A NOTE ON THE RELATIONSHIP BETWEEN THE HAUSDORFF DIMENSION AND THE ORDER OF GRÜNWALD'S DEFINITION FOR FRACTIONAL CALCULUS

L. HARDY

Abstract. Given an iterated function system over a function of real n-dimensional
space, we establish a relationship between the Hausdorff dimension s and the
Grünwald's definition of order q for fractional calculus.

$$
s=1+\sum_{k} \frac{1}{q_{k}}
$$

1. Introduction

In this paper, we introduce a connection between the Hausdorff dimension s and the order q of Grünwald's definition for fractional calculus. We extend our previous work from [6] over a fractal domain of real n-dimensional space.

2. Preliminaries

We present basic definitions and results on fractional calculus from Agarwal [1], Grünwald ([4]) and Oldham and Spannier ([8]); on fractals from Edgar ([2]), Falconer ([3]) and Hutchinson ([7]); and on general measure theory from Halmos ([5]) and Mattila ([9]).
Definition 1 A (finite) partition π of the interval $[a, b]$ is a finite collection of points $\left\{x_{0}, x_{1}, \ldots, x_{N-1}\right\}$, called partition points, such that $a=x_{0}<x_{1}, \ldots,<x_{N-1}=b$. The length of the interval $\left[x_{j-1}, x_{j}\right]$ is denoted by $\Delta x_{j}=x_{j}-x_{j-1}$. The collection of all (finite) partitions of the interval $[a, b]$ is denoted by $\Pi[a, b]$.
Definition 2 A partition π^{\prime} is called a refinement of the partition π if every partition point of $x_{j} \in \pi$ also belongs to π^{\prime}.
Remark The process of integration or differentiation, denoted by $D_{x}^{q} f(x)$, to any order $q \in \mathbb{R}$ with respect to x of the function $f:[a, b] \rightarrow \mathbb{R}$ is given in [2] by Grünwald. If $q<0, q=0$ or $q>0$ then we say that the process is a differentiation, the identity map or an integration, respectively. When $q=1$, the Grünwald's definition reduces to the ordinary integral of Riemann.

[^0]Definition 3 (Grünwald definition) Let $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function on the interval closed $[a, b] \subset \mathbb{R}$. The derivative or integration to order q is given by

$$
\begin{equation*}
D_{x}^{-q} f(x)=\lim _{N \rightarrow \infty}\left\{\frac{1}{\Gamma(q)} \sum_{k=0}^{N-1} \frac{\Gamma(k+q)}{\Gamma(k+1)} f\left(x_{N-k}^{*}\right) \Delta^{q} x_{N-k}\right\} \tag{1}
\end{equation*}
$$

where we denote the gamma function at $x \in \mathbb{R}$ by $\Gamma(x)$.
Definition 4 A map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a contractive map if there exist an r, called the contraction ratio with $0<r<1$, such that for all $x, y \in X$, $|S(x)-S(y)|=r|x-y|$.
Definition 5 Let I be an index set, possibly infinite. The collection of contractive $\operatorname{maps}\left\{S_{k}: X \rightarrow X \mid k \in I\right\}$ on a closed interval $X \subset \mathbb{R}$ is called an iterated function system or IFS.
Definition 6 The IFS $\left\{S_{k}\right\}$ is said to satisfy the open set condition iff there exists a nonempty open set U for which we have $S_{i}(U) \cap S_{j}(U)=\emptyset$ for $i \neq j$ and $U \supseteq S_{i}(U)$ for all i.
Definition 7 Let $\left\{S_{k}\right\}$ be an IFS. We denote a list of contraction ratios by $\left(r_{1}, r_{2}, \ldots, r_{N}\right)$. If $\sum_{k} r_{k}^{s}=1$ then we call s the similarity dimension of the IFS.

3. Extension to Many Variables

Let $f:\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \rightarrow \mathbb{R}$ is a continuous function on the closed region $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}$. The derivative or integration to order $Q=$ $\left(-q_{1}, \cdots,-q_{n}\right)$, denoted by $D_{x_{1}, \cdots, x_{n}}^{Q} f\left(x_{1}, \ldots, x_{n}\right)$, is given by

$$
\begin{align*}
\lim _{N_{1}, \cdots, N_{n} \rightarrow \infty} & \prod_{k=1}^{n} \frac{1}{\Gamma\left(q_{k}\right)} \sum_{j_{1}=0}^{N_{1}-1} \cdots \sum_{j_{n}=0}^{N_{n}-1}\left(\prod_{k=1}^{n} \frac{\Gamma\left(j_{k}+q_{k}\right)}{\Gamma\left(j_{k}+1\right)}\right) \tag{2}\\
& \times f\left(x_{N_{1}-j_{1}}^{*}, \cdots, x_{N_{n}-j_{n}}^{*}\right) \Delta^{q_{1}} x_{N_{1}-j_{1}} \ldots \Delta^{q_{n}} x_{N_{n}-j_{n}}
\end{align*}
$$

where we denote the gamma function at $x \in \mathbb{R}$ by $\Gamma(x)$.

