 2 the LBWEIED is introduced with sub models.
Some statistical properties in section 3. Section 4 presents methods of estimation. Section 5 provides
a numerical illustration. An application of two real data sets in section 6. Section 7 introduces the
conclusion.

2. The Length-Biased Weighted Exponentiated Inverted Exponential Distribution

In this section, we introduce the length biased version of WEIED based on the definition of the pdf
of the weighted random variable X as follows:

fw(x) =
w (x) f (x)
µ (w)

, µ(w) < ∞, (2.1)

where w (x) is a non-negative weight function and µ (w) = E [W (X)] <∞.
The LBWEIED is obtained by using the pdf of WEIED, then µ (w) is derived as bellows:

µ (w) =
∫ ∞

0
w(x) f (x) dx

=
(αλ)(1+β)

Γ (1 + β)

∫ ∞

0
x−(1+β)e

−αλ
x dx,

let t = αλ
x , x =

αλ
t , dx = −αλt2 dt
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µ (w) = (αλ)
∫ ∞

0
tβ−1e−t dt

=
(αλ)Γ (β)
Γ (1 + β)

.

(2.2)

The pdf of LBWEIED is obtained by inserting (2.2) and (1.1) in (2.1) as follows:

fw (x) =
(αλ)β

Γ (β)
x−(1+β)e

−αλ
x ; x > 0, α, β, λ > 0, (2.3)

where α,λ are scale parameters and β is the shape parameter.
The associated cdf is derived as:

Fw(x) =
(αλ)β

Γ (β)

∫ x

0
x−(1+β)e

−αλ
x dx

let t = αλ
x , x =

αλ
t , dx = −αλt2 dt. Then, Fw(x) can be written as

Fw(x) =
(αλ)β

Γ (β)

∫ ∞

αλ
x

(
αλ

t

)−(1+β)

e−t
(
αλ

t2

)
dt

=
1
Γ (β)

∫ ∞

αλ
x

tβ−1e−tdt

=
Γ
(
β, αλx

)
Γ (β)

,

(2.4)

where Γ(., t) is the upper incomplete gamma function.

Figure 2. pdf (left) and cdf (right) plot of the length-biased weighted exponentiated inverted
exponential distribution

Possible plots for the pdf and cdf of the LBWEIED at various parameter values are as shown in
Figure 2. From Figure 2, the pdf of LBWEIED is right skewed and decreasing rate at the corresponding
various values of parameters.
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2.1. Some special cases

Case 1: Putting β=1 in Equation (2.3), gives two parameter exponentiated inverted exponential
distribution (TPEIED), see (Fatima & Ahmed [21]) with the following pdf:

f (x) =
αλ

x2

(
e
−λ
x
)α

; x > 0, α, λ > 0.

Case 2: Putting β = 1,α = 1, λ = 1
λ
, the inverse exponential distribution (IED) is produced, (see

Lin et al. [22]) with the following pdf:

f (x) = λ−1x−2 exp
{
(λx)−1

}
; x > 0, α, λ > 0.

Case 3: Putting β = 2,α = 1, the inverted length– biased exponential distribution (ILBED), (see
Almutiry [15]) with the following pdf:

f (x) =
λ2

x3

(
e
−λ
x
)

; x > 0, λ > 0.

2.2. Reliability analysis

Survival function corresponding to (2.4) is:

S (x) = 1 − F (x)

= 1 −
Γ
(
β, αλx

)
Γ (β)

x > 0 , α > 0, β > 0.
(2.5)

The corresponding hazard function is given by:

h (x) =
(αλ)β x−(1+β)e

−αλ
x

Γ (β) − Γ
(
β, αλx

) , x > 0, α > 0, β > 0 . (2.6)

Plots for the pdf and hazard rate function of the LBWEIED at various parameter values are as shown
in Figure 3.

Figure 3. hazard plot (left) and survival plot (right) plot of the length-biased weighted expo-
nentiated inverted exponential distribution

Figure 3 shows that the hazard rate function of LBWEIED is positively skewed and unimodal (in-
verted bathtub) and decreasing shapes. This implies that the LBWEIED can be used to describe or
model real life phenomena with unimodal or decreasing failure rates.

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 181–196



186

3. Some Statistical properties

In this section, some basic statistical properties are derived and obtained such as moments, mean,
variance, moment generating function, quantile function, median, mode, characteristic function and
order statistic distribution.

