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EXISTENCE AND ULAM STABILITIES FOR HADAMARD

FRACTIONAL INTEGRAL EQUATIONS IN FRÉCHET SPACES

SAÏD ABBAS, WAFAA ALBARAKATI, MOUFFAK BENCHOHRA AND GASTON M.

N’GUÉRÉKATA

Abstract. In this paper, we present some results concerning the existence
and Ulam Stabilities of solutions for some functional integral equations of

Hadamard fractional order. We use an extension of the Burton-Kirk fixed
point theorem in Fréchet spaces.

1. Introduction

Fractional integral equations have recently been applied in various areas of en-
gineering, science, finance, applied mathematics, and bio-engineering and others.
However, many researchers remain unaware of this field. There has been a signifi-
cant development in ordinary and partial fractional differential and integral equa-
tions in recent years; see the monographs of Abbas et al. [1, 6, 7], Baleanu et al. [9],
Kilbas et al. [21], Miller and Ross [23], Lakshmikantham et al. [22], Samko et al.
[29]. Butzer et al. [11] investigate properties of the Hadamard fractional integral
and derivative. In [12], they obtained the Mellin transforms of the Hadamard frac-
tional integral and differential operators. In [25], Pooseh et al. obtained expansion
formulas of the Hadamard operators in terms of integer order derivatives. Many
other interesting properties of those operators and others are summarized in [29]
and the references therein. Butzer et al. [11] investigate properties of the Hadamard
fractional integral and derivative. In [12], they obtained the Mellin transforms of
the Hadamard fractional integral and differential operators. In [25], Pooseh et al.
obtained expansion formulas of the Hadamard operators in terms of integer order
derivatives. Many other interesting properties of those operators and others are
summarized in [29] and the references therein.

The stability of functional equations was originally raised by Ulam in 1940 in a
talk given at Wisconsin University. The problem posed by Ulam was the following:
Under what conditions does there exist an additive mapping near an approximately
additive mapping? (for more details see [30]). The first answer to Ulam’s question
was given by Hyers in 1941 in the case of Banach spaces in [17]. Thereafter, this
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type of stability is called the Ulam-Hyers stability. In 1978, Rassias [26] provided
a remarkable generalization of the Ulam-Hyers stability of mappings by consider-
ing variables. The concept of stability for a functional equation arises when we
replace the functional equation by an inequality which acts as a perturbation of
the equation. Thus, the stability question of functional equations is how do the
solutions of the inequality differ from those of the given functional equation? Con-
siderable attention has been given to the study of the Ulam-Hyers and Ulam-Hyers-
Rassias stability of all kinds of functional equations; one can see the monographs
of [16, 18]. Bota-Boriceanu and Petrusel [10], Petru et al. [24], and Rus [27, 28]
discussed the Ulam-Hyers stability for operatorial equations and inclusions. Castro
and Ramos [13], and Jung [20] considered the Hyers-Ulam-Rassias stability for a
class of Volterra integral equations. More details from historical point of view, and
recent developments of such stabilities are reported in [19, 27].

Recently some interesting results on the existence and Ulam stabilities of the
solutions of some classes of differential equations have been obtained by Abbas et
al. [2, 3, 4, 5]. This paper deals with the existence and Ulam stabilities of olutions
of the ollowing Hadamard fractionl integral equations of the form

u(t, x) = µ(t, x) + f(t, x, (HIrσu)(t, x), u(t, x))

+ 1
Γ(r1)Γ(r2)

∫ t

1

∫ x

1

(
log t

s

)r1−1
(
log x

y

)r2−1

×g(t, x, s, y, u(s, y))dydssy ; (t, x) ∈ J := [1,+∞)× [1, b],

(1.1)

where b > 1, σ = (1, 1), r = (r1, r2), r1, r2 ∈ (0,∞), HIrσ is the Hadamard integral
of order r, µ : J → R, f : J × R × R → R, g : J ′ × R → R are given continuous
functions, J ′ = {(t, x, s, y) ∈ J2 : s ≤ t, y ≤ x} and Γ(·) is the (Euler’s) Gamma
function defined by

Γ(ξ) =

∫ ∞

0

tξ−1e−tdt; ξ > 0.

