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ITERATIVE SOLUTIONS TO A COUPLED SYSTEM OF

NON-LINEAR FRACTIONAL DIFFERENTIAL EQUATION

K. SHAH, R. A. KHAN

Abstract. In this article we investigate the existence of extremal(maximal
and minimal) solutions for the following coupled system of integro- differential

equations of fractional order with the given boundary conditions of the form
Dαu(t) + f1(t, v(t), I

βv(t)) = 0, 0 < t < 1,

Dβv(t) + f2(t, u(t), I
αu(t)) = 0, 0 < t < 1,

u(0) = 0, u′(1) = 0, v(0) = 0, v′(1) = 0.

where 1 < α, β ≤ 2 and f1, f2 : [0, 1] × R × R → R are given functions
satisfying Caratheodory conditions and D is standing for Riemann-liouville-

differentiation of fractional order. We find some sufficient conditions for the
existence and uniqueness of maximal and minimal solutions by using monotone
iterative technique along with the method of upper and lower solutions. We
also link our analysis for the problem to equivalent integral equations. We also

give the error estimate and an example for the illustration of our results.

1. Introduction

The advancement in applied analysis and its significant applications especially of
fractional calculus and its existence in various field of science and engineering, many
researchers are taking interest to study them and its various applications. Fractional
differential equations arise in the field of physics, electro chemistry, viscoelasticity,
Control theory,aerodynamics,electrodynamics of complex medium, polymer rheol-
ogy and image and signal processing phenomenon etc. Large number of research
articles are devoted to the existence of positive solution and solutions of differential
equations of fractional order for detail see [1, 2, 3, 4, 5, 6] and the reference therein.
Recently many authors are taking interest in the study of coupled system of frac-
tional order differential equations because they occur in various problems of applied
analysis, [7, 8, 9, 1, 11, 12, 22] and the reference therein. Considerable work have
been done to study existence and uniqueness of positive solution for the coupled
system of fractional order differential equations by the help of standard fixed point
theorem of Cone expansion and Banach contraction type.
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The monotone iterative technique is a powerful tool when combined with the
method of upper and lower solutions and applied useful consequences may be drawn
for existence of multiple solutions of fractional order differential equations, such
type work can be be found in [13, 14, 15, 16, 17] the references used in them. In
[18, 19, 20, 23, 24, 25, 26, 27, 28, 29] the above mentioned technique were used for
initial value problems and useful results were obtained for the existence of solutions.
Also some authors applied the same technique for boundary value problems and
investigated the solutions of differential equations of fractional order. To the best
of our information very few articles are devoted to such type of results for coupled
systems of fractional order differential equations for example in [21], N. Xu and W.
Liu applied the monotone iterative technique to the following coupled system of
fractional differential-integral equations with two-point boundary conditions of the
form 

Dαu(t) + f(t, v(t), Iβv(t)) = 0, t ∈ [0, 1],

Dβv(t) + g(t, u(t), Iαu(t)) = 0, t ∈ [0, 1],

I3−αu(0) = Dα−2u(0) = u(1) = 0,

I3−βv(0) = Dβ−2v(0) = v(1) = 0,

where 2 < α, β ≤ 3 and f, g : [0, 1]×R×R → R are satisfying Caratheodory con-
ditions and Dα, Dβ , Iα, Iβ are standing for Riemann-Liouville fractional derivative
and fractional integration respectively.
Motivated by the above work, we study the following coupled system of nonlin-
ear fractional order differential equations with mixed type boundary conditions by
applications of monotone iterative technique along with the method of upper and
lower solutions to investigate the following integro-differential equations for the
existence and uniqueness results of extremal solutions as

Dαu(t) + f1(t, v(t), I
βv(t)) = 0, t ∈ [0, 1],

Dβv(t) + f2(t, u(t), I
αu(t)) = 0, t ∈ [0, 1],

u(0) = 0, u′(1) = 0, v(0) = 0, v′(1) = 0.

