Emergence of MDR *Aerococcus Viridans* in Diarrhea in Chicken in Egypt as First Study

Ahmed R khafagy¹, Reham M El-Tarabili², Fatma Youssef³, Marwa Abo Hashem², EL-Attar Yomna⁴

¹ Department of Microbiology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, Egypt ²Department of Bacteriology, Immunology, and Mycology, Faculty of

³Animal Health Research Institute, pathology department, Ismailia, Egypt ⁴ Directorate of veterinary medicine

Abstract

Aerococcous spp. thought to be a harmless pathogen, it is now recognized as a promising disease-causing microorganism. In the field of microbiology, Aerococci is frequently confused with streptococci, leading to incorrect diagnoses. Antimicrobial resistance is globally increasing which is reflected in public health threats. Therefore, the current study was performed to evaluate the incidence of A. viridans in one hundred fecal swabs collected from broilers and layers farms in the Sharkia government, Egypt, and described its antibiotic resistance by the VITEK system. Only one A. viridans isolate was identified from 100 samples. A. viridans isolate was susceptible to vancomycin, Trimethoprim/ sulfamethoxazole, and linezolid, while, A. viridans isolate was resistant to Penicillin G, meropenem, tetracycline, and Ceftriaxone. As the first study in Egypt, this study concluded that MDR A. viridans is of importance in public health and plays an essential role in diarrhea infection in poultry, and is considered a hazard to human health.

Key words: Aerococcus viridans, MDR, VITEK, Poultry, Diarrhea

Introduction

Diarrhea is one of the most serious that affect poultry illnesses production and causes high mortality rates, a decline in egg production, a reduction in feed conversion, carcass condemnations, and other losses in the world's poultry industry. resulting in significant annual losses (Dziva and

Steven,2008 and Barnes et al., 2008).

Aerococci is often confused with streptococci because they have the same biochemical and physiological characteristics as *pediococci*, enterococci, *lactococci*, and *leuconostocs* (Facklam et al., 1989). This genus responds weakly to the catalase test, but it doesn't have any cytochrome. Aerococcus viridans is the only species of the genus Aerococcus that has been described and named (Williams et al., 1953).

According to (Spakova et al., 2012), these organisms are currently considered to be of significant importance in both human and veterinary medicine. A. viridans is responsible for many human health including risks. endocarditis, meningitis, and arthritis according (Gopalachar et al., 2004; to Popescu et al., 2005). A. viridans was recently described as the causative agent of arthritis. pneumonia, and meningitis in cows. A. viridans was recently involved in bovine mastitis (Liu et al., 2015). A. viridans maintains to be one of the most significant hazards to the rural economies of numerous countries. including Egypt, and it is one of the infectious diseases that affect large ruminants. The occurrences in Egypt, there is just a limited amount of scientific research available (Shaker et al., 2019). The current study aims to screen the role of MDR A. viridans in cases of diarrhea in poultry in Egypt, as the first study in Egypt, and to describe bacteria's resistance the to antimicrobials.

Materials and methods Sample Collection

The study was carried out between January 2022 to March 2022 on one hundred chicken fecal samples that were randomly collected from different poultry farms (broilers & layers) in the Sharkia government All samples were collected under complete aseptic conditions in sterile plastic swabs and transported to Animal Health Research Institute, Ismailia lab. on an icebox for microbiological examination.

Isolation of Aerococcus viridans

All samples were examined to determine the presence of *Aerococcus viridans*, which were isolated and identified. (*Sun et al., 2017*). The samples were inoculated on trypticase soya agar (Sigma, Shanghai, China) with 5% sheep blood, nutrient agar, and CLED agar, and the plates were incubated at 37 °C for 24 hours.

Aerococcus viridans Identification Microscopical examination of films made from pure cultures and stained with Gram-stain, All cultures that did not produce a positive catalase were classified reaction as prospective Aerococcus isolates and were kept for further identification VITEK2 using the system (bioMérieux, SA, France).

Antibiogram Testing

Antimicrobial sensitivity of Α. viridans isolates according to (CLSI,2013) guidelines against antimicrobial seven agents categorized into seven classes was performed utilizing the VITEK2 (bioMérieux, SA, France) according to the manufacturer's instructions.

