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EXISTENCE AND APPROXIMATE SOLUTIONS

FOR FRACTIONAL DIFFERENTIAL EQUATIONS

WITH NONLOCAL CONDITIONS

B.C. DHAGE, S.B. DHAGE, S.K. NTOUYAS

Abstract. In this paper the authors prove existence, uniqueness and ap-

proximation of the solutions for initial value problems of nonlinear fractional
differential equations with nonlocal conditions, using the operator theoretic
technique in a partially ordered metric space. The main results rely on the
Dhage iteration principle embodied in the recent hybrid fixed point theorem of

Dhage (2014) in a partially ordered normed linear space. The approximation
of the solutions of the considered nonlinear fractional differential equations are
obtained under weaker mixed partial continuity and partial Lipschitz condi-
tions. Our hypotheses and result are also illustrated by a numerical example.

1. Introduction

The Dhage iteration principle or method (in short DIP or DIM) is relatively
new to the literature on nonlinear analysis, particularly in the theory of nonlinear
differential and integral equations, but it has been becoming more popular among
the mathematicians all over the world because of the utility of its applications to
nonlinear equations for different qualitative aspects of the solutions. Very recently,
the above method has been applied in Dhage [10, 11, 12, 13], Dhage and Dhage
[14, 15, 16, 17] and Dhage et al. [18] to nonlinear ordinary differential equations
for proving the existence and algorithms of the solutions. Similarly, DIM has also
some interesting applications in the theory of nonlinear fractional differential and
integral equations and some basic results concerning the existence, uniqueness and
algorithms for initial value problems of fractional differential equations with local
conditions have been proved in Dhage [13]. In the present paper we prove the
existence as well as algorithms for the solutions of the initial value problems of
fractional differential equations with nonlocal conditions.

Before stating the main problem of the paper, we recall the following basic
definitions of fractional calculus [21, 24] which are useful in what follows.
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Definition 1.1. Let I = [t0, t0+a] be a closed and bounded interval of the real line
R for some t0, a ∈ R with t0 ≥ 0 and a > 0. If x ∈ ACn(J,R), then the Caputo
derivative of fractional order q is defined as

cDqx(t) =
1

Γ(n− q)

∫ t

t0

(t− s)n−q−1x(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q, and Γ is the Euler’s gamma
function. Here ACn(I,R) denote the space of real valued functions x(t) which have
continuous derivatives up to order n− 1 on I such that xn−1(t) ∈ AC(I,R).

Definition 1.2. If I∞ = [t0,∞) be an interval of the real line R for some t0 ∈ R
with t0 ≥ 0, then for any x ∈ C(J,R), the Riemann-Liouville fractional integral of
order q > 0 is defined as

Iqx(t) =
1

Γ(q)

∫ t

t0

x(s)

(t− s)1−q
ds, t ∈ I∞,

provided the right hand side is pointwise defined on (t0,∞).

Consider the following initial value problem of fractional differential equations
with nonlocal condition,{ cDqx(t) = f(t, x(t)), t ∈ J := [0, 1],

x(0)− g(x) = x0,
(1)

where cDq denotes the Caputo fractional derivative of order q, 0 < q < 1, f :
J × R → R is a given continuous function and g ∈ C(J,R) → R is a continuous
function.

Fractional differential equations have aroused great interest, which is caused
by both the intensive development of the theory of fractional calculus and the
applications of physics, mechanics and chemistry engineering.

The importance of non-local problems appears to have been first noted in the
literature by Bitsadze-Samarski [3]. As remarked by Byszewski [5, 7], the nonlocal
condition can be more useful than the standard initial condition to describe some
physical phenomena. For example, g(x) may be given by g(x) =

∑p
i=1 cix(ti),

where ci, i = 1, . . . , p are given constants and 0 < t1 < . . . < tp ≤ 1. For more
details on nonlocal problems we refer to [1, 2, 4, 19, 23, 25] and the references cited
therein.

In the present paper we prove the existence, uniqueness and approximations
of the solutions of problem (1) under weaker partially compactness and partially
Lipschitz type conditions via Dhage’s iteration method.

