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AN APPLICATION OF HOMOTOPY ANALYSIS TRANSFORM

METHOD FOR RICCATI DIFFERENTIAL EQUATION OF

FRACTIONAL ORDER

K. M. SAAD,A. A. AL-SHOMRANI

Abstract. We introduce an analytical method, namely the Homotopy Anal-
ysis Transform Method (HATM), which is a combination of the Homotopy

Analysis Method (HAM) and the Laplace Decomposition Method (LDM). A
new application of the HATM is presented for the solution of the fractional
order Riccati differential equation. The accuracy and efficiency of the pro-
posed method is verified through three examples and comparison with exact

solutions.

1. Introduction

In recent years considerable interest in fractional differential equations has been
stimulated by their numerous applications in many areas of physics and engineer-
ing [30]. Many important phenomena in electromagnetics, acoustics, viscoelasticity,
electrochemistry and material science are well described by differential equations
of fractional order [29, 23, 21, 24]. Historical summaries of the development of
fractional calculus can be found in [21, 22, 23, 24]. Exact solutions of most frac-
tional differential equations cannot be easily found. Thus analytical and numerical
methods need to be used for their solution [1, 2, 3, 4, 5, 6].

In this paper, we introduce an approximate analytical method, namely the
HATM, which is a combination of the HAM and the LDM. This scheme is sim-
ple to apply to linear and nonlinear fractional differential equations and requires
less computational effort compared with other exiting methods. The most impor-
tant advantage of this method is its ability to solve fractional nonlinear differential
equation without using Adomian polynomials and He′s polynomials for the com-
putation of the nonlinear terms. The proposed method has no linearization and
restrictive assumptions for its stability. Recently, several mathematical methods
for solving the fractional differential equations , including the homotopy analysis
method HAM, have been proposed into [7, 8, 9, 10, 11].

The HAM was first proposed by Liao for solving linear and nonlinear differential
and integral equations. In recent years, many authors have found solutions of linear
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and nonlinear partial differential equations using various methods in combination
with the Laplace transform. Among these are the Laplace decomposition method
[12, 13, 14, 15, 27] and the homotopy perturbation transform method [18, 19, 20,
28]. The paper is organized as follows. Section 2 contains the basic definition of
the Caputo order fractional derivative. Section 3 outlines the basic idea of the
Fractional Homotopy Analysis Transform Method (FHATM). Section 4 deals with
an application of the FHATM to nonlinear Riccati equations and Section 5 contains
the conclusions.

2. Fractional calculus

Well-known definitions of a fractional derivative of order α > 0 have been given
by Riemann, Liouville, Grunwald, Letnikow and Caputo [23, 29, 22, 21] and are
based on generalized functions. The most commonly used definitions are those
of Riemann and Liouville and Caputo. Here we give some basic definitions and
properties of this fractional calculus theory.

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R,
if there exists a real number p > µ such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞),
and it is said to be in the space Cm

µ iff fm ∈ Cm, m ∈ N .

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0
for a function f ∈ Cµ, µ ≥ −1, is defined as

Jν
0 f(t) =

1

Γ(ν)

∫ t

0

(t− τ)ν−1f(τ)dτ

J0f(t) = f(t).

It has the following properties. For f ∈ Cµ, µ ≥ −1, α, β ≥ 0, and γ > 1,

(1) JαJβf(t) = Jα+βf(t),
(2) JαJβf(t) = JβJαf(t),

(3) Jαtγ = Γ(γ+1)
Γ(α+γ+1) t

α+γ .

The Riemann-Liouville fractional derivative is mostly used in mathematics as this
approach is not suitable for physical problems since it requires the use of fractional
order initial conditions which have not been found to have physical meaning as
yet. For this reason, Caputo introduced an alternative definition which has the
advantage of defining integer order initial conditions for fractional order differential
equations.

Definition 2.3. The fractional derivative of f(t) in the Caputo sense is defined as

Dν
∗f(t) = Jm−ν

a Dmf(t) =
1

Γ(m− ν)

∫ t

0

(t− τ)m−ν−1fm(τ) dt

for m− 1 < ν < m,m ∈ N, t > 0, f ∈ Cm
µ , µ ≥ −1, then

Dα
∗ J

αf(t) = f(t)

JαDν
∗f(t) = f(t)−

m−1∑
k=0

fk(0+)
tk

k!
, x > 0

The Caputo fractional derivative will be used here as it allows traditional initial
and boundary conditions to be used for differential equations.
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3. Laplace Transform

Let f(t) be defined for 0 ≤ t < ∞. Then, when the improper integral exists, the
Laplace transform F (s) of f(t), written symbolically as F (s) = L{f(t)}, is defined
by

F (s) =

∫ ∞

0

e−stf(t)dt

Lemma 3.1. Ifm−1 < α ≤ m,m ∈ N, then the Laplace transform of the fractional
derivative Dαf(t) is

L(Dαf(t)) = sαF (s)−
m−1∑
k=0

f (k)(0+)sα−k−1, t > 0, (3.1)

where F (s) is the Laplace transform of f(t).

