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EXISTENCE OF A MILD SOLUTION FOR NEUTRAL

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH

NONLOCAL CONDITIONS

KAMALENDRA KUMAR AND RAKESH KUMAR

Abstract. In this paper, we investigate the existence of a mild solution of

the neutral fractional integrodifferential equations with nonlocal initial condi-
tions. The results are obtained by using the fractional power of operators and
the Sadovskii’s fixed point theorem. As an application controllability prob-
lem is studied for neutral fractional integrodifferential equaion with nonlocal

condition.

1. Introduction

In this paper, we study the existence of mild solution for semilinear neutral
fractional integrodifferential equations with nonlocal conditions in the following
form
cDα[x(t) + F (t, x(t), x(b1(t)), . . . , x(bm(t)))] +Ax(t)

= G(t, x(t), x(a1(t)), . . . , x(an(t))) +K

(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
, t∈J=[0, a],

x(0) + h(x) = x0, (1.1)

where −A generates an analytic semigroup, and the functions F , G, K, k and h
are given functions to be defined later. The fractional derivative cDα, 0 < α < 1 is
understood in the Caputo sense.

Fractional differential equations have received increasing attention during recent
years due to its applications in various fields of science and engineering such as
viscoelasticity, electrochemistry, porous media, electromagnetic etc. [1, 2, 3, 4, 5,
6]. For more details on this theory and applications, we refer the monographs of
Lakshmikantham et al. [7], Miler and Ross [8], Podlubny [9], Kilbas and Srivastava
[10] and the papers of Guo and Liu [11] and N’Guerekata [12].

Theory of neutral differential equations has been studied by several authors in
Banach space [13, 14, 15]. A neutral functional differential is one in which the
derivatives of the past history or derivatives of functionals of the past history are
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involved as well as the present state of the system. Neutral differential equations are
encountered in problems dealing with electric networks containing lossless transmis-
sion lines. Such networks arise, for example, in high speed computers where lossless
transmission lines are used to interconnect switching circuits. A good guide to the
litrature for neutral functional differential equations is the Hale book [16].

On the other hand, integrodifferential equations arise in many fields such as
electronic fluid dynamics, biological models and chemical kinetics. The equations of
basic electric circuit analysis are well-known examples of these equations. Fractional
integrodifferential equation arises in many fields of engineering such as optimal
control problem and heat conduction of materials with memory, etc. Fractional
neutral integrodifferential equations have been studied by many authors [17, 18].

The existence of solution to evolution equations with nonlocal conditions in Ba-
nach space was first studied by Byszewski [19]. Then it has been studied extensively
by many authors, see [20, 21] and the references therein.

The result obtained is a generalization and continuation of some results reported
in [22, 23, 24]. The rest of this paper is organized as follows. In Section 2, we give
some preliminaries. In Section 3, we prove our main theorem for (1.1). In Section 4,
we have given an example to illustrate the theory.

2. Preliminaries

In this paper, X will be a Banach space with the norm ∥ · ∥. Let −A be the
infinitesimal generator of a compact analytic semigroup of uniformly bounded linear
operators S(t). This means that there exists a M ≥ 1 such that ∥S(t)∥ ≤ M .
Suppose 0 ∈ ρ(A), then define the fractional power Aγ , for 0 < γ ≤ 1, as a
closed linear operator on its domain D(Aγ) with inverse A−γ having following
basic properties.

Theorem 2.1 (see [25]).

(i) Xγ = D(Aγ) is a Banach space with the norm ∥x∥γ = ∥Aγx∥, x ∈ Xγ .
(ii) S(t) : X → Xγ for each t > 0 and AγS(t)x = S(t)Aγx for each x ∈ Xγ and

t ≥ 0.
(iii) For every t > 0, AγS(t) is bounded on X and there exists a positive constants

Cγ such that

∥AγS(t)∥ ≤ Cγ

tγ
. (2.1)

(iv) If 0 < β < γ ≤ 1, then D(Aγ) ↪→ D(Aβ) and the embedding is compact
whenever the resolvent operator of A is compact.

Now we recall the following known definitions.

Definition 2.1 (see [8, 9, 26]). The fractional integral of order α > 0 with the
lower limit zero for a function f can be defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0 .

Provided the right-hand side is pointwise defined on [0,∞) where Γ(·) is Gamma
function.
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Definition 2.2 (see [8, 9, 26]). The Caputo derivative of order α with the lower
limit zero for a function f can be written as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds = In−αf (n)(t), t > 0, 0 ≤ n−1 < α < n.