3.1. Quantile Function and Median for LBWEIED

Let Q (u) denoted to the quantile function for LBWEIED, where 0< u <1. Then Q (u) = F−1(u).
Since Fw(x) for LBWEIED involves in complete gamma function in Equation (2.2), the quantile

function can be obtained by numerical method only. For calculating median, let xois the median and
substitute in Equation (2.2) then solve equation numerically by equating it to 0.5.

Fw(xo) =
γ
(
β, αλxo

)
Γ (β)

= 0.5.

3.2. Moments and Moment Generating Function

If X follows LBWEIED with pdf in Equation (2.3), the rth non central moment is given by:

µ
′

r =
(αλ)r Γ (β − r)
Γ (β)

, β > r. (3.1)

To obtain (3.1), we employ the following:

µ
′

r =

∫ ∞

0
xr f (x) dx

=
(αλ)β

Γ (β)

∫ ∞

0
x−(1−r+β)e

−αλ
x dx.

Let t = αλ
x , x =

αλ
t , dx = −αλt2 dt. Then by substituting it in previous equation

µ
′

r =
(αλ)r

Γ (β)

∫ ∞

0
t−(1+r−β)e−t dt

=
(αλ)r Γ (β − r)
Γ (β)

, β > r.

From the rth non central moment, then the mean and variance, respectively are µ
′

1, µ
′

2 as follows:
Putting r = 1,µ

′

1=
(αλ)Γ(β−1)
Γ(β) ,β > 1.

σ2 = µ
′

2 −
(
µ
′

1

)2
=

(αλ)2 Γ (β − 2)
Γ (β)

−
(αλ)2 Γ2 (β − 1)
Γ2 (β)

=
(αλ)2

(
Γ (β)Γ (β − 2) − Γ2 (β − 1)

)
Γ2 (β)

.

Furthermore, the moment generating function Mx (t) for LBWEIED is given as following:
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Mx (t) =
∞∑

r=0

[
tr

r!
(αλ)r Γ (β − r)
Γ (β)

]
, (3.2)

where Mx (t) = E
(
ext) = ∫ ∞

0
ext f (x) dx.

To get (3.2), using Taylor series as follows

Mx (t) =
∫ ∞

0

(
1 +

tx
1!
+

t2x2

2!
+

t3x3

3!
+ ... +

tr xr

r!

)
f (x) dx.

=

∞∑
r=0

[
trE (Xr)

r!

]
=

∞∑
r=0

[
tr

r!
E (Xr)

]
.

Insert Equation (3.1), then the resultant is given by: Mx (t) =
∑∞

r=0

[
tr
r!

(αλ)rΓ(β−r)
Γ(β)

]
.

3.3. The Mode

Based on the pdf for LBWEIED in Equation (2.3), the mode can be calculated by taking the loga-
rithm of fw (x) and obtain the first derivative with respect to zero, then solving to obtain xo.

The mode can be derived as follows:

log
[
fw (x)

]
= β log (α) + β log (λ) − logΓ (β) − log (x) − β log (x) −

αλ

x
.

Then the first derivative respect to x is given as

∂

∂x
log

[
fw (x)

]
=

1
x

(
−1 − β +

αλ

x

)
= 0 .

Therefore
(
−1 − β + αλ

x

)
= 0 . Then the mode of LBEIED is as follows

xo =
αλ

1 + β
. (3.3)

3.4. Charachteristic function of LBWEIED

Let X ∼ LBWEIED (α, β, λ), the characteristic function φx (t) can be derived as follows:

φx (t) = E
(
eitx

)
=

∫ ∞

0
eitx f (x) dx

Using Taylor series

φx (t) =
∞∑

r=0

[
(it)r E (Xr)

r!

]
=

∞∑
r=0

[
(it)r

r!
E (Xr)

]
. (3.4)

Insert Equation (3.1), the resultant is given by:

φx (t) =
∞∑

r=0

[
(it)r

r!
(αλ)r Γ (β − r)
Γ (β)

]
. (3.5)
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3.5. Order Statistic

The pdf of kth order statistics for a random sample of size n from LBWEIED is shown as:

fk:n (x) =
n!