Proof. The convolution integral of two functions f(t) and g(t) is defined by

f(t) ∗ g(t) =
∫ t

0

f(t− τ)g(τ)dτ.

If F (s) and G(s) are the Laplace transforms of f(t) and g(t), respectively, then

L
(∫ t

0

f(t− τ)g(τ)dτ

)
= F (s)G(s).

The Laplace transform of the Riemann-Liouville fractional integral operator of order
α > 0 is

L (Jαf(t)) =
1

Γ(α)
L
(∫ t

0

(t− τ)α−1f(τ)dτ

)
=

1

Γ(α)
F (s)G(s),

where

G(s) = L(tα−1) =
Γ(α)

sα
.

If we take the Laplace transform of

JαDαf(t) = f(t)−
m−1∑
k=0

f (k)(0+)
tk

k!
, m− 1 < α ≤ m,

we obtain

L(JαDαf(t)) = L(f(t))−
m−1∑
k=0

f (k)(0+)L(
tk

k!
),

so that

L (Dαf(t))

sα
= F (s)−

m−1∑
k=0

f (k)(0+)s−(k+1).

Hence

L (Dαf(t)) = sαF (s)−
m−1∑
k=0

f (k)(0+)sα−k−1, m− 1 < α ≤ m.
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We can also prove Lemma 3.1 using integral transforms as follows

L(Dαf(t))=

∫ ∞

0

e−stDαf(t)dt

=

∫ ∞

0

e−st 1

Γ(m− α)

∫ t

0

(t− τ)n−α−1f (m)(τ)dτdt

=
1

Γ(m− α)

∫ ∞

0

∫ ∞

t

e−sf (m)(τ)(t− τ)n−α−1dtdτ

=
1

Γ(m− α)

∫ ∞

0

e−sτf (m)(τ)

∫ ∞

0

e−s(y+τ)yn−α−1dydτ

=
1

Γ(m− α)

∫ ∞

0

e−sτf (m)(τ)
Γ(m− α)

sm−α
dτ

=sα−m

∫ ∞

0

e−sτf (m)(τ)dτ = sα−mL(f(t))

=sα−m
{
smL(f(t))− sm−1f(0+)− sm−2f

′
(0+)− · · · − f (m−1)(0+)

}
=
{
sαL(f(t))− sα−1f(0+)− sα−2f

′
(0+)− · · · − sα−mf (m−1)(0+)

}
=sαF (s)−

m−1∑
k=0

f (k)(0+)sα−k−1, m− 1 < α ≤ m.

�

4. Fractional Homotopy Analysis Transform Method(FHATM)

Consider the equation the N(y(t))) = g(t), where N represents a general nonlin-
ear ordinary differential equation both including both linear and nonlinear terms,
y is the unknown function to be solved for and t is the independent variable. For
simplicity, we ignore all boundary or initial conditions, as they can be treated in
a similar way. The linear terms are decomposed into L + R, where L is the high-
est order linear operator, R is the other terms of the linear operator and g(t) is a
continuous function. Thus, the equation can be written as

Ly(t) +Ry(t) +Ny(t) = g(t), (4.2)

where Ny(t) indicate the nonlinear terms. Now if we let L = Dα(t) and apply the
Laplace transform to both sides of Equation (4.2) we obtain

L (Dα(t)) + L (Ry(t) +Ny(t)) = Lg(t). (4.3)

Using (3.1) we then have

Ly(t)− 1

sα

m−1∑
i=0

y(i)(0)sα−i−1 − 1

sα
(L (Ry(t) +Ny(t))− Lg(t)) = 0. (4.4)

We define the nonlinear operator

N [ϕ(t; q)] = L [ϕ(t; q)]− 1

sα

m−1∑
i=0

ϕ(t; q)(i)(0)sα−i−1− 1

sα
(L (Rϕ(t; q) +Nϕ(t; q))− Lg(t)) ,

(4.5)
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where q ∈ [0, 1] is an embedding parameter for ϕ(t; q), with ϕ a real function of
t and q. The so-called zero-order deformation equations of the Laplace transform
equation (4.5) have been shown by Liao to have the form

(1− q)L[ϕ(t; q)− y0(t)] = qhH(t)N [ϕ(t; q)] (4.6)

when q = 0 and q = 1. Here we have ϕ(t; 0) = u0(t) and ϕ(t; 1) = u(t), respectively.
Thus, as q increases from 0 to 1, the solution ϕ(t; q) varies from the initial guess
y0(t) to the solution y(t). Expanding ϕ(t; q) in a Taylor series with respect to q we
have

ϕ(t; q) = y0(t) +
∞∑

m=1

ym(t)qm, (4.7)

where

ym(t) =
1

m!