(1)

where 1 < α, β ≤ 2 and f1, f2 : I × R × R → R are satisfying Caratheodory con-
ditions and Dα, Dβ , Iα, Iβ are standing for Riemann-Liouville fractional derivative
and fractional integration respectively. We use various tools of functional analysis
to obtain sufficient conditions for existence and uniqueness of maximal and min-
imal solutions. Further we provide an example to illustrate our results and error
estimate.

2. Preliminaries

We give some basic definitions and known results of fractional calculus and func-
tional analysis which will play important rule in the studies of maximal and minimal
solutions of this paper, for this we refer to [2, 3, 4, 13, 14, 15, 16, 17, 19].
Definition 2.1. The arbitrary order integral for a function y ∈ L1([a, b], R+) is
given by

Iαa+y(t) =

∫ t

a

(t− s)α−1y(s)

Γ(α)
ds

where α ∈ R+ and ‘Γ’ Gamma function provided that the integral converges at
right side.
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Definition 2.2. The Riemann-liouville fractional order derivative of a function y
on the interval [a, b] is defined by

Dα
a+y(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1y(s) ds,

where n = [α] + 1 and [α] represents the integer part of α, provided that the right
side is point wise defined on (0,∞).
Lemma 2.1. [6], The following result holds for fractional differential equations
y ∈ C(0, 1)

∩
L(0, 1)

IαDαy(t) = y(t) + c1t
α−1 + c2t

α−2 + c3t
α−3 + ...+ cnt

α−n,

for arbitrary ci ∈ R, i = 1, 2, ..., n.
Definition 2.3.[20], Let X,Y be Banach spaces satisfying the property of partial
order andS ⊂ X,T : S → Y be an operator. Then T is increasing operator if for
all u, v ∈ S with u ≤ v, if T satisfies Tu ≤ Tv. Similarly T is decreasing operator
if for all u, v ∈ S such that u ≥ v we have Tu ≥ Tv.
Definition 2.4. [20], For a Banach spaceX such that S ⊂ X,T : S → Y be an
operator. If ū ≥ T ū holds for all ū ∈ S is called upper solution and u ≤ Tu holds
for all u ∈ S holds is called lower solution for the operator equation Tu = u.
Definition 2.5. [20], A functions f(t, x, y) : [0, 1]×R×R → R satisfies Caratheodory
conditions, if satisfies the following conditions:

(i) f(t, x, y) is Lebesgue measurable for t and for each x, y ∈ R,
(ii) f(t, x, y) is continuous for x, y for all most t ∈ [0, 1].

Lemma 2.2.[20], For a partial order Banach space X, for each n ∈ Z+, un ≤ vn,
if un → u and vn → v, then u ≤ v.
Definition 2.6. [20], Functions (u0, v0) ∈ C[0, 1]×C[0, 1]are called a lower solution
of (1) if they satisfy

Dαu0(t) + f1(t, v0(t), I
βv0(t)) ≤ 0, t ∈ [0, 1],

Dβv0(t) + f2(t, u0(t), I
αu0(t)) ≤ 0, t ∈ [0, 1],

u0(0) ≤ 0, u′
0(1) ≤ 0, v0(0) ≤ 0, v′0(1) ≤ 0.

Definition 2.7. [20], Similarly (ū0, v̄0) are called upper solution of(1), if they obey
Dαū0(t) + f1(t, v̄0(t), I

β v̄0(t)) ≥ 0, t ∈ [0, 1],

Dq v̄0(t) + f2(t, ū0(t), I
αū0(t)) ≥ 0, t ∈ [0, 1],

ū0(0) ≥ 0, ū′
0(0) ≥ 0, v̄0(0) ≥ 0, v̄′0(1) ≥ 0.