Our investigations are conducted in Fréchet spaces with an application of the fixed
point theorem of Burton-Kirk for the existence of solutions of the integral equation
(1.1), and we prove that all solutions are generalized Ulam-Hyers-Rassias stable.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By L1([1,+∞) × [1, b]); for b > 1, we denote the
space of Lebesgue-integrable functions u : [1,+∞)× [1, b] → R with the norm

∥u∥1 =

∫ ∞

1

∫ b

1

|u(t, x)|dxdt.

By C := C(J) we denote the space of all continuous functions from J into R.

Definition 2.1. [15, 21] The Hadamard fractional integral of order q > 0 for a
function g ∈ L1([1, a],R), is defined as

(HIq1g)(x) =
1

Γ(q)

∫ x

1

(
log

x

s

)q−1 g(s)

s
ds.
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Example 2.2. The Hadamard fractional integral of order q > 0 for the function
w : [1, e] → R, defined by w(x) = (log x)β−1 with β > 0, is

(HIq1w)(x) =
Γ(β)

Γ(β + q)
(log x)β+q−1.

Definition 2.3. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ L1(J,R),
define the Hadamard partial fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 w(s, t)

st
dtds.

Let X be a Fréchet space with a family of semi-norms {∥ · ∥n}n∈N∗ . We assume
that the family of semi-norms {∥ · ∥n} verifies :

∥x∥1 ≤ ∥x∥2 ≤ ∥x∥3 ≤ ... for every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such
that

∥y∥n ≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ∥ · ∥n)} as follows : For
every n ∈ N, we consider the equivalence relation ∼n defined by : x ∼n y if and
only if ∥x − y∥n = 0 for x, y ∈ X. We denote Xn = (X|∼n , ∥ · ∥n) the quotient
space, the completion of Xn with respect to ∥ · ∥n. To every Y ⊂ X, we associate a
sequence {Y n} of subsets Y n ⊂ Xn as follows : For every x ∈ X, we denote [x]n the
equivalence class of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }. We denote
Y n, intn(Y

n) and ∂nY
n, respectively, the closure, the interior and the boundary of

Y n with respect to ∥ · ∥n in Xn. For more information about this subject see [14].

Set
Jp := [1, p]× [1, b]; p ∈ N\{0, 1}.

For each p ∈ N\{0, 1} we consider following set, Cp = C(Jp), and we define in C
the semi-norms by

∥u∥p = sup
(t,x)∈Jp

∥u(t, x)∥.

Then C is a Fréchet space with the family of semi-norms {∥u∥p}.
Definition 2.4. A set M ⊂ C is bounded if and only if

∀p ∈ N\{0, 1}, ∃ℓp > 0 : ∀u ∈M, ∥u∥p ≤ ℓp,

and M = {u(t, x); (t, x)) ∈ J} ⊂ C is relatively compact if and only if for all p ∈
N\{0, 1}, the family {u(t, x)|(t,x)∈Jp

} is equicontinuous and uniformly bounded on
Jp.

Now, we consider the Ulam stability for the Hadamard integral equation (1.1).
Let us define the mapping N : C → C, such that,

(Nu)(t, x) = µ(t, x) + f(t, x, (HIrσu)(t, x), u(t, x))

+ 1
Γ(r1)Γ(r2)

∫ t

1

∫ x

1

(
log t

s

)r1−1
(
log x

y

)r2−1

×g(t, x, s, y, u(s, y))dydssy ; (t, x) ∈ J.