∂mϕ(t; q)

∂qm
|q=0. (4.8)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h and
the auxiliary function H(t) are properly chosen, then the series (4.7) converges at
q = 1 and we have [31, 8]

y(t) = y0(t) +
∞∑

m=1

ym(t). (4.9)

Let us now define the vector

−→yn = {y0(t), y1(t), y2(t), . . . , yn(t)}. (4.10)

Differentiating (4.6) m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing by m!, we have the so called mth-order deforma-
tion equation

L[ym(t)− χmym−1(t)] = hH(t)Rm(−→y m−1(t)), m = 1, 2, 3, ...., n, (4.11)

where

Rm(−→y m−1) =
1

(m− 1)!

∂m−1N [ϕ(t; q)]

∂qm−1
|q=0 (4.12)

and

χm =

{
0, m ≤ 1
1, m > 1

. (4.13)

On finding the inverse Laplace transform of (4.11) we then have a power series
solution y(t) =

∑∞
m ym(t) of (4.2).

5. Applications

In this section, we present the solution of a nonlinear fractional Ricatti equation
as an application of HATM.

Example 5.1. Consider the following Riccati differential equation

Dαy(t) = 2y(t)− y2(t) + 1, 0 < α ≤ 1, (5.14)

subject to the initial condition y(0) = 0.
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The exact solution of (5.14) for α = 1 is y(t) = 1+
√
2 tanh

(√
2t+ (1/2) log

(
(
√
2− 1)/(

√
2 + 1)

))
.

Applying the Laplace transform to both sides of equation (5.14) and using (3.1),
we obtain

L{y(t)} − 1

s
y(0) +

1

sα
L{2y(t)} − 1

sα
L{y2(t)}+ 1

sα
L{1} = 0. (5.15)

In view of the HAM technique and assuming H(t) = 1, we construct the zeroth-
order deformation equation as follows

(1− q)L[ϕ(t; q)− y0(t)] = qhH(t)N [ϕ(t; q)], (5.16)

where

N [ϕ(t; q)] = L{ϕ(t; q)} − 1

s
y(0) +

1

sα
L{2ϕ(t; q)} − 1

sα
L{ϕ(t; q)2(t)}+ 1

sα
L{1}.
(5.17)

The series solution of (5.14) is given by (4.9). Thus, we obtain the m-th order
deformation equation

L[ym(t)− χmym−1(t)] = hRm(−→y m−1(t)), m = 1, 2, 3, ...., n, (5.18)

with

Rm(−→y m−1(t)) = L{ym−1(t)}−
1

s
(1−χm)y(0)+

2

sα
L{ym−1(t)}−

1

sα
L{

m−1∑
i=0

yi(t)ym−1−i(t)}+
1

sα
L{1}.

(5.19)
Finding inverse Laplace transform of (5.18), we obtain

ym(t) = χmym−1(t) + hL−1{Rm(−→y m−1(t))}, m = 1, 2, 3, ...., n. (5.20)

Consequently, the first three terms of the HATM series approximate solution with
y0(t) = 0 are

y1(t) = − htα

Γ(1 + α)
, (5.21)

y2(t) = (1 + h)y1 +
2h2t2α

Γ(1 + 2α)
, (5.22)

y3(t) = (1+h)y2+

(
1 +

hΓ(1 + α)

Γ(1 + 2α)

)
2htαy1−h2tα

(
ht2αΓ(1 + α)2 − Γ(1 + 2α)

Γ(1 + α)2Γ(1 + 3α)

)
.

(5.23)
We therefore obtain the series solution from ( 4.9) as

y(t) = y0(t) + y1(t) + y2(t) + y3(t) + · · · (5.24)

Example 5.2. Consider the following Riccati differential equation

Dαy(t) = y2(t) + 1, 0 < α ≤ 1, (5.25)

subject to the initial condition y(0) = 0. The exact solution of (5.25) for α = 1 is
y = tan t.