Definition 2.8. Let (u(t), v(t)) ∈ [u0, v0] × [u0, v0] is any system of solutions of
(1) and there exist an iterative sequences

u0 ≤ u1 ≤ u2 ≤ · · ·un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0

such that limn→∞ un(t) = u∗(t), limn→∞ vn(t) = v∗(t) on compact subset of [0, 1]
and the limit functions u∗, v∗ satisfy (1). Further u∗, v∗ ∈ [u0, v0]. That is un ≤
u, v ≤ vn, n = 1, 2, 3, ..., by taking limit n → ∞, we have u∗ ≤ u, v ≤ v∗. Then
(u∗(t), v∗(t)) is said to be extremal solutions of (1) in [u0, v0]× [u0, v0].
Now we are going to introduce some data dependence results and symbols that used
throughout in this paper.
Let X = {C[0, 1], ∥u∥ = maxt∈[0,1] |u(t)|}, clearly X is a Banach space. Let K be
a cone in X having a property of partial ordering u ≤ v for u, v ∈ X such that
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v − u ∈ K, then X is called a partial order Banach space. For any u0, ū0 ∈ X
are called lower and upper solution respectively of(1) with u0 ≤ ū0, by assigning
S = [u0, ū0].

3. Main Results

Theorem 3.1. Iffi(i = 1, 2) : I × R × R → R are satisfying Caratheodory
conditions, then (1) has integral representation of the form given by

u(t) =

∫ 1

0

Gα(t, s)f1(s, v(s), I
βv(s))ds, t ∈ [0, 1],

v(t) =

∫ 1

0

Gβ(t, s)f2(s, u(s), I
αu(s))ds, t ∈ [0, 1],

(2)

where Gα, Gβare Green’s functions given by

Gα(t, s) =
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−2, 0 ≤ t ≤ s ≤ 1,
(3)

Gβ(t, s) =
1

Γ(β)

{
tβ−1(1− s)β−2 − (t− sβ−1, 0 ≤ s ≤ t ≤ 1,

tβ−1(1− s)β−2, 0 ≤ t ≤ s ≤ 1.
(4)

Proof. Now by applying Iα on both sides of (1) , we obtain

u(t) = −Iαf1(t, v(t), I
αv(t))− c1t

α−1 − c2t
α−2, c1, c2 ∈ R, (5)

on the application of the boundary conditions

u(0) = 0 and u′(1) = 0,

we have c2 = 0, and c1 = − 1
α−1I

α−1f1(1, v(s), I
βv(t)), thus (5) becomes

u(t) =
tα−1

α− 1
Iαf1(1, v(1), I

βv(1))− Iαf1(t, v(t), I
βv(t))

=
1

(α− 1)Γ(α− 1)

∫ 1

0

tα−1(1− s))α−2f1(s, v(s), I
βv(s))ds

+
1

Γ(α)

∫ t

0

((t− s))α−1f1(s, v(s), I
βv(s))ds

=

∫ 1

0

Gα(t, s)f1(s, v(s), I
βv(s))ds.

Similarly repeating the above process with the second equation of the system, we
obtain the second part of (1)

v(t) =
∫ 1

0
Gβ(t, s)f2(s, u(s), I

αu(s))ds.

Hence, proof is received. �
Theorem 3.2. Let G = (Gα, Gβ) be the Green functions of (1)then they satisfying
the following properties

(1) G(t, s) ≥ 0, for all t, s ∈ [0, 1];

(2)
∫ 1

0
G(t, s)ds ≤ ( 1

(α−1)Γ(α+1) ,
1

(β−1)Γ(β+1) ), for all t ∈ [0, 1].
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Proof. For all t, s ∈ [0, 1] we have

tα−1(1− s)α−2 − (t− s)α−1

Γ(α)
≥ 0, as 0 ≤ s ≤ t ≤ 1,

thus Gα(t, s) ≥ 0 for all t, s ∈ [0, 1],Gβ(t, s) ≥ 0 for all t, s ∈ [0, 1].
Now∫ 1

0

Gα(t, s)ds =

∫ 1

0

tα−1(1− s))α−2

Γ(α)
ds−

∫ t

0

(t− s)α−1

Γ(α)
ds ≤ 1

(α− 1)Γ(α+ 1)
,

similarly ∫ 1

0

Gβ(t, s)ds ≤
1

(β − 1)Γ(β − 1)
.

Thus

∫ 1

0

G(s, t)ds ≤ (
1

(α− 1)Γ(α+ 1)
,

1

(β − 1)Γ(β + 1)
).