(k − 1) ! (n − k) !
(αλ)(β)

Γ (β)
x−(1+β)e

−αλ
x

Γ
(
β, αλx

)
Γ (β)


k−1 1 − Γ

(
β, αλx

)
Γ (β)


n−k

.

In particular, the distribution of minimum and maximum order statistics is given by:

f1:n (x) = n
(αλ)(β)

Γ (β)
x−(1+β)e

−αλ
x

1 − Γ
(
β, αλx

)
Γ (β)


n−1

, (3.6)

and

fn:n (x) = n
(αλ)(β)

Γ (β)
x−(1+β)e

−αλ
x

Γ
(
β, αλx

)
Γ (β)


n−1

. (3.7)

4. Methods of Estimations

This section gives maximum likelihood and moment estimators for the parameters α, β and λ of the
LBWEIED under complete sample. Furthermore, the parameters estimators for the LBWEIED are
discussed under Type I censored sample.

4.1. Method of Moments

To obtain the moment estimators of the unknown parameters. We equal the three theoretical mo-
ments with the sample moments, where the sampling moments are given by:

1
n

n∑
i=1

xi,
1
n

n∑
i=1

x2
i ,

1
n

n∑
i=1

x3
i .

Hence by equating the theoretical with sampling. We have the following:

1
n

n∑
i=1

xi =
(αλ)Γ (β − 1)
Γ (β)

, (4.1)

1
n

n∑
i=1

x2
i =

(αλ)2 Γ (β − 2)
Γ (β)

, (4.2)

1
n

n∑
i=1

x3
i =

(αλ)3 Γ (β − 3)
Γ (β)

. (4.3)

By solving three equations with the system (4.1), (4.2), and (4.3), the moment’s estimates of
α, β and λ can be obtained.
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4.2. Parameters Estimation of LBWEIED using MLE

Let X = (x1, x2, ..., xn) is a random sample of size n from LBWEIED. From Equation (2.1). The
likelihood function is given by:

L(x, α, β, λ) =
(
(αλ)β

Γ (β)

)n
n
Π
i=1

x−(1+β)
i e

∑n
i=1
−αλ

xi . (4.4)

Let log-likelihood function be denoted by L. So, its log likelihood function is obtained as:

l = nβ ln (α) + nβ ln (λ) − n lnΓ (β) − (1 + β)
n∑

i=1

ln (xi) −
n∑

i=1

αλ

xi
. (4.5)

Taking the partial derivatives of Equation (4.5) with respect to α,βand λ then equating it by zero.

∂L
∂α
=

n (β)
α
−

n∑
i=1

λ

xi
= 0, (4.6)

∂L
∂β
= n lnα + n ln λ − nψ (β) −

n∑
i=1

ln xi = 0, (4.7)

∂L
∂λ
=

n (β)
λ
−

n∑
i=1

α

xi
= 0. (4.8)

As seen Equations (4.6)-(4.8), have no explicit numerical solution, so numerical technique must be
applied to get the solution after setting them with zero. To get the approximate confidence intervals,
we must obtain the second partial derivative of all parameter as below

∂2L
∂α2 β=β̂,α=α̂ = −

n (β)
α2 ,

∂2L
∂α∂β

α=α̂ =
∂2L
∂β∂α

=
n
α
,

∂2L
∂α∂λ

=
∂2L
∂λ∂α

= −

n∑
i

1
xi
,

∂2L
∂β2 β=β̂ = −nψ (1, β) ,

∂2L
∂β∂λ λ=λ̂ =

∂2L
∂λ∂β

=
n
λ
,

∂2L
∂λ2

β=β̂,λ=λ̂
= −

n (β)
λ2 .

It has to be solved numerically, the above approach is used to derive the approximate 100(1 − τ)%
confidence intervals of the parameters α, β and λ as in the following forms: α̂ ± Z τ

2

√
var(α̂) , β̂ ±

Z τ
2

√
var(β̂) and λ̂± Z τ

2

√
var(λ̂), where τ

2 is the upper the percentile of the standard normal distribution.

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 2, 181–196



190

4.3. Estimation Parameters of LBWEIED under Censored Type I

Let X = (x1 < x2 < ... < xn) is a random sample of size n from LBWEIED, then x(i)is the failure
items and k is the number of failures at predetermined time (T), where n and T are fixed. The likelihood
function under censored Type I is defined by:

L(x, α, β, λ)= C
k
Π
i=1

f
(
xi,θ

)
[1 − F (T, θ)]n−k , (4.9)

where C is n!
(n−k)!