(2.1)
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Let ϵ be a positive real number and ϕ : Jp → [0,∞) be a measurable and bounded
function. We consider the following inequalities:

∥u(t, x)− (Nu)(t, x)∥p ≤ ϵ; for a.a. (t, x) ∈ Jp. (2.2)

∥u(t, x)− (Nu)(t, x)∥p ≤ ϕ(t, x); for a.a. (t, x) ∈ Jp. (2.3)

∥u(t, x)− (Nu)(t, x)∥p ≤ ϵϕ(t, x); for a.a. (t, x) ∈ Jp. (2.4)

Definition 2.5. [6, 27] The equation (1.1) is Ulam-Hyers stable if there exists a
real number cN > 0 such that for each ϵ > 0 and for each solution u of the inequality
(2.2) there exists a solution v of the equation (1.1) with

∥u(t, x)− v(t, x)∥p ≤ ϵcN ; (t, x) ∈ Jp.

Definition 2.6. [6, 27] The equation (1.1) is generalized Ulam-Hyers stable if there
exists cN : C([0,∞), [0,∞)) with cN (0) = 0 such that for each ϵ > 0 and for each
solution u of the inequality (2.2) there exists a solution v of the equation (1.1) with

∥u(t, x)− v(t, x)∥p ≤ cN (ϵ); (t, x) ∈ Jp.

Definition 2.7. [6, 27] The equation (1.1) is Ulam-Hyers-Rassias stable with re-
spect to ϕ if there exists a real number cN,ϕ > 0 such that for each ϵ > 0 and for
each solution u of the inequality (2.4) there exists a solution v of the equation (1.1)
with

∥u(t, x)− v(t, x)∥p ≤ ϵcN,ϕϕ(t, x); (t, x) ∈ Jp.

Definition 2.8. [6, 27] The equation (1.1) is generalized Ulam-Hyers-Rassias stable
with respect to ϕ if there exists a real number cN,ϕ > 0 such that for each solution
u of the inequality (2.3) there exists a solution v of the equation (1.1) with

∥u(t, x)− v(t, x)∥p ≤ cN,ϕϕ(t, x); (t, x) ∈ Jp.

Remark 2.9. It is clear that:
(i) Definition 2.5 ⇒ Definition 2.6,
(ii) Definition 2.7 ⇒ Definition 2.8,
(iii) Definition 2.7 for ϕ(., .) = 1 ⇒ Definition 2.5.

One can have similar remarks for the inequalities (2.2) and (2.4). So, the Ulam
stabilities of the fractional differential equations are some special types of data
dependence of the solutions of fractional differential equations.

We need the following extension of the Burton-Kirk fixed point theorem in the
case of a Fréchet space.

Theorem 2.10. [8] Let (X, ∥.∥n) be a Fréchet space and let A,B : X → X be two
operators such that

(a) A is a compact operator;
(b) B is a contraction operator with respect to a family of seminorms {∥.∥n};
(c) the set

{
x ∈ X : x = λA(x) + λB

(
x
λ

)
, λ ∈ (0, 1)

}
is bounded.

Then the operator equation A(u) +B(u) = u has a solution in X.
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3. Existence and Ulam stabilities results

Now, we are concerned with the existence and the Ulam stability of solutions for
the integral equation (1.1).

Set

J ′
p = {(t, x, s, y) : 1 ≤ s ≤ t ≤ p, 1 ≤ y ≤ x ≤ b}; p ∈ N\{0, 1}.

The following hypotheses will be used in the sequel.

(H1) There exist continuous functions l, k : Jp → R+, such that

|f(t, x, u1, v1)− f(t, x, u2, v2)| ≤
l(t, x)|u1 − u2|+ k(t, x)|v1 − v2|

1 + |u1 − u2|+ |v1 − v2|
;

for each (t, x) ∈ Jp and each u1, u2, v1, v2 ∈ R.
(H2) There exist continuous functions P,Q, φ : J ′

p → R+ and a nondecreasing
function ψ : [0,∞) → (0,∞) such that

|g(t, x, s, y, u)| ≤ P (t, x, s, y) +Q(t, x, s, y)|u|
1 + |u|

;

for (t, x, s, y) ∈ J ′, u ∈ R, and

|g(t1, x1, s, y, u)− g(t2, x2, s, y, u)| ≤ φ(s, y)(|t1 − t2|+ |x1 − x2|)
×ψ(|u|); (t1, x1, s, y), (t2, x2, s, y) ∈ J ′

p, u ∈ R.