Results

Prevalence of A.viridans

Only one isolate(1/100,1%) was obtained in this study. On nutrient agar appeared as small, semitransparent, white or gray colonies, and on Sheep blood agar appeared circular. alpha-hemolytic as colonies Figure(1) while on CLED media appeared as small yellowish colonies Figure (2).Microscopically. The organisms resemble Gram-positive cocci that are 1-2 nm in diameter and stained deeply and can be dispersed singly. in pairs, in tetrads, or other irregular clusters, non-sporulated and noncapsulated. Biochemically, *A.viridans* is characterized by negative in catalase and detected by VITEK2 as shown in Table (1)

Antibiogram Testing

The result of the antibiogram of one strain isolated from chicken. **Table** (2) revealed that one isolate was resistant to tetracycline, penicillin G , meropenem, and ceftriaxone and sensitive to vancomycin, linezolid, and Trimethoprim/ sulfamethoxazole and considered as MDR. MARI was determined as 0.43

Table (1): The results of different biochemical tests on Aerococcus viridans

No.	Test	Aerococcus viridans
1	Gram staining	Gram-positive
2	Catalase	-
3	Oxidase	-
4	Coagulase	-
5	Indole	-
6	Urease	-
7	Citrate Utilization	+
8	Nitrate reduction	-
9	Methyl red	+
10	Vogues proskure	-
11	Maltose fermentation	+
12	Glucose fermentation	+
13	Mannitol fermentation	variable

 Table (2): The results of the antibiogram sensitivity test for the examined

 Aerococcus viridans

Antimicrobial agent	Type of sensitivity	MIC
Penicillin	R	=2
Meropenem	R	>1
Ceftriaxone	R	>4
Linezolid	S	=2
Vancomycin	S	=1
Tetracycline	R	>8
Trimethoprim/ sulfamethoxazole	S	< 0.5/9.5

S= susceptible R=resistant

Figure (1): Aerococcus viridans on Sheep Blood Agar

Figure (2): Aerococcus viridans on CLED media

Discussion

Earlier investigations revealed a low incidence of *A. viridans* in bovine mastitis, pneumonia, and diarrhea, which may have been due to misidentifications as streptococci and staphylococci (*Rasmussen*, 2013). The detection of *A. viridans*, on the other hand, has become more reliable as a result of developments in identification methods(*Sun et al.*, 2017). According to the findings of (*Liu et al.*, 2015), the rate of isolation of *A. viridans* from cases of subclinical mastitis in Northern China was 6.1%. (*Saishu et al.*, *2015*) reported the incidence of *A. viridans* in clinical mastitis cases in Japan was 8% nearly similar to our results. Eleven strains have been isolated from subclinical mastitis milk samples from dairy farms in Egypt with 11% (*Shaker et al.*, *2019*) higher than our results.

There are several automated technologies for identifying and

assessing susceptibility to the most frequent bacteria in medical settings (Jovanes et al., 2000). Originally, the VITEK system (bioMérieux-Vitek, Hazelwood, Missouri) was intended as an onboard device for the detection and identification of urinarv tract diseases from astronauts 1979 in spacecraft. marked its introduction in clinical laboratories, and since then it has been extensively evaluated (Doern et al., 1979).

A.viridans isolate was resistant to penicillin tetracycline, G ,meropenem, and ceftriaxone and sensitive to vancomycin, linezolid, Trimethoprim/ and sulfamethoxazole and considered as MDR. MARI was determined as 0.43. The same findings were reported by (Paková et al., 2012), particularly regarding the resistance patterns beta-lactamase of resistance. On the other hand, (Martin et al., 2007) demonstrated different finding, а as thev discovered that all A. viridans isolates were able to be treated with B-lactamase antibiotics. The fact that A. viridans is resistant to some commercial antibiotics, including those that are frequently used in various treatments programmed for animals and humans, lowers the efficacy of antibiotics against infections and is attributed to be a threat to humans.

In conclusion, our results *A.viridans* play a role as one of the causative agents of diarrhea in poultry as a first report in Egypt and are respected as a hazard for human infections with *A. viridans*.