The rest of the paper will be organized as follows. In Section 2 we give some
preliminaries and key fixed point theorems that will be used in subsequent part of
the paper. In Section 3 we discuss the main existence, uniqueness and approxima-
tion results for initial value problems of fractional differential equations (1). An
illustrative example is also discussed.

2. Auxiliary Results

Unless otherwise mentioned, throughout this paper that follows, let E denote a
partially ordered real normed linear space with an order relation ≼ and the norm
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∥ · ∥ in which the addition and the scalar multiplication by positive real numbers
are preserved by ≼ . A few details of such partially ordered spaces appear in Dhage
[8] and the references therein.

Two elements x and y in E are said to be comparable if either the relation
x ≼ or y ≼ x holds. A non-empty subset C of E is called a chain or totally
ordered if all elements of C are comparable. We say that E is regular if {xn}
is a nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as
n → ∞, then xn ≼ x∗ (resp. xn ≽ x∗) for all n ∈ N. The conditions guaranteeing
the regularity of E may be found in Heikkilä and Lakshmikantham [20] and the
references therein.

We need the following definitions in the sequel.

Definition 2.1. A mapping T : E → E is said to be isotone or monotone
nondecreasing if it preserves the order relation ≼, that is, if x ≼ y implies T x ≼
T y for all x, y ∈ E. Similarly, T is monotone nonincreasing if x ≼ y implies
T x ≽ T y for all x, y ∈ E. Finally, T is said to be monotonic or simply monotone
if it is either monotone nondecreasing or monotone nonincreasing on E.

Definition 2.2 (Dhage [8]). A mapping B : E → E is called partially continuous
at a point a ∈ E if for ϵ > 0 there exists a δ > 0 such that ∥Bx−Ba∥ < ϵ whenever
x is comparable to a and ∥x− a∥ < δ. B called a partially continuous on E if it is
partially continuous at every point of it. It is clear that if B is a partially continuous
on E, then it is continuous on every chain C contained in E.

Definition 2.3. A non-empty subset S of the partially ordered Banach space E is
called partially bounded if every chain C in S is bounded. A mapping B : E → E is
called partially bounded if B(C) is bounded for every chain C in E. B is called
uniformly partially bounded if all chains B(C) in E are bounded by a unique
constant. B is called bounded if B(E) is a bounded subset of E.

Definition 2.4. A non-empty subset S of the partially ordered Banach space E is
called partially compact if every chain C in S is compact. A mapping B : E → E is
called partially compact if B(C) is a relatively compact subset of E for all totally
ordered sets or chains C in E. B is called uniformly partially compact if B(C)
is a uniformly partially bounded and partially compact on E. B is called partially
totally bounded if for any totally ordered and bounded subset C of E, B(C) is
a relatively compact subset of E. If B is partially continuous and partially totally
bounded, then it is called partially completely continuous on E.

Definition 2.5 (Dhage [8]). The order relation ≼ and the metric d on a non-empty
set E are said to be compatible if {xn}n∈N is a monotone, that is, monotone non-
decreasing or monotone nonincreasing sequence in E and if a subsequence {xnk

}n∈N
of {xn}n∈N converges to x∗ implies that the original sequence {xn}n∈N converges to
x∗. Similarly, given a partially ordered normed linear space (E,≼, ∥ · ∥), the order
relation ≼ and the norm ∥ ·∥ are said to be compatible if ≼ and the metric d defined
through the norm ∥ · ∥ are compatible.

Clearly, the set R of real numbers with usual order relation ≤ and the norm
defined by the absolute value function | · | has this property. Similarly, the finite
dimensional Euclidean space Rn with usual componentwise order relation and the
standard norm possesses the compatibility property.
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Definition 2.6 (Dhage [8]). A upper semi-continuous and nondecreasing function
ψ : R+ → R+ is called a D-function provided ψ(0) = 0. Let (E,≼, ∥ · ∥) be a
partially ordered normed linear space. A mapping T : E → E is called partially
nonlinear D-Lipschitz if there exists a D-function ψ : R+ → R+ such that

∥T x− T y∥ ≤ ψ(∥x− y∥) (2)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then T is called a
partially Lipschitz with a Lipschitz constant k. Furthermore, if 0 < ψ(r) < r,
r > 0, T is called a partially nonlinear D-contraction on E.