Thus proof is completed. �
Now equation(1)can be written in integral equation form as

u(t) =

∫ 1

0

Gα(t, s)f1(s, v(s), I
βv(s))ds

=

∫ 1

0

Gα(t, s)f1

(
s,

∫ 1

0

Gβ(s, x)f2(x, u(x), I
αu(x))dx, Iβ

[∫ 1

0

Gβ(s, x)f2(x, u(x), I
αu(x))dx

])
ds.

(6)

For further investigation we give the following assumptions and notations:

(A1) fi(i = 1, 2) : [0, 1]×R×R → R satisfy Caratheodory conditions;
(A2) For any u1, u2, v1, v2 ∈ S with ui ≤ vi, i = 1, 2 there exist constants Πi > 0,

for i = 1, 2, 3, 4, such that
0 ≤ f1(t, v1, v2)− f1(t, u1, u2) ≤ Π1(v1 − u1) + Π2(v2 − u2), t ∈ [0, 1]
0 ≤ f2(t, v1, v1)− f2(t, u1, u2) ≤ Π3(v1 − u1) + Π4(v2 − u2), t ∈ [0, 1] ;

(A3) (u0, v0) ∈ X × X and (ū0, v̄0) ∈ X × X are lower and upper solution re-
spectively with

u0 ≤ ū0, v0 ≤ v̄0.

We use

Υ =
Π1Π3

(β − 1)Γ(β + 1)
+

Π1Π4

(α− 1)(β − 1)Γ(α+ 1)Γ(β + 1)

+
Π2Π3

(β − 1)2Γ(β + 1)
+

Π2Π4

(α− 1)(β − 1)Γ(α+ 1)Γ2(β + 1)
.

Theorem 3.3. Let assumptions (A1) − (A3) holds and Υ < 1, then there exist
maximal and minimal solutions (ū∗, v̄∗), (u∗, v∗) for (1), by using ū∗

0, u
∗
0 as initial

iterations and get the following iterative sequences for each n ∈ Z+,

un(t) =

∫ 1

0

Gα(t, s)f1

(
s,

∫ 1

0

Gβ(s, x)f2(x, un−1(x), I
αun−1(x))dx,

Iβ
[∫ 1

0

Gβ(s, x)f2(x, un−1(x), I
αun−1(x))dx

])
ds,

(7)
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u∗
n(t) =

∫ 1

0

Gα(t, s)f2

(
s,

∫ 1

0

Gβ(s, x)f2(x, u
∗
n−1(x), I

αu∗
n−1(x))dx,

Iβ
[∫ 1

0

Gβ(s, x)f2(x, u
∗
n−1(x), I

αu∗
n−1(x))dx

])
ds,

(8)

and we have

u0 ≤ u1 ≤ u2 ≤ . . . ≤ un ≤ . . . ≤ u∗
n ≤ . . . u∗

1 ≤ u∗
0,

u∗(t) = lim
n→∞

un(t), v∗(t) =

∫ 1

0

Gβ(t, s)f2(s, u
∗(s), Iαu∗(s))ds,

ū∗(t) = lim
n→∞

u∗
n(t), v̄∗(t) =

∫ 1

0

Gβ(t, s)f2(s, ū
∗(s), Iαū∗(s))ds,

further the error estimate of the minimal solutions is given by

∥u∗(t)− un(t)∥ ≤ Υn

1−Υ
∥u1(t)− u0(t)∥

and maximal solutions is given by

∥u∗
n(t)− ū∗(t)∥ ≤ Υn

1−Υ
∥u∗

0(t)− u∗
1(t)∥.

Proof. First define an operator T : S → X by

Tu(t) =

∫ 1

0

Gα(t, s)f1

(
s,

∫ 1

0

Gβ(s, x)f2(x, u(x), I
αu(x))dx, Iβ

[∫ 1

0

Gβ(s, x)f2(x, u(x), I
αu(x))dx

])
ds.