If f is an abstract function with values in X, then the integrals appearing in the
above definitions are taken in Bochner’s sense.

We assume the following conditions:

(A1) F : [0, a] ×Xm+1 → X is a continuous function, and there exists a constant
β ∈ (0, 1) and L1, L2 > 0 such that the function AβF satisfies the Lipschitz
condition:

∥AβF (s1, x0, x1, . . . , xm)−AβF (s2, x0, x1, . . . , xm)∥
≤ L1(|s1 − s2|+ max

i=0,...,m
∥xi − xi∥),

for any 0 ≤ s1, s2 ≤ a, xi, xi ∈ X, i = 0, 1, . . . ,m; and the inequality

∥AβF (t, x0, x1, . . . , xm)∥ ≤ L2( max
i=0,...,m

{∥xi∥ : i = 0, 1, . . . ,m}+ 1), (2.2)

holds for any (t, x0, x1, . . . , xm) ∈ [0, a]×Xm+1.
(A2) The function G : [0, a]×Xn+1 → X satisfies the following conditions:

(i) for each t ∈ [0, a], the function G(t, ·) : Xn+1 → X is continuous and for
each (x0, x1, . . . , xn) ∈ Xn+1, the function G(·, x0, x1, . . . , xn) : [0, a] →
X is strongly measurable;

(ii) for each positive number p ∈ N , there is a positive function gp(·) :
[0, a] → R+ such that

sup
∥x0∥,...,∥xn∥≤p

∥G(t, x0, x1, . . . , xn)∥ ≤ gp(t),

the function s→ (t−s)1−αgp(s) ∈ L1([0, t], R+) and there exists a γ1 > 0
such that

lim inf
p→∞

1

p

∫ t

0

(t− s)1−αgp(s)ds = γ1 <∞, t ∈ [0, a],

(A3) The function K : [0, a]×X ×X → X satisfies the following conditions:
(i) for each t ∈ [0, a], the function K(t, ·, ·) : X × X → X and for each

x, y ∈ X, the function K(·, x, y) : [0, a] → X is strongly measurable;
(ii) for each positive number p ∈ N , there is a positive function qp(·) : [0, a] →

R+ such that

sup
∥x∥≤p

∥∥∥∥K (
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)∥∥∥∥ ≤ qp(t),

the function s → (t − s)1−αqp(s) ∈ L1([0, t], R+), and there exists a
γ2 > 0 such that

lim inf
p→∞

1

p

∫ t

0

(t− s)1−αqp(s)ds = γ2 <∞, t ∈ [0, a].

(A4) ai, bj ∈ C([0, a]; [0, a]), i = 1, 2, . . . , n, j = 1, 2, . . . ,m; h ∈ C(E;X), here and
hereafter E = C([0, a];X), and h satisfies that:
(i) There exist positive constants L3 and L′

3 such that ∥h(x)∥ ≤ L3 ∥x∥+L′
3

for all x ∈ E;
(ii) h is completely continuous map.
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At the last of this section, we recall the Sadoviskii’s fixed point theorem [27], which
is used to establish the existence of the mild solution of equation (1.1).

Theorem 2.2 ([27]). Let ϕ be a condensing operator on a Banach space X, i.e.,
ϕ is continuous and takes bounded sets into bounded sets, and µ(ϕ(D)) ≤ µ(D)
for every bounded set D of X with µ(D) > 0. If ϕ(E) ⊂ E for convex, closed
and bounded set E of X, then ϕ has a fixed point in X (where µ(·) denotes the
Kuratowski’s measures of noncompactness).

3. Existence of mild solution

Definition 3.1. A continuous function x(·) : [0, a] → X is said to be a mild so-
lution of the nonlocal Cauchy problem (1.1), if the function (t − s)α−1ATα(t −
s)F (s, x(s), x(b1(s)), . . . , x(bm(s))), s ∈ [0, a) is integrable on [0, a) and the follow-
ing integral equation is verified:

x(t) = Sα(t)[x0 + F (0, x(0), x(b1(0)), . . . , x(bm(0)))− h(x)]

− F (t, x(t), x(b1(t)), . . . , x(bm(t)))

+

∫ t

0

(t− s)α−1ATα(t− s)F (s, x(s), x(b1(s)), . . . , x(bm(s)))ds

+

∫ t

0

(t− s)α−1Tα(t− s)G(s, x(s), x(a1(s)), . . . , x(an(s)))ds

+

∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
ds, t ∈ [0, a],

(3.1)

where Sα(t)x =

∫ ∞

0

ηα(θ)S(t
αθ)xdθ, Tα(t)x = α

∫ ∞

0

θηα(θ)S(t
αθ)xdθ with ηα is

a probability density function defined on (0,∞), that is ηα(θ) ≥ 0, θ ∈ (0,∞) and∫ ∞

0

ηα(θ)dθ = 1.