The Dhage iteration principle are embodied in the following hybrid fixed point
theorems proved of Dhage [9] which form the useful tools in what follows. A few
other such hybrid fixed point theorems containing Dhage iteration principle along
with applications appear in Dhage [8, 9].

Theorem 2.7 (Dhage [9]). Let (E,≼, ∥·∥) be a partially ordered Banach space and
let T : E → E be a nondecreasing and partially nonlinear D-contraction. Suppose
that there exists an element x0 ∈ E such that x0 ≼ T x0 or x0 ≽ T x0. If T is
continuous or E is regular, then T has a fixed point x∗ and the sequence {T nx0}
of successive iterations converges monotonically to x∗. Moreover, the fixed point x∗

is unique if every pair of elements in E has a lower and an upper bound.

Theorem 2.8 (Dhage [9]). Let
(
E,≼, ∥ · ∥

)
be a regular partially ordered complete

normed linear algebra such that the order relation ≼ and the norm ∥ · ∥ in E are
compatible in every compact chain C of E. Let A,B : E → K be two nondecreasing
operators such that

(a) A is partially bounded and partially nonlinear D-contraction,
(b) B is partially continuous and partially compact, and
(c) there exists an element x0 ∈ X such that x0 ≼ Ax0+Bx0 or x0 ≽ Ax0 Bx0.

Then the operator equation Ax + Bx = x has a positive solution x∗ in E and the
sequence {xn} of successive iterations defined by xn+1 = Axn + Bxn, n = 0, 1, . . .
converges monotonically to x∗.

Remark 2.9. The compatibility of the order relation ≼ and the norm ∥ ·∥ in every
compact chain of E is held if every partially compact subset of E possesses the
compatibility property with respect to ≼ and ∥ ·∥. This simple fact is used to prove
the desired characterization of the positive solution of the problem (1) on J .

3. Main Existence Results

The equivalent integral form of the problem (1) is considered in the function
space C(J,R) of continuous real-valued functions defined on J . We define a norm
∥ · ∥ and the order relation ≤ in C(J,R) by

∥x∥ = sup
t∈J

|x(t)| (3)

and
x ≤ y ⇐⇒ x(t) ≤ y(t) (4)

for all t ∈ J . Clearly, C(J,R) is a Banach space with respect to above supremum
norm and also partially ordered w.r.t. the above partially order relation ≤. It is
known that the partially ordered Banach space C(J,R) is regular and a lattice so
that every pair of elements of E has a lower and an upper bound in it. It is known
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that the partially ordered Banach space C(J,R) has some nice properties w.r.t.
the above order relation in it. The following lemma follows by an application of
Arzellá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤, ∥ · ∥

)
be a partially ordered Banach space with the

norm ∥ · ∥ and the order relation ≤ defined by (3) and (4) respectively. Then ∥ · ∥
and ≤ are compatible in every partially compact subset of C(J,R).

Proof. The proof of the lemma is given in Dhage and Dhage [15]. Since the proof
is not well-known, we give the details of proof. Let S be a partially compact subset
of C(J,R) and let {xn}n∈N be a monotone nondecreasing sequence of points in S.
Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , (ND)

for each t ∈ J .

Suppose that a subsequence {xnk
}k∈N of {xn}n∈N is convergent and converges

to a point x in S. Then the subsequence {xnk
(t)}k∈N of the monotone real se-

quence {xn(t)}n∈N is convergent. By monotone characterization, the whole se-
quence {xn(t)}n∈N is convergent and converges to a point x(t) in R for each t ∈ J .
This shows that the sequence {xn}n∈N converges to x point-wise in S. To show
the convergence is uniform, it is enough to show that the sequence {xn(t)}n∈N is
equicontinuous. Since S is partially compact, every chain or totally ordered set
and consequently {xn}n∈N is an equicontinuous sequence by Arzelá-Ascoli theo-
rem. Hence {xn}n∈N is convergent and converges uniformly to x. As a result, ∥ · ∥
and ≤ are compatible in S. This completes the proof. �

We need the following definition in what follows.

Definition 3.2. A function u ∈ C(J,R) is said to be a lower solution of the problem
(1) if it satisfies

cDqu(t) ≤ f(t, u(t)), t ∈ J,

u(0)− g(u) ≤ x0.