Clearly T is continuous as Gα(t, s), Gβ(t, s), fi, i = 1, 2 are continuous. As the
fixed point of T is the solution of(6) and(6) is equivalent to (2). Hence we need
to prove the existence of the fixed point for T . To obtain this we proceed as, let
(u0, v0) ∈ X ×X is lower solution (1), then

v0(t) ≤
∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s))ds, u0(t) ≤

∫ 1

0

Gβ(t, s)f1(s, v0(s), I
βv0(s))ds.

Since Iβv0(t) ≤ Iβ
∫ 1

0
Gβ(t, s)f2(s, u0(s), I

αu0(s))ds. In view of (A2), we get

f1(t, v0(t), I
βv0(t)) ≤ f1

(
t,

∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s))ds, I

β

∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s))ds

)
,

thus

u0(t) ≤
∫ 1

0

Gα(t, s)f1(s, v0(s), I
βv0(s))ds

≤
∫ 1

0

Gα(t, s)f1

(
t,

∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s)ds, I

β

∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s)ds

)
ds

⇒ u0(t) ≤
∫ 1

0

Gα(t, s)f1

(
t,

∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s))ds, I

β

∫ 1

0

Gβ(t, s)f2(s, u0(s), I
αu0(s)ds

)
ds

⇒ u0(t) ≤ Tu0(t)

so u0 is lower solution ofT . Now by in view of (A2) for any u, v ∈ S withu ≤ v ⇒
Tu ≤ Tv which implies that T is increasing operator, soT can be written from the
iterative sequence (7) as un = Tun−1 for all n ∈ Z+. Due to (A3) we have

u0 ≤ u1 ≤ u2 ≤ . . . ≤ un. (9)
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For any u, v ∈ S with u ≤ v ⇒ Iαu ≤ Iαv we have f2(t, u, I
αu) ≤ f2(t, v, I

αv) and
Gβ(t, s) ≥ 0 we obtain∫ 1

0

Gβ(s, x)f2(x, u(x), I
αu(x))dx ≤

∫ 1

0

Gβ(s, x)f2(s, v(s), I
αv(s))dx

⇒ Iβ
[∫ 1

0

Gβ(s, x)f2(x, u(x), I
αu(x))dx

]
≤ Iβ

[∫ 1

0

Gβ(s, x)f2(s, v(s), I
αv(s))dx

]
.

In view of (A3) we have

0 ≤ f1

(
t,

∫ 1

0

Gβ(t, x)f2(x, v(x), I
αv(x))dx, Iβ

∫ 1

0

Gβ(t, x)f2(x, v(x), I
αv(x))dx

)
− f1

(
t,

∫ 1

0

Gβ(t, x)f2(x, u(x), I
αu(x))dx, Iβ

∫ 1

0

Gβ(t, x)f2(x, u(x), I
αu(x))dx

)
≤ Π1

(∫ 1

0

Gβ(t, x)f2(x, v(x), I
αv(x))dx, Iβ

∫ 1

0

Gβ(t, x)f2(x, v(x), I
αv(x))dx

)
−Π1

(∫ 1

0

Gβ(t, x)f2(x, u(x), I
αu(x))dx, Iβ

∫ 1

0

Gβ(t, x)f2(x, u(x), I
αu(x))dx

)
≤ Π1

∫ 1

0

Gβ(s, x)[Π3(v − u) + Π4(I
αv − Iαu)]dx

+
Π2

Γ(β)

∫ t

0

(t− s)β−1

∫ 1

0

Gβ(s, x)[Π3(v − u) + Π4(I
αv − Iαu)]dxds

⇒
∥∥∥∥f1(t,∫ 1

0

Gβ(t, x)f2(x, v(x), I
αv(x))dx, Iβ

∫ 1

0

Gβ(t, x)f2(x, v(x), I
αv(x))dx

)
− f1

(
t,

∫ 1

0

Gβ(t, x)f2(t, u(x), I
αu(x))dx, Iβ

∫ 1

0

Gβ(t, x)f2(t, u(x), I
αu(x))dx

)∥∥∥∥
≤

[
Π1Π3

(β − 1)Γ(β + 1)
+

Π1Π4

(β − 1)Γ(α+ 1)Γ(β + 1)