(H3) There exist continuous functions P1, Q1 : Jp → [0,∞), such that for each
(t, s), (t, x) ∈ Jp, we have

P (t, x, s, y, w) ≤ ϕ(t, x)P1(s, y), and Q(t, x, s, y, w) ≤ ϕ(t, x)Q1(s, y).

Theorem 3.1. Assume that the hypotheses (H1) and (H2) hold. If

ℓ := kp +
lp(log p)

r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
< 1, (3.1)

where

kp = sup
(t,x)∈Jp

k(t, x), lp = sup
(t,x)∈Jp

l(t, x); p ∈ N\{0, 1},

then the Hadamard integral equation (1.1) has at least one solution in the space
C. Furthermore, if the hypothesis (H3) holds, then the equation (1.1) is generalized
Ulam-Hyers-Rassias stable.

Proof. Let us define the operators A,B : C → C defined by

(Au)(t, x) =

∫ t

1

∫ x

1

(
log

t

s

)r1−1(
log

x

y

)r2−1
g(t, x, s, y, u(s, y))

syΓ(r1)Γ(r2)
dyds; (t, x) ∈ J,

(3.2)

(Bu)(t, x) = µ(t, x) + f(t, x, (HIrσu)(t, x), u(t, x)); (t, x) ∈ J. (3.3)

We shall show that operators A and B satisfied all the conditions of Theorem 2.10.
The proof will be given in several steps.

Step 1. A is compact.
To this aim, we must prove that A is continuous and it transforms every bounded
set into a relatively compact set. Let M ⊂ C be a bounded set of C. The proof will
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be given in several claims.

Claim 1. A is continuous.
Let {un}n∈N\{0,1} be a sequence in M such that un → u in M. Then, for each
(t, x) ∈ Jp; p ∈ N\{0, 1}, we have

|(Aun)(t, x)− (Au)(t, x)|

≤ 1
Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣log t
s

∣∣r1−1
∣∣∣log x

y

∣∣∣r2−1

×|g(t, x, s, y, un(s, y))− g(t, x, s, y, u(s, y))|dyds

≤ 1
Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣log t
s

∣∣r1−1
∣∣∣log x

y

∣∣∣r2−1

×|g(t, x, s, y, un(s, y))− g(t, x, s, y, u(s, y))|dyds.

(3.4)

Then, since un → u as n→ ∞ and g is continuous, (3.4) gives

∥A(un)−A(u)∥p → 0 as n→ ∞.

Claim 2. A maps bounded sets into bonded sets in C.
For arbitrarily fixed (t, x) ∈ Jp and u ∈M, we have

|(Au)(t, x)| ≤ 1

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

× |g(t, x, s, y, u(s, y))|dyds

≤ 1

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

× P (t, x, s, y) +Q(t, x, s, y)|u(s, y)|
1 + |u(s, y)|

dyds

≤ 1

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

× (P (t, x, s, y) +Q(t, x, s, y))dyds

≤ Pp +Qp,

where

Pp = sup
(t,x)∈Jp

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1
P (t, x, s, y)

Γ(r1)Γ(r2)
dyds,

and

Qp = sup
(t,x)∈Jp

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1
Q(t, x, s, y)

Γ(r1)Γ(r2)
dyds.

Thus

∥A(u)∥p ≤ Pp +Qp := ℓ′p.