}
(∗)

Similarly, an upper solution v ∈ C(J,R) to the problem (1) is defined on J, by the
above inequalities with reverse sign.

We consider the following set of assumptions in what follows:

(A1) There exists a constant Mg > 0 such that |g(x)| ≤Mg for all x ∈ C(J,R).
(A2) There exists a constant Lg > 0 such that 0 ≤ g(x)− g(y) ≤ Lg∥x− y∥ for

all x, y ∈ C(J,R), x ≥ y.
(A3) There exists a constant Mf > 0 such that |f(t, x)| ≤ Mf for all t ∈ J and

x ∈ R.
(A4) The function f(t, x) is monotone nondecreasing in x for each t ∈ J.
(A5) There exists a constant Lf > 0 such that 0 ≤ f(t, x)− f(t, y) ≤ Lf (x− y)

for all t ∈ J and x, y ∈ R, x ≥ y.
(A6) The FDE (1) has a lower solution u ∈ C(J,R).

The following lemma is useful in what follows and may be found in Kilbas et.al.
[21], Podlubny [24] and Lakshmikantham et al. [22, page 54].
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Lemma 3.3. For any h ∈ C(J,R), if the function x ∈ C1(J,R) is a solution of the
problem { cDqx(t) = h(t), 0 < q < 1, t ∈ J,

x(0)− y0 = x0,
(5)

then

x(t) = x0 + y0 +

∫ t

0

(t− s)q−1

Γ(q)
h(s)ds, t ∈ J, (6)

and vice-versa.

Theorem 3.4. Assume that the hypotheses (A1), (A2), (A3), (A4) and (A6) hold.
If Lg < 1, then the problem (1) has a solution x∗ defined on J and the sequence
{xn}∞n=1 of successive approximations defined by

xn+1(t) = x0 + g(xn) +
1

Γ(q)

∫ t

0

(t− s)q−1g(s, xn(s)) ds, (7)

for all t ∈ R, where x1 = u, converges monotonically to x∗.

Proof. By Lemma 3.3, the problem (1) is equivalent to the nonlinear Volterra in-
tegral equation

x(t) = x0 + g(x) +
1

Γ(q)

∫ t

0

(t− s)q−1g(s, x(s)) ds, t ∈ J. (8)

Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in
E possesses the compatibility property with respect to the norm ∥ · ∥ and the order
relation ≤ in E.

Define the operators A and B on E by

Ax(t) = x0 + g(x), t ∈ J, (9)

and

Bx(t) = 1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds, t ∈ J. (10)

From the continuity of the integrals, it follows that A and B define the maps
A,B : E → E. Then, the problem (1) is equivalent to the operator equation

Ax(t) + Bx(t) = x(t), t ∈ J. (11)

We shall show that the operators A and B satisfy all the conditions of Theorem
2.8. This is achieved in the series of following steps.

Step I: A and B are nondecreasing operators on E.

Let x, y ∈ E be such that x ≥ y. Then by hypothesis (A2), we obtain

Ax(t) = g(x) + x0 ≥ g(y) + x0 = Ay(t),
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for all t ∈ J . This shows that A is nondecreasing operator on E into E. Similarly,
we have by (A4),

Bx(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds

≥ 1

Γ(q)

∫ t

0

(t− s)q−1f(s, y(s)) ds

= By(t),

for all t ∈ J . This shows that B is nondecreasing operator on E into itself.

Step II: A is partially bounded and partially D-contraction on E.

Let x ∈ E be arbitrary. Then by (A1),

|Ax(t)| ≤ |g(x)|+ |x0| ≤Mg + |x0|,

for all t ∈ J . Taking supremum over t, we obtain ∥Ax∥ ≤ Mg + |x0| and so, A is
bounded. This further implies that A is partially bounded on E.

Next, let x, y ∈ E be such that x ≥ y. Then,

|Ax(t)−Ay(t)| = |g(x)− g(y)| ≤ Lg∥x− y∥.

Then, ∥Ax − Ay∥ ≤ Lg∥x − y∥ for all x, y ∈ E with x ≥ y and hence A is a
partially D-contraction on E which further implies that A is a partially continuous
on E.

Step III: B is a partially continuous operator on E.