]
∥v − u∥

+

[
Π2Π3

(β − 1)Γ2(β + 1)
+

Π2Π4

(β − 1)Γ2(β + 1)Γ(α+ 1)

]
∥v − u∥,

using this we have

∥Tv − Tu∥ ≤ Υ∥v − u∥. (10)

Thus from (9) and (10) we have

∥u2 − u1∥ = ∥Tu1 − Tu0∥ ≤ Υ∥u1 − u0∥,
∥u3 − u2∥ = ∥Tu2 − Tu1∥ ≤ Υ2∥u1 − u0∥,
. . . ,

∥un+1 − un∥ = ∥Tun − Tun−1∥ ≤ Υn∥u1 − u0∥,
therefore for eachn,m ∈ Z+we have

∥un+m − un∥ ≤ ∥un+m − un+m−1∥+ ∥un+m−1 − un+m−2∥+ . . . ∥un+1 − un∥,

⇒ ∥un+m − un∥ ≤ Υn(1−Υm)

1−Υ
∥u1 − u0∥,

(11)

for 0 < Υ < 1, we have ∥un+m−un∥ → 0 as n → ∞. Thus unis a cauchy sequence
in S.
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Let u∗(t) = limn→∞ un(t). So Tu∗ = u∗. Hence (1) has a pairs of solutions

(u∗(t), v∗(t)) and v∗(t) =
∫ 1

0
Gβ(t, s)f2(s, u

∗(s), Iαu∗(s))ds.

Let m → ∞ in (11), then we have ∥u∗ − un∥ ≤ Υn

1−Υ∥u1 − u0∥. Similar if we

use u∗
0 is initial iteration for upper solution then we have (ū∗, v̄∗) of (1) and

ū∗(t) = limn→∞ u∗
n(t), v̄∗(t) =

∫ 1

0
Gβ(t, s)f2(s, ū

∗(s), Iαū∗(s))ds. So it is clear
to observe that

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . u∗
n ≤ . . . ≤ u∗

2 ≤ u∗
1 ≤ u∗

0.

Further to prove maximal and minimal solution of (1) for this need let us take
(ū∗, v̄∗) is maximal and (u∗, v∗) is minimal solution, then let for any w(t) ∈ S with
Tw = w, we have un ≤ w ≤ u∗

n. As T is increasing operator so by Lemma(2.2),
Tun ≤ Tw ≤ Tu∗

n as n → ∞ we get u∗(t) ≤ w(t) ≤ ū∗(t). Thus u∗(t), ū∗(t) are
the minimal and maximal fixed point of T respectively. Thus (u∗(t), v∗(t)) and
(ū∗(t), v̄∗(t)) are the minimal and maximal solutions of(1) respectively. �
Theorem 3.4. Under the assumptions (A1)− (A3) with Υ < 1, then the extremal
(maximal and minimal) solutions of BVP (1) are unique.
Proof. Let x0, y0 ∈ X be minimal and maximal solution of operator equation
Tw = w respectively such that x0 ≤ Tx0, y0 ≥ Ty0, t ∈ [0, 1].
Assume that x0(t), y0(t) be the initial iterations respectively such that xn →
x∗, yn → y∗ as n → ∞, also Tx∗ = x∗, T y∗ = y∗.
We need to prove that x∗ = u∗ and y∗ = v∗. As x0 ≤ x∗ and T is increasing
operator so we have xn = Tnx0 ≤ Tnx∗, for each n ∈ Z+. Thus u0 ≤ u1 ≤ u2 ≤
. . . ≤ un ≤ . . . ≤ x∗. Now by using mathematical inductions and from (10) one can
get ∥x∗ − un∥ = ∥Tnx∗ − Tnu0∥ ≤ Υn∥x∗ − u0∥ → 0 as n → ∞.
Thus limn→∞ ∥x∗ − un∥ = 0 ⇒ x∗ = limn→∞ un = u∗ ⇒ u∗ = x∗, similarly we can
show that v∗ = y∗. Similarly we can do for maximal solution. Thus uniqueness of
minimal and maximal solution has been proved. �
Let (ū, v̄), (ū∗, v̄∗) are unique minimal and maximal solutions then error estimate
may be calculated as

ūn(t) =

∫ 1

0

Gα(t, s)f1

(
s,

∫ 1

0

Gβ(s, x)f2(x, ūn−1(x), I
αūn−1(x))dx

)
ds, n = 1, 2, 3, ...