4. The Extended Grünwald Definition and Iterated Function Systems

In this section, we define a partition and subsequent refinements of Grünwald's definition for integration as an iterated function system on the interval $[0,1]$. Also, we show that it satisfies the open set condition for integration order $q>0$.
Definition 1 Let $N_{k} \geq 2$ and $q_{k} \geq 1$ for $k=1, \ldots, n$. Then the Grünwald IFS, denoted by \mathcal{G}, is the collection of maps $\left\{S_{j_{1}, \ldots, j_{n}}(\vec{x})\right\}_{j_{1}, \ldots, j_{n}=1}^{N_{1}, \ldots, N_{n}}$, where each map is defined by

$$
S_{j_{1}, \ldots, j_{n}}(\vec{x})=\left(\begin{array}{ccc}
\frac{1}{N_{1}^{q_{1}}} & \cdots & 0 \tag{3}\\
\vdots & & \vdots \\
0 & \cdots & \frac{1}{N_{n}^{q_{n}}}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
\frac{j_{1}-1}{N_{1}} \\
\vdots \\
\frac{j_{n}-1}{N_{n}}
\end{array}\right)
$$

Theorem 1 If $q>0$ then the Grünwald IFS \mathcal{G} satisfies the open set condition.
Proof. Without loss of generality, let $N \geq 2, q \geq 1$ and $\mathcal{G}_{0}=[0,1] \times \cdots \times[0,1]$. We denote the $m^{t h}$ iteration of the region $[0,1] \times \cdots \times[0,1]$ by \mathcal{G}_{m}. We show by induction on m. Suppose $m=1$. Then for any j_{1}, \ldots, j_{n}, the contraction $S_{j_{1}, \ldots, j_{n}}(\vec{x})$ sends the region $(0,1) \times \cdots \times(0,1)$ to a sub-region $\left(\frac{j_{1}-1}{N_{1}}, \frac{1}{N_{1}^{q_{1}}}+\frac{j_{1}-1}{N_{1}}\right) \times \cdots \times$
$\left(\frac{j_{k}-1}{N_{k}}, \frac{1}{N_{k}^{q_{k}}}+\frac{j_{k}-1}{N_{k}}\right) \times \cdots \times\left(\frac{j_{n}-1}{N_{n}}, \frac{1}{N_{n}^{q_{n}}}+\frac{j_{n}-1}{N_{n}}\right)$. We observe that the surrounding sub-regions are the result of sending the region $(0,1) \times \cdots \times(0,1)$ to sub-regions that do not intersect, and with all of them contained in $(0,1) \times \cdots \times(0,1)$ for all possible values of j_{k}. Now, assume that the Grünwald IFS satisfies the open set condition at $m=j$. Applying the contractive map $S_{j_{1}, \ldots, j_{n}}(\vec{x})$ to the region $(0,1) \times \cdots \times(0,1) j$-times, we obtain the sub-region

$$
\begin{align*}
& \left(\sum_{l=0}^{j} \frac{j_{1}-1}{N_{1}^{1+l q_{1}}}, \frac{1}{N_{1}^{j q_{1}}}+\sum_{l=0}^{j} \frac{j_{1}-1}{N_{1}^{1+l q_{1}}}\right) \times \ldots \\
& \cdots \times\left(\sum_{l=0}^{j} \frac{j_{k}-1}{N_{k}^{1+l q_{k}}}, \frac{1}{N_{k}^{j q_{k}}}+\sum_{l=0}^{j} \frac{j_{k}-1}{N_{k}^{1+l q_{k}}}\right) \times \ldots \tag{4}\\
& \cdots \times\left(\sum_{l=0}^{j} \frac{j_{n}-1}{N_{n}^{1+l q_{n}}}, \frac{1}{N_{n}^{j q_{n}}}+\sum_{l=0}^{j} \frac{j_{n}-1}{N_{n}^{1+l q_{n}}}\right)
\end{align*}
$$