Let {xn} be a sequence of points of a chain C in E such that xn → x for all
n ∈ N. Then, by dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

[
1

Γ(q)

∫ t

0

(t− s)q−1f(s, xn(s)) ds

]
=

1

Γ(q)

∫ t

0

(t− s)q−1
[
lim
n→∞

f(s, xn(s)) ds
]
ds

=
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds

= Bx(t),

for all t ∈ J . This shows that {Bxn} converges to Bx pointwise on J .

Next, we will show that {Bxn} is an equicontinuous sequence of functions in E.
Let t1, t2 ∈ J be arbitrary with t1 < t2. Then

|Bxn(t2)− Bxn(t1)| ≤ 1

Γ(q)

∣∣∣∣∫ t2

0

|(t2 − s)q−1 − (t1 − s)q−1| |f(s, xn(s))| ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

t1

(t1 − s)q−1|f(s, xn(s))| ds
∣∣∣∣

≤ Mf

Γ(q + 1)
(tq2 − tq1).

Consequently,

|Bxn(t2)− Bxn(t1)| → 0 as t2 → t1
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uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniformly
and hence B is a partially continuous on E.

Step IV: B is a partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded
and equicontinuous set in E. First we show that B(C) is uniformly bounded. Let
x ∈ C be arbitrary. Then,

|Bx(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, x(s))| ds

≤ Mf

Γ(q + 1)
= r,

for all t ∈ J . Taking the supremum over t, we obtain ∥Bx∥ ≤ r for all x ∈ C.
Hence B(C) is a uniformly bounded subset of E. Next, we will show that B(C) is
an equicontinuous set in E. Let t1, t2 ∈ J be arbitrary with t1 < t2. Then,

|Bx(t2)− Bx(t1)| ≤ 1

Γ(q)

∣∣∣∣∫ t2

0

|(t2 − s)q−1 − (t1 − s)q−1| |f(s, x(s))| ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

t1

(t1 − s)q−1|f(s, x(s))| ds
∣∣∣∣

≤ Mf

Γ(q + 1)
(tq2 − tq1).

Thus we have that

|Bx(t2)− Bx(t1)| → 0 as t2 → t1

uniformly for all x ∈ C. This shows that B(C) is an equicontinuous set in E. Hence
B(C) is compact subset of E and consequently B is a partially compact operator
on E into itself.

Step V: u satisfies the operator inequality u ≤ Au+ Bu.
Since the hypothesis (A6) holds, u is a lower solution of (1) defined on J. Then,

cDqu(t) ≤ f(t, u(t)), (12)

satisfying,

u(0) ≤ x0 + g(u), (13)

for all t ∈ J .

Integrating (12) from 0 to t, we obtain

u(t) ≤ x0 + g(u) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds, (14)

for all t ∈ J . This show that u is a lower solution of the operator inequality
u ≤ Au+ Bu.

Thus, the operators A and B satisfy all the conditions of Theorem 2.8 in view of
Remark 2.9 and we apply it to conclude that the operator equation Ax+Bx = x has
a solution defined on J . Consequently the integral equation and the problem (1)
has a solution x∗ defined on J and the sequence {xn} of successive approximations
defined by (7) converges monotonically to x∗. This completes the proof. �
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Next, we prove a uniqueness theorem for the problem (1) under weak partial
Lipschitz condition on the nonlinearity f .

Theorem 3.5. Assume that hypotheses (A2), (A5) and (A6) hold. Then the prob-
lem (1) has a unique solution x∗ defined on J, provided

Lg +
Lf

Γ(q + 1)
< 1,

and the sequence {xn} of successive approximations defined by (7) converges mono-
tonically to x∗.