Claim 3. A maps bounded sets into equicontinuous sets in C.
Let (t1, x1), (t2, x2) ∈ Jp, t1 < t2, x1 < x2 and let u ∈M, thus we have

|(Au)(t2, x2)− (Au)(t1, x1)|

≤ 1

Γ(r1)Γ(r2)

∣∣∣ ∫ t2

1

∫ x2

1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

×[g(t2, x2, s, y, u(s, y))− g(t1, x1, s, y, u(s, y))]dyds
∣∣∣
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+
1

Γ(r1)Γ(r2)

∣∣∣ ∫ t2

1

∫ x2

1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

g(t1, x1, s, y, u(s, y))dyds

−
∫ t2

1

∫ x2

1

∣∣∣∣log t1s
∣∣∣∣r1−1 ∣∣∣∣log x1y

∣∣∣∣r2−1

g(t1, x1, s, y, u(s, y))dyds
∣∣∣

+
1

Γ(r1)Γ(r2)

∣∣∣ ∫ t2

1

∫ x2

1

∣∣∣∣log t1s
∣∣∣∣r1−1 ∣∣∣∣log x1y

∣∣∣∣r2−1

g(t1, x1, s, y, u(s, y))dyds

−
∫ t1

1

∫ x1

1

∣∣∣∣log t1s
∣∣∣∣r1−1 ∣∣∣∣log x1y

∣∣∣∣r2−1

g(t1, x1, s, y, u(s, y))dyds
∣∣∣.

Thus

|(Au)(t2, x2)− (Au)(t1, x1)|

≤ 1

Γ(r1)Γ(r2)

∫ t2

1

∫ x2

1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

×
∣∣∣g(t2, x2, s, y, u(s, y))− g(t1, x1, s, y, u(s, y))

∣∣∣dyds
+

1

Γ(r1)Γ(r2)

∫ t1

1

∫ x1

1

∣∣∣ (log t2
s

)r1−1(
log

x2
y

)r2−1

−
(
log

t1
s

)r1−1(
log

x1
y

)r2−1 ∣∣∣
×
∣∣∣g(t1, x1, s, y, u(s, y))∣∣∣dyds

+
1

Γ(r1)Γ(r2)

∫ t1

1

∫ x2

x1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

|g(t1, x1, s, y, u(s, y))|dyds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

|g(t1, x1, s, y, u(s, y))|dyds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

|g(t1, x1, s, y, u(s, y))|dyds.

Hence

|(Au)(t2, x2)− (Au)(t1, x1)|

≤ 1

Γ(r1)Γ(r2)

∫ t2

1

∫ x2

1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

×φ(s, y)(|t1 − t2|+ |x1 − x2|)ψ(ℓp)dyds

+
1

Γ(r1)Γ(r2)

∫ t1

1

∫ x1

1

∣∣∣ (log t2
s

)r1−1(
log

x2
y

)r2−1

−
(
log

t1
s

)r1−1(
log

x1
y

)r2−1 ∣∣∣
×(P (t1, x1, s, y) +Q(t1, x1, s, y))dyds

+
1

Γ(r1)Γ(r2)

∫ t2

t2

∫ x2

1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

(P (t1, x1, s, y) +Q(t1, x1, s, y))dyds

+
1

Γ(r1)Γ(r2)

∫ t1

1

∫ x2

x1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

(P (t1, x1, s, y) +Q(t1, x1, s, y))dyds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

∣∣∣∣log t2s
∣∣∣∣r1−1 ∣∣∣∣log x2y

∣∣∣∣r2−1

(P (t1, x1, s, y) +Q(t1, x1, s, y))dyds.

From the continuity of functions P,Q, φ and as t1 −→ t2 and x1 −→ x2, the right-
hand side of the above inequality tends to zero. As a consequence of claims 1-3 and
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from the Arzelá-Ascoli theorem, we can conclude that A is continuous and compact.