References

Clinical Laboratory Standards Institute (2013).Performance antimicrobial standards for susceptibility testing; 23rd informational supplement. CLSI M100-S23 Clinical document Laboratory Standards Institute. Wavne, PA

Doern G, Brueggemannn A B, Perla R, Daly D, Halkias D, Jones N. Saubolle M A(1997). R Multicenter laboratory evaluation of the bioMerieux Vitek antimicrobial susceptibility testing system with 11 antimicrobial agents versus members of the family Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol.:35:2115-2119.

Facklam R, Hollis D, Collins MD (1989). Identification of grampositive coccal and coccobacillary vancomycin resistant bacteria. J. Clin. Microbiol. 27: 724-730. https://doi.org/0095-1137/89/040724-0702.00/0.

Gopalachar A, Akins RL, Davis WR, Siddiqui AA (2004). Urinary tract infection caused by *Aerococcus viridans*, a case report. Med. Sci. Monitor. 10: CS73-CS75. http://www.

medscimonit.com/pub/vol_10/no_1 1/4928.

Joyanes P, del Carmen Conejo M, Martínez-Martínez L, Perea **EJ(2001).** Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gramnegative rods frequently isolated from clinical samples. J Clin Microbiol. 2001 Sep;39(9):3247-53. doi: 10.1128/JCM.39.9.3247-3253.2001.

Liu G, Liu Y, Ali T, Ferreri M, Gao J, Chen W, Yin J, Su J,Fanning S, Han B (2015). Molecular and phenotypic characterization of *Aerococcus viridans* associated with subclinical bovine mastitis. PLoS One. 10 (4). http://doi.org/10.1371/journal.pone. 0125001

Popescu GA, Benea E, Mitache E, Piper C, Horstkotte D(2005). An unusual bacterium, *Aerococcus viridans*, and four cases of infective endocarditis. J. Heart Valve Dis. 14: 317-319.

Rasmussen, M., (2013). *Aerococci* and aerococcal infections. Journal of Infection, 66, 467–474

Saishu, N., Morimoto, K., Yamasato, H., Ozaki, H. and Murase, T., (2015). Characterization of *Aerococcus viridans* isolated from milk samples from cows with mastitis and manure samples Journal of Veterinary Medical Science, 77(9), 1037–1042.

Shaker, E. M., Hassanien, A. A., & Abd-Elhamed, E. Y. (2019). Incidence of *Aerococcus viridans* in raw cow milk in sohag city, egypt. Adv. Anim. Vet. Sci, 7(9), 782-787.

Špaková T, Elečko J, Vasil M, Legáth, J, Pristaš P, Javorský P (2012).Limited genetic diversity of *Aerococcus viridans* strains isolated from clinical and subclinical cases of bovine mastitis in Slovakia. Poland J. Vet. Sci. 15: 329–335. https://:doi.org/10.2478/v10181-012-0051-1

Sun M, Gao J, Ali T, Yu D, Zhang S, Khan SU, Han B (2017). Characteristics of *Aerococcus viridans* isolated from bovine subclinical mastitis and its effect on milk SCC, yield, and composition. Trop. Anim. Health Prod, 49(4): 843-

849,https://doi.org/10.1007/s11250-017-1271-2.

الملخص العربي

يُعتقد أن .Aerococcous spp غير ضار ، فقد تم التعرف عليه الآن على أنه كائن حي دقيق واعد يسبب المرض. لذلك تم إجراء الدراسة الحالية لفحص معدل الإصابة ببكتيريا A. viridans في 100 مسحة برازية تم جمعها من مزارع الفراريج والبياض في محافظة الشرقية بمصر ، وقد تم وصف مقاومتها للمضادات الحيوية. تم تحديد عينة واحدة فقط من عزلة A. viridans من 100 عينة. كانت عزلة A. viridans محساسة لفانكومايسين ، Trimethoprim / sulfamethoxazole من من المناسبة بيتراسيكلين و و لينزوليد ، بينما عزلة A. viridans كانت مقاومة للبنسلين G ، ميروبنيم ، تيتراسيكلين و سيفترياكسون .خلصت هذه الدراسة كأول دراسة في مصر إلى أن MDR A. viridans تلعب دورًا أساسيًا في الإصابة بالإسهال في الدواجن وتعتبر خطراً على صحة الإنسان.