Again, we observe that the surrounding sub-regions send the region $(0,1)$ to nonintersecting subreations that are also contained in $(0,1) \times \cdots \times(0,1)$. The inductive step

$$
S_{j_{1}, \ldots, j_{n}}^{j+1}(\vec{x})=\left(\begin{array}{ccc}
\frac{1}{N_{1}^{q_{1}}} & \cdots & 0 \tag{5}\\
\vdots & & \vdots \\
0 & \cdots & \frac{1}{N_{n}^{q_{n}}}
\end{array}\right)\left(\begin{array}{c}
\frac{x_{1}}{N_{1}^{j q_{1}}}+\sum_{l=0}^{j} \frac{j_{1}-1}{N_{1}^{1+l q_{1}}} \\
\vdots \\
\frac{x_{n}}{N_{n}^{j q_{n}}}+\sum_{l=0}^{j} \frac{j_{k}-1}{N_{n}^{1+l q_{n}}}
\end{array}\right)+\left(\begin{array}{c}
\frac{j_{1}-1}{N_{1}} \\
\vdots \\
\frac{j_{n}-1}{N_{n}}
\end{array}\right)
$$

provides the conclusion for $n \geq 1$. For $q<1$, we observe that there is subregion overlap under the contractive maps $\left\{S_{j_{1}, \ldots, j_{n}}(\vec{x})\right\}_{j_{1}, \ldots, j_{n}=1}^{N_{1}, \ldots, N_{n}}$. However, using the Grünwald definition, we can always adjust the dimensions of the sub-regions thereby satisfying the open set condition.

5. Order and the Hausdorff Dimension

In [6], we showed how the integration order is related to the Hausdorff dimension. We now extend these results to functions of many variables for all orders.
Theorem 2 The Hausdorff dimension of the Grünwald IFS \mathcal{G} is $s=\sum_{k} \frac{1}{q_{k}}$.
Proof. At the $m^{t h}$ iteration, \mathcal{G}_{m} can be covered by N_{k}^{m} intervals of length $N_{k}^{-m q_{k}}$. Thus, the similarity dimension for each k is required to satisfy the following condition.

$$
\begin{equation*}
\sum_{j_{k}} r_{j_{k}}^{s_{k}}=N_{k}^{m} N^{-m s_{k} q_{k}}=1 \tag{6}
\end{equation*}
$$

Note that the Hausdorff dimension for any interval $[a, b]$ of \mathbb{R} is one ([2]). In [5], the dimension of the product space $A \times B$ is $\operatorname{dim} A+\operatorname{dim} B$. Since the Grünwald definition for the integration process is defined on a product space, we have the following theorem.
Theorem 3 The Hausdorff dimension of $\mathcal{G} \times \mathbb{R}$ is $s=1+\sum_{k} \frac{1}{q_{k}}$.
Proof. Since the range \mathbb{R} is one-dimensional and the dimension of the domain is given by Theorem 2, the dimension of the product space is the sum of these dimensions as in 5].

Acknowledgements

The authors are grateful for the support of Ms. Linda Hardy during the writing of this paper.

References

[1] P. Agarwal, A Study of New Trends and Analysis of Special Function. LAP Lambert Academic Publishing, 2013.
[2] G. Edgar , Measure, Topology and Fractal Geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1990.
[3] K. S. Falconer, Fractal Geometry - Mathematical Foundations and Applications, John Wiley and Sons, New York, 1990.
[4] K. Grünwald, Ueber 'begrenzte' Derivationen und deren Anwendung. Z. Angew. Math. Phys. 12, (1867), 441-480.
[5] P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., 1950.
[6] L. C. Hardy, On the relationship between the Hausdorff dimension and the integration order. J. of Math., Stat. and Allied Fields 1, (2007), 1-7.
[7] J. E. Hutchinson, Fractals and Self Similarity. Ind. Uni. Math. Jour. 30, no. 5, (1981), 713-747.
[8] K. B. Oldham and J. Spannier, Fractional Calculus; Theory and Application of Differential and Integration to Arbitrary Order, Mathematics in Science and Engineering, V, Academic Press, 1974.
[9] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces:Fractals and Rectifiability, Cambridge University Press, 1995.
L. HARDY

University of South Florida St. Petersburg, St. Petersburg, Florida, U.S.A.
E-mail address: leonhardy@mail.usf.edu

[^0]: 2010 Mathematics Subject Classification. 26A33, 28A80, 26A03, 28A78, $28 A 35$.
 Key words and phrases. Hausdorff dimension, Grünwald definition, fractional calculus, order. Submitted June 19, 2015.