Step 2. B is a contraction.
Consider v, w ∈ C. Then, by (H1), for any p ∈ N\{0, 1} and each (t, x) ∈ JP , we
have

|(Bv)(t, x)− (Bw)(t, x)| ≤ l(t, x)|HIrσ(v − w)(t, x)|+ k(t, x)|(v − w)(t, x)|

≤
(
k(t, x) +

l(t, x)(log p)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)

)
|v − w|.

Thus,

∥(B(v)−B(w)∥p ≤
(
kp +

lp(log p)
r1(log b)r2

Γ(1 + r1)Γ(1 + r2)

)
∥v − w∥p.

By (3.1), we conclude that B is a contraction.

Step 3. the set E :=
{
u ∈ C(J) : u = λA(u) + λB

(
u
λ

)
, λ ∈ (0, 1)

}
is bounded.

Let u ∈ C, such that u = λA(u) + λB
(
u
λ

)
for some λ ∈ (0, 1). Then, for any

p ∈ N\{0, 1} and each (t, x) ∈ Jp, we have

|u(t, x)| ≤ λ|A(u)|+ λ|B
(u
λ

)
|

≤ |µ(t, x)|+ |f(t, x, 0, 0)|+ k(t, x) + l(t, x)

+
1

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

×P (t, x, s, y) +Q(t, x, s, y)

sy
dyds

≤ µp + fp + kp + lp + Pp +Qp,

where

µp = sup
(t,x)∈[1,p]×[1,b]

µ(t, x), fp = sup
(t,x)∈[1,p]×[1,b]

|f(t, x, 0, 0)|; p ∈ N\{0, 1}.

Thus,

∥u∥p ≤ µp + fp + kp + lp + Pp +Qp =: ℓ∗p.

Hence, the set E is bounded.
As a consequence of Steps 1-3 and from an application of Theorem 2.10 we deduce
that N has a fixed point u which is a solution of the integral equation (1.1).

Step 4. The generalized Ulam-Hyers-Rassias stability.
Set

P1p = sup
(s,y)∈Jp

P1(s, y), and Q1p = sup
(s,y)∈Jp

Q1(s, y).

Let u be a solution of the inequality (2.3) and v be a solution of the equation (1.1).
Then

v(t, x) = µ(t, x) + f(t, x,H Irσv(t, x), v(t, x))

+ 1
Γ(r1)Γ(r2)

∫ t

1

∫ x

1

(
log t

s

)r1−1
(
log x

y

)r2−1

×g(t, x, s, y, v(s, y))dydssy ; (t, x) ∈ J := [1,+∞)× [1, b],
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From the inequality (2.3) and the hypothesis (H3), for each (t, x) ∈ Jp, we have

|u(t, x)− v(x, y)| ≤ |u(t, x)− (Nu)(t, x)|
+ |(Nu)(t, x)− (Nv)(t, x)|
≤ ϕ(x, y) + |f(t, x, (HIrσu)(t, x, ), u(t, x))− f(t, x,H Irσv(t, x), v(t, x))|

+
1

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

× |g(t, x, s, y, u(s, y))− g(t, x, s, y, v(s, y))|dyds
sy

≤ ϕ(x, y) + l(t, x)|(HIrσu)(t, x)−H Irσv(t, x)|
+ k(t, x)|u(t, x)− v(t, x)|

+
2ϕ(t, x)

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

ϕ(t, x)

× (P1(s, y) +Q1(s, t))dyds

≤ ϕ(x, y) + ℓp|u(t, x)− v(t, x)|

+
2ϕ(t, x)

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

(P1p +Q1p)dyds

≤ ϕ(t, x) + ℓp|u(t, x)− v(t, x)|

+
2(P1p +Q1p)ϕ(t, x)

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

dyds.

Thus, for each (t, x) ∈ Jp, we obtain

|u(t, x)− v(x, y)| ≤ ϕ(t, x)

1− ℓp

(
1 +

2(P1p +Q1p)

Γ(r1)Γ(r2)

∫ t

1

∫ x

1

∣∣∣∣log ts
∣∣∣∣r1−1 ∣∣∣∣log xy

∣∣∣∣r2−1

dyds

)

≤ 1

1− ℓp

(
1 +

2(P1p +Q1p)(log p)
r1(log b)r2

Γ(1 + r1)Γ(1 + r2)

)
ϕ(t, x)

:= cN,ϕϕ(t, x).