Insert Equation (2.3) and (2.5) in Equation (4.9) gives

L(x, α, β, λ) = C
(
(αλ)β

Γ (β)

)k
k
Π
i=1

x−(1+β)
i e

∑k
i=1
−αλ

xi

1 − Γ
(
β, αλT

)
Γ (β)


n−k

. (4.10)

Let log-likelihood function be denoted by L and put A =
[
1 − Γ(β,

αλ
T )

Γ(β)

]
, then it can be write as follows:

l(x, α, β, λ) = kβ ln (α) + kβ ln (λ) − k lnΓ (β) − (1 + β)
k∑

i=1

ln (xi) −
k∑

i=1

αλ

xi
+ (n − k) ln (A) . (4.11)

Therefore differentiate (4.11) with respect to the unknown parameters α, β, and λ respectively and
equating to zero. As the maximum –likelihood equations in many cases have no analytical solution
and cannot be solved in closed form. It has to be solved by using numerical optimization method.

5. A Numerical Illustration

In this section, a numerical example is applied to illustrate different maximum likelihood estimators
and their variance covariance matrix by using different sample sizes like n = 30, 60 and 100 from
LBWEIED with following sets of parameters (α, β, λ) ={(0.8,1.5,1), (0.2,1.5,1), (0.5,0.5,1)} . For
generating random numbers form LBWEIED generate n random numbers from uniform distribution
(0, 1) and equating it with the cumulative of the LBWEIED Γ(β, αλx )

Γ(β) = ui. It cannot be solved in closed
form it has to be solved by using numerical optimization method as using programming software like
Mathematica. For estimating the unknown parameters, it is iterated 10000 times, mainly the bias
(Bias) of the gained values, mean square errors (MSE) and standard deviation (SD) are calculated.
Also, confidence interval for the estimators are obtained. This simulation study results are tabulated in
Table 1.

The simulation study is applied as the following process:

1. Generating random sample by equating the cumulative of the LBWEIED Γ(β, αλx )
Γ(β) = ui; with n

random numbers from uniform distribution (0, 1).
2. Estimating unknown values for α, λ and β by using the MLE.
3. Repeating steps 1–2 10,000 times, calculating Bias of the gained values, MSE and SD by the

following formula:
Bias(θ̂) = E

(
θ̂
)
− θ.
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S D(θ̂) =
√

variance(θ̂).

MS E(θ̂) = variance(θ̂) − (bias(θ̂))2,

where θ = (α , β, λ)
4. Confidence intervals of the parameters α, β and λ as following forms: α̂ ± Z τ

2

√
var(α), β̂ ±

Z τ
2

√
var(β̂) and λ̂ ± Z τ

2

√
var(λ̂), τ2 is the upper percentile of the standard normal distribution.

From Table 1, the following points can be noticed:

1. The bias of all estimators of the parameters decrease with increasing in sample size.
2. MSE of simulated estimates is decreasing when sample size is increasing.
3. SD decreases with the increase of sample size.

6. Application to Real Data

The analysis is provided to check the goodness fit of the LBWEIED, exponentiated inverted ex-
ponential distribution (EIED) and Pareto distribution by using two real data sets. The corresponding
measures of fit statistic using log likelihood function, Kolmogorov-Smirnov (K-S) statistic with cor-
responding P-value and some criterions such as Akaike information criterion (AIC), correct Akaike
information criterion (CAIC), Basyian information criterion (BIC) and Hannan-Quinn information cri-
terion (HQIC), where sample size is denoted by n, m is the number of parameters for statistical model
and lnL(x; θ) is the value of the highest log likelihood function for considered model which can be
denoted by LL. The better distribution has less value of AIC, CAIC, BIC and HQIC than the other
competitive distributions and highest log-likelihood value.

i. The first data set
The first data set was used by Ghitany et al. [20]. It represents waiting time (minutes) before service

of 100 bank customer. Table 3 shows maximum likelihood estimators of some selected distributions
parameters for complete data in Table 2. From this Figure 4, it is observed that LBWEIED is fitted to
the data. Also, it is better than the EIED and Pareto distribution.

ii. The second data set
Data set Table 5 represents the marks in Mathematics for 48 students in the slow pace programme

in the year 2003. See Gupta and Kundu [4]. Table 6 presents maximum likelihood estimators of some
selected distributions parameters for complete data.