Proof. Set E = C(J,R). Clearly, E is a lattice w.r.t. the order relation ≤ and so
the lower and the upper bound for every pair of elements in E exist. Define the
operator T by

T x(t) = x0 + g(x) +
1

Γ(q)

∫ t

0

(t− s)q−1g(s, x(s)) ds, t ∈ J. (15)

Then, the problem (1) is equivalent to the operator equation

T x(t) = x(t), t ∈ J. (16)

We shall show that T satisfies all the conditions of Theorem 2.7 in E. Clearly, T
is a nondecreasing operator on E into itself. We shall simply show that the operator
T is a partially D-contraction on E. Let x, y ∈ E be any two elements such that
x ≥ y. Then, by hypothesis (A5),

|T x(t)− T y(t)| ≤ Lg∥x− y∥

+

∣∣∣∣ 1Γq
∫ t

0

(t− s)q−1f(s, x(s)) ds− 1

Γ(q)

∫ t

0

(t− s)q−1f(s, y(s)) ds

∣∣∣∣
≤ Lg∥x− y∥+ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, x(s))− f(s, x(s))| ds

≤ Lg∥x− y∥+ 1

Γ(q)

∫ t

0

(t− s)q−1Lf |x(s)− y(s)| ds

≤ Lg∥x− y∥+ 1

Γ(q)

∫ t

0

(t− s)q−1Lf∥x− y∥ ds

≤
(
Lg +

Lf

Γ(q + 1)

)
∥x− y∥,

= ψ(∥x− y∥),

for all t ∈ J , where ψ(r) =

(
Lg +

Lf

Γ(q + 1)

)
r < r, r > 0.

Taking the supremum over t, we obtain

∥T x− T y∥ ≤ ψ(∥x− y∥)
for all x, y ∈ E, x ≥ y. As a result T is a partially nonlinear D-contraction on
E. Furthermore, it can be shown as in the proof of Theorem 3.4 that the function
u given in hypothesis (A6) satisfies the operator inequality u ≤ T u on J . Now a
direct application of Theorem 2.7 yields that the problem (1) has a unique solution
x∗ and the sequence {xn} of successive approximations defined by (7) converges
monotonically to x∗. �



JFCA-2016/7(1) APPROXIMATE SOLUTIONS 33

Remark 3.6. The conclusion of Theorems 3.4 and 3.5 also remains true if we
replace the hypothesis (A6) with the following one:

(A′
6) The problem (1) has an upper solution v ∈ C(J,R).

Example 3.7. Given a closed and bounded interval J = [0, 1], consider the problem,

cD1/2x(t) = tanhx(t), t ∈ J,

x(0) =
k∑

i=1

λi arctanx(ti),

 (17)

where t1, . . . , tk are given real numbers such that 0 < t1 < t2 < . . . < tk < 1 and
λi ∈ R, λi ≥ 0, i = 1, . . . , k.

Set f(t, x) = tanhx for all t ∈ J and x ∈ R, and g(x) =
k∑

i=1

λi arctanx(ti) for

all x ∈ E, where 0 <
k∑

i=1

λi < 1.

Clearly, the function g is bounded on E with bound Mg =
π

2
and so hypothesis

(A1) is satisfied. Furthermore, the function g is nondecreasing and a partial D-
contraction on E. To see this, let x, y ∈ E be such that x ≥ y. Then,

0 ≤ g(x)− g(y)

=
k∑

i=1

λi(arctanx(ti)− arctan y(ti))

≤

(
k∑

i=1

λi
1 + ξ2i

)
(x(ti)− y(ti)) (because x(ti) > ξi > y(ti))

≤

(
k∑

i=1

λi

)
(x(ti)− y(ti))

≤ Lg ∥x− y∥ (18)

where, Lg =
k∑

i=1

λi < 1. Therefore, g is satisfies the hypothesis (A2) on E.

Clearly, the functions f is continuous, nondecreasing, and bounded on J×R with
bound Mf = 1 and so hypotheses (A3) and (A4) are satisfied. Finally, a solution u
of the problem

cD1/2x(t) = −1, t ∈ J,

x(0) = −π
2
,

 (19)

is a lower solution to the problem (17) on J . Solving problem (19) for u, we obtain

u(t) = −π
2
+
t1/2√
π

for t ∈ J . Thus, hypothesis (A6) of Theorem 3.4 is satisfied. Now we apply Theorem
3.4 and conclude that the problem (19) has a solution and the sequence {xn} of
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successive approximations defined by

xn+1(t) =
k∑

i=1

λi arctanxn(ti) +
1

Γ(1/2)

∫ t

0

(t− s)−1/2 tanhxn(s) ds (20)

for all t ∈ J , where x1 = u, converges monotonically to x∗.
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