Hence, for each (t, x) ∈ Jp, we get

|u(t, x)− v(x, y)| ≤ cN,ϕϕ(x, y).

Consequetly, the equation (1.1) is generalized Ulam-Hyers-Rassias stable.

4. An Example

Consider the following Hadamard fractional order integral equation of the form

u(t, x) =
xe3−2t

1 + t+ x2
+

xe−t−2

cp(1 + e−2p|(HIrσu)(t, x)|+ e−p|u(t, x)|)

+

∫ t

1

∫ x

1

(
log

t

s

)r1−1(
log

x

y

)r2−1
g(t, x, s, y, u(s, y))

Γ(r1)Γ(r2)
dyds; (t, x) ∈ [1,+∞)×[1, e],

(4.1)
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where cp = e−p + e−2ppr1

Γ(1+r1)Γ(1+r2)
; p ∈ N\{0, 1}, r = (r1, r2) ∈ (0,∞)× (0,∞) and

g(t, x, s, y, u) =
xs

−3
4 (1 + |u|) sin

√
t sin s

(1 + x2 + t2)(1 + |u|)
; if (t, x, s, y) ∈ J ′, and u ∈ R,

and
J ′ = {(t, x, s, y) : 1 ≤ s ≤ t and 1 ≤ x ≤ y ≤ e}.

Set

µ(t, x) =
xe3−2t

1 + t+ x2
, f(t, x, u, v) =

xe−t−2

cp(1 + e−2p|u|+ e−p|v|)
; p ∈ N\{0, 1}.

The function f is continuous and satisfies assumption (H1), with k(t, x) =
xe−t−2−p

cp
, l(t, x) =

xe−t−2−2p

cp
, kp = e−2−p

cp
and lp = e−2−2p

cp
. Also, the function g is continuous and sat-

isfies assumption (H2), with

P (t, x, s, y) = Q(t, x, s, y) =
xs

−3
4 sin

√
t sin s

1 + x2 + t2
; (t, x, s, y) ∈ J ′.

Also, the function g is continuous and satisfies assumption (H3), with

P1(s, y) = Q(s, y) = s
−3
4 sin s, P1p = Q1p = p

−3
4 ,

and

ϕ(t, x) =
x sin

√
t

1 + x2 + t2
.

Finally, We shall show that condition (3.1) holds with b = e. Indeed, for each
p ∈ N\{0, 1}, we get

kp +
lp(log p)

r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
=

1

cp

(
e−2−p +

e−2−2ppr1

Γ(1 + r1)Γ(1 + r2)

)
= e−2 < 1.

Hence by Theorem 3.1, the equation (4.1) has a solution defined on [1,+∞)× [1, e]
and (4.1) is generalized Ulam-Hyers-Rassias stable.

References

[1] S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions,
Springer, New York, 2015.

[2] S. Abbas, W. A. Albarakati, M. Benchohra, M. A. Darwish and E. M. Hilal, New existence
and stability results for partial fractional differential inclusions with multiple delay, Ann.

Polon. Math., 114 (2015), 81-100.
[3] S. Abbas and M. Benchohra, Some stability concepts for Darboux problem for partial frac-

tional differential equations on unbounded domain, Fixed Point Theory, 16 (1) (2015), 3-14.
[4] S. Abbas and M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional

differential equations with not instantaneous impulses, Appl. Math. Comput. 257 (2015),
190-198.

[5] S. Abbas, M. Benchohra and M.A. Darwish. New stability results for partial fractional dif-
ferential inclusions with not instantaneous impulses, Frac. Calc. Appl. Anal. 18 (1) (2015),

172-191.
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