Table 7 shows the K-S statistics, p-value, LL, AIC, CAIC, BIC and HQIC for the data set. From
Table 7, the p-value of K-S for the LBWEIED is 0.503224. So, it is fitted to the data set compared with
Pareto distribution and EIED. Also, it can be noted that proposed model fits data set more than Pareto
distribution and EIED. It is evident that the LBWEIED is a strong competitor to other distributions.
Figure 5 shows the empirical cdf of the real data set 5 compared with the estimated cdf. From Figure 5,
it is observed that LBWEIED is fitted to data set 5 and more fitted than EIED and Pareto distribution.

iii. Estimation parameters under censored Type I based on first data set
From likelihood function of Type I censored for LBWEIED in Equation (4.6). It have to add in-

formation about predetermined failure time (T), where k is number of failures out of n. Analysis of
estimation parameters α, β and λ for LBWEIED based on censored Type I is applied under first data
sets is illustrated in Table 8. Let T=11, it was 64 censored items and 36 uncensored items while T=10,
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Table 1. MLE of the parameters and 95% confidence intervals with lower (Li) and upper
bounds (Ui) (complete data)

λ = 1 MLE Interval
n (α, β) SD Bias MSE Li Ui

30

(0.8,1.5)
α̂ 0.12285 0.03681 0.01646 0.05512 1.61695
β̂ 0.42356 0.14341 0.19997 0.85149 2.42832
λ̂ 0.15357 0.04601 0.0257 0.0689 2.02119

(0.2,1)
α̂ 0.03191 0.0101 0.00112 0.01408 0.552266
β̂ 0.27452 0.09308 0.08403 0.04824 5.06222
λ̂ 0.03191 0.7899 0.62496 0.131986 0.921887

(0.5,0.5)
α̂ 0.09184 0.03059 0.00937 0.246013 0.795698
β̂ 0.12595 0.04228 0.01765 0.033277 3.41207
λ̂ 0.18369 0.06118 0.03748 0.492025 1.59139

60

(0.8,1.5)
α̂ 0.08232 0.01861 0.00712 0.44296 1.1923
β̂ 0.27037 0.06523 0.07736 1.09785 0.04094
λ̂ 0.08232 0.1814 0.03968 0.68953 1.35709

(0.2,1)
α̂ 0.02166 0.00504 0.00049 0.098275 0.311949
β̂ 0.17381 0.04318 0.03207 0.686344 2.59511
λ̂ 0.10828 0.02519 0.01236 0.491373 1.55975

(0.5,0.5)
α̂ 0.06123 0.0128 0.00391 0.269127 0.75166
β̂ 0.08098 0.01817 0.00689 0.642982 2.56348
λ̂ 0.12246 0.02561 0.01565 0.538254 1.50332

100

(0.8,1.5)
α̂ 0.06273 0.01029 0.00404 0.33338 1.28496
β̂ 0.20257 0.03969 0.04261 0.875643 2.25203
λ̂ 0.06273 0.18971 0.03993 0.208362 0.803102

(0.2,1)
α̂ 0.0164 0.00504 0.00028 0.114563 0.291439
β̂ 0.13187 0.02579 0.01805 0.865192 2.28839
λ̂ 0.08199 0.01567 0.00697 0.572815 1.45719

(0.5,0.5)
α̂ 0.03911 0.00677 0.00158 0.328209 0.686332
β̂ 0.20471 1.04123 1.12607 0.83323 2.32052
λ̂ 0.07821 0.01353 0.0063 0.656418 1.37366

Table 2. waiting time (minutes) of 100 bank customer

0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4.,
4.1,4.2,4.2,4.3,4.3,4.4,4.4,4.6,4.7,4.7,4.8,4.9,4.9,5.,5.3,5.5,5.7,
5.7,6.1,6.2,6.2,6.2,6.3,6.7,6.9,7.1,7.1,7.1,7.1,7.4,7.6,7.7,8.,8.2,
8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.5,9.6,9.7,9.8,10.7,10.9,11.,11.,11.1
,11.2,11.2,11.5,11.9,12.4,12.5,12.9,13,13.1,13.3,13.6,13.7,13.9,
14.1,15.4,15.4,17.3,17.3,18.1,18.2,18.4,18.9,19.,19.9,20.6,21.3,

21.4,21.9,23.,27.,31.6,33.1,38.5
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Table 3. The maximum likelihood estimates of the parameters among competing distribu-
tions.