As for example 1 the HATM iteration is

ym(t) = χmym−1(t) + hL−1{Rm(−→y m−1(t))}, m = 1, 2, 3, ...., n, (5.26)
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Figure 1. The h-curve of y
′
(0) at the 20th-term (solid) and 15-

term (−−) of the HATM series solutions (5.24), (5.31) and (5.38).

where

Rm(−→y m−1(t)) = L{ym−1(t)}−
1

s
(1−χm)y(0)− 1

sα
L{

m−1∑
i=0

yi(t)ym−1−i(t)}+
1

sα
L{1}.

(5.27)
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Consequently, the first three terms of the HATM series solution with y0(t) = 0 are

y1 = − htα

Γ(1 + α)
, (5.28)

y2 = (1 + h)y1, (5.29)

y3 = (1 + h)y2 −
Γ(1 + 2α)h3

Γ(1 + α)2Γ(1 + 3α)
t3α (5.30)

and the series solution from ( 4.9) is

y(t) = y0(t) + y1(t) + y2(t) + y3(t) + · · · (5.31)

Example 5.3. Consider the following Riccati differential equation

Dαy(t) = −y2(t) + 1, 0 < α ≤ 1, (5.32)

subject to the initial condition y(0) = 0.

The exact solution of (5.32) for α = 1 is y = e2t−1
e2t+1 . As in example 1 the HATM

iteration is

ym(t) = χmym−1(t) + hL−1{Rm(−→y m−1(t))}, m = 1, 2, 3, ...., n, (5.33)

where

Rm(−→y m−1(t)) = L{ym−1(t)}−
1

s
(1−χm)y(0)− 1

sα
L{

m−1∑
i=0

yi(t)ym−1−i(t)}+
1

sα
L{1}.

(5.34)
Consequently, the first three terms of the HATM series solution with y0(t) = 0 are

y1 = − htα

Γ(1 + α)
, (5.35)

y2 = (1 + h)y1, (5.36)

y3 = (1 + h)y2 +
Γ(1 + 2α)h3

Γ(1 + α)2Γ(1 + 3α)
t3α (5.37)

and the series solution is

y(t) = y0(t) + y1(t) + y2(t) + y3(t) + · · · (5.38)

As pointed by Liao [7] the expressions given by (4.9), (5.26) and (5.33) contain
the auxiliary parameter h. This parameter determines the convergence region and
rate of convergence of the approximation found using the HATM. This is shown in
Figure 1. This Figure shows the 20-term and 15-term HATM approximate analytic
solutions for α = 1, as given by Example 1, Example 2 and Example 3, respectively.
The figure shows y′(0) was plotted against h. We chose the horizontal line parallel
to the h-axis seen in this figure as the convergence region for the approximation,
which provides us with a simple way to adjust and control the convergence region
of the series solutions (5.24), (5.31) and (5.38). From this figure, the convergence
of the method is guaranteed for −1.8 ≤ h ≤ −0.2. In Figure 2 we compare the
HATM solutions (5.24), (5.31) and (5.38) for different values of h with the exact
solutions of (5.14), (5.25) and (5.32), respectively. Figure 2 shows that the best
result for the HATM solution occurs for h = −0.5 for Examples 1 and 3, while it is
h = −0.9 for Example 2.

Next, we compute the HATM solution for different values of α with h = −0.5 for
Examples 1 and 3 and at h = −0.9 for Example 2. Figure 3 shows the behavior of
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Figure 2. Comparison of the HATM series solu-
tions (5.24), (5.31), and (5.38) with exact solutions of (5.14), (5.25),
and (5.32) in (a), (b) and (c) respectively at α = 1 for
h = −1.5 (−−),−1 (· · · ), and −0.5 (− · −) .

the HATM for α = 1
4 ,

1
2 ,

3
4 and 1. The ADM results obtained for α = 1/2, 1/3, 1/4

and α = 1 are summarized in Figure 3. The comparison shows that as α → 1, the
approximate solutions tend to the exact solution in the case α = 1.
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Figure 3. Plots of the HATM series solutions (5.24), (5.31),
and (5.38) with exact solution α = 1(−) of (5.14), (5.25), and (5.32)
in (a), (b) and (c) respectively at h = −0.5 for α = 1

4 (−−), 1
2 (· · · ),

and 3
4 (− · −).

6. Conclusions

In this paper, the HATM was employed to analytically compute approximate
solutions of a fractional-order Riccati differential equation. By comparing these
approximate solutions with known exact solutions, it was shown that these solutions
have high accuracy. The solution obtained by HATM is in good agreement for
α = 1. Mathematica was used for the computations in this paper.
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