ū∗
n(t) =

∫ 1

0

Gα(t, s)f1

(
s,

∫ 1

0

Gβ(s, x)f2(x, ū∗
n−1(x), I

αū∗
n−1(x))dx

)
ds, n = 1, 2, 3, ...

as ū0 ≤ ū1 ≤ ... ≤ ūn ≤ ...ū∗
n ≤ ... ≤ ū∗

2 ≤ ū∗
1 ≤ ū∗

0,

ū∗(t) = lim
n→∞

ūn(t), v̄∗(t) =

∫ 1

0

Gβ(t, s)f2(s, ū
∗(s), Iαū∗(s))ds,

ū∗(t) = lim
n→∞

ūn(t), v̄∗(t) =

∫ 1

0

K2(t, s)f2(s, ū
∗(s), Iαū∗(s))ds,

we obtain the following error estimates for lower and upper solutions as

∥ū− ūn∥ ≤ Υn

1−Υ
|ū1 − ū0∥, |ū∗

n − ū∗∥ ≤ Υn

1−Υ
|ū∗

0 − ū∗
1∥.
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4. Examples

Example 4.1. Consider the following coupled system of boundary values prob-
lem 

D
3
2u(t) +

(
1− t

4

)2

v(t) +

(
1− t3

6

)
I

3
2 v(t) = 0, t ∈ [0, 1],

D
3
2 v(t) +

(
t2 − 1

3

)2

u(t) +

(
t− 1

2

)3

I
3
2u(t) = 0, , t ∈ [0, 1],

u(0) = u′(1) = 0, v(0) = v′(1) = 0.

(12)

Since

f1(t, v, I
3
2 v) =

(
1− t

4

)2

v(t) +

(
1− t3

6

)
I

3
2 v(t),

f2(t, u, I
3
2u) =

(
t2 − 1

3

)2

u(t) +

(
t− 1

2

)3

I
3
2u(t),

where α = 3
2 , β = 3

2 . For any u(t) ≤ v(t), we have

0 ≤ f1(t, v, I
3
2 v)− f1(t, u, I

3
2u) ≤ 1

16
(v − u) +

1

6
(I

3
2 v − 3

2
u),

0 ≤ f2(t, v, I
3
2 v)− f2(t, u, I

3
2u) ≤ 1

9
(v − u) +

1

9
(I

3
2 v − 3

2
u),

which implies that

Π1 =
1

16
, Π2 =

1

6
, Π3 =

1

9
, Π4 =

1

8
and Υ = 0.638522 < 1 is satisfied. Clearly (0, 0) is the unique solutions of (12).
Let us take (u0, v0) = (−2,−2) and (u∗

0, v
∗
0) = (2, 2) as initial iteration for lower

and upper solutions respectively and the iterative sequences by taking n is large
enough as

u∗(t) = u9(t), v∗(t) =

∫ 1

0

Gβ(t, s)

[(
s2 − 1

3

)2

u9(s) +

(
s− 1

2

)3

I
3
2u9(s)

]
ds,

ū∗(t) = u∗
9(t), v̄∗(t) =

∫ 1

0

Gβ(t, s)

[(
s2 − 1

3

)2

u∗
9(t) +

(
s− 1

2

)3

I
3
2u∗

9(s)

]
ds.

The error estimates are

∥u(t)−u9(t)∥ ≤ Υ9

1−Υ
∥u1(t)−u0(t)∥ ≤ (.638522)9

1− 0.638522
max
t∈[0,1]

|u1(t)+2| ≃ 5.8×10−2,

similarly

∥u(t)−u∗
9(t)∥ ≤ Υ9

1−Υ
∥u∗

1(t)−u∗
0(t)∥ ≤ (0.638522)9

1− 0.638522)
max
t∈[0,1]

|u∗
1(t)−2∥ ≃ 4.8×10−2.
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