Distribution λ̂ β̂ α̂

LBWEIED 1.4729 1.5978 5.80108
EIED 2.11935 2.52323
Pareto 0.44558 0.8

Table 4. Analysis of the performance of the competing distributions

Distribution K-S P-value LL AIC CAIC BIC HQIC
LBWEIED 0.10805 0.1799 -330.77 667.534 667.784 667.534 663.342

EIED 0.16745 0.00647 -336.56 677.16 677.24 677.16 674.012
Pareto 0.35185 1.9×10-11 -382.95 769.88 769.898 765.88 767.102

Figure 4. Estimated and empirical cdf for all models (data set 1)

Table 5. The marks in Mathematics for 48 students in the slow pace programme

29,25,50,15,13,27,15,18,7,7,8,19,12,18,5,21,15,86,21,15,14,39,15,14,
70,44,6,23,58,19,50,23,11,6,34,18,28,34,12,37,4,60,20,23,40,65,19,31

Table 6. The maximum likelihood estimates of the parameters for competing distribution
(Data set 2)

Distribution λ̂ β̂ α̂

LBWEIED 2.12941 2.02789 15.3198
EIED 3.14365 - 4.99164
Pareto 0.61492 - 4
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Table 7. Analysis of the performance of the competing distributions (Data set 2)

Distribution K-S P-value LL AIC CAIC BIC HQIC
LBWEIED 0.11585 0.50322 -198.94 403.88 404.42 402.924 399.234

EIED 0.17998 0.0784 -205.05 414.104 414.364 413.465 411.007
Pareto 0.32446 5.3E-05 -215.94 435.886 435.886 435.249 432.789

Figure 5. Estimated and empirical cdf for all models (data set 2)

censored item are 62 and 38 uncensored items. Maximum likelihood estimates under censored Type I
and some goodness fit measures as AIC, BIC and HQIC are showed in Table 8.

Table 8. Maximum likelihood estimates of parameter for LBWEIED under censored (data
set 1)

T k α̂ β̂ λ̂ LL AIC BIC HQIC
10 62 5.05602 1.0711 1.17714 -209.19 424.378 420.184 424.378
15 81 3.43912 1.31023 2.06478 -268.79 543.942 539.748 543.942

Table 8 presents the statistics of LL, AIC, BIC and HQIC for the life time data set when applying
different predetermined times in the experiment. From Table 8, it is clear that the LBWEIED has
the highest log likelihood, lowest AIC, BIC and HQIC at predetermined failure time T=10 with 62
censored items and 38 uncensored items.

iv. Estimation parameters under censored Type I based on second data set
Let T=27, it was 31 censored items and 17 uncensored items while T=22, censored item are 27and

21 uncensored items. Analysis of maximum likelihood estimates under censored Type I and some
measures of goodness fit are shown in Table 9.

Table 9 presents the statistics of LL, AIC, BIC and HQIC for the life time data set when apply-
ing different predetermined times in the experiment. From Table 9, the model has the highest log
likelihood, lowest AIC, BIC and HQIC at T= 22 with 27 censored items and 21 uncensored items.
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Table 9. Maximum likelihood estimates of parameter for LBWEIED under censored (data
set 2)

T k α̂ β̂ λ̂ LL AIC BIC HQIC
27 31 7.26932 1.59441 3.51977 -129.66 265.314 264.358 260.668
22 27 4.65805 1.57954 5.45676 -113.23 232.458 231.502 227.812

7. Conclusion

The LBWEIED has been introduced. Sub models from LBWEIED was obtained such as IED,
ILBED and TPEIED. Also, the basic statistical properties have been successfully derived. The model
has decreasing failure rates depending on the value of the parameters. MLE for complete and cen-
sored sample data has been applied to estimate the unknown parameters. Numerical study is applied
for LBWEIED. Variance–covariance matrix is obtained with the confidence intervals. The real life
application is provided by using two real data sets, then we note that performance of LBWEIED better
than the competitive distributions. Finally, we can conclude that proposed model is a good competitive
model.
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