Remark.

∫ ∞

0

θηα(θ)dθ =
1

Γ(1 + α)
.

Lemma 3.1 (see [28]). The operators Sα(t) and Tα(t) have the following properties:

(i) for any fixed point x ∈ X, ∥Sα(t)x∥ ≤M∥x∥, ∥Tα(t)x∥ ≤ αM
Γ(α+1)∥x∥;

(ii) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous;
(iii) for every t > 0, Sα(t) and Tα(t) are also compact operator;
(iv) for any x ∈ X, β ∈ (0, 1) and δ ∈ (0, 1), we have ATα(t)x = A1−βTα(t)A

βx
and

∥AδTα(t)∥ ≤ αCδΓ(2− δ)

tαδΓ(1 + α(1− δ))
, t ∈ (0, a].

Theorem 3.1. If the assumptions (A1)-(A4) are satisfied and x0 ∈ X, then the
nonlocal Cauchy problem (1.1) has a mild solution provided that

L0 = L1

[
(M + 1)M0 +

C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)

]
< 1 (3.2)
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and

M

[
M0L2+L3+

αγ1
Γ(α+1)

+
αγ2

Γ(α+1)

]
+M0L2+

C1−βΓ(1+β)a
αβL2

βΓ(1+αβ)
< 1, (3.3)

where M0 = ∥A−β∥.
Proof. For the sake of brevity, we rewrite that

(t, x(t), x(b1(t)), . . . , x(bm(t))) = (t, v(t))

and
(t, x(t), x(a1(t)), . . . , x(an(t))) = (t, u(t))

Define the operator ϕ on E by

(ϕx)(t) = Sα(t)[x0 + F (0, v(0))− h(x)]− F (t, v(t))

+

∫ t

0

(t− s)α−1ATα(t− s)F (s, v(s))ds

+

∫ t

0

(t− s)α−1Tα(t− s)G(s, u(s))ds

+

∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
ds, 0 ≤ t ≤ a.

For each positive number p, let

Dp = {x ∈ E : ∥x(t)∥ ≤ p, 0 ≤ t ≤ a}.
Then for each p, Dp is clearly a bounded closed convex set in E.

From Lemma 3.1, (2.2) yields∥∥∥∥∫ t

0

(t− s)α−1ATα(t− s)F (s, v(s))ds

∥∥∥∥
≤

∫ t

0

∥(t− s)α−1A1−βTα(t− s)AβF (s, v(s))∥ds

≤ αC1−βΓ(1 + β)

Γ(1 + αβ)

∫ t

0

(t− s)α−1

(t− s)α−αβ
∥AβF (s, v(s))∥

≤ αC1−βΓ(1 + β)

Γ(1 + αβ)

∫ t

0

(t− s)αβ−1∥AβF (s, v(s))∥ds

≤ C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)
L2({∥xi∥ : i = 0, . . . ,m}+ 1)

≤ C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)
L2(p+ 1) (3.4)

then from Bochner’s theorem [29] it follows that (t− s)α−1ATα(t− s)F (s, v(s)) is
integrable on [0, a], so ϕ is well defined on Dp. Similarly, from (A2)(ii), we obtain∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)G(s, u(s))ds

∥∥∥∥ ≤
∫ t

0

∥(t− s)α−1Tα(t− s)G(s, u(s))∥ds

≤ αM

Γ(α+ 1)

∫ t

0

(t− s)α−1∥G(s, u(s))∥ds

≤ αM

Γ(α+ 1)

∫ t

0

(t− s)α−1gp(s)ds (3.5)



56 K. KUMAR AND R. KUMAR JFCA-2016/7(2)

Again from (A3)(ii), we obtain∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
ds

∥∥∥∥
≤

∫ t

0

∥∥∥∥(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]∥∥∥∥ ds
≤ αM

Γ(α+ 1)

∫ t

0

(t− s)α−1

∥∥∥∥K (
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)∥∥∥∥ ds
≤ αM

Γ(α+ 1)

∫ t

0

(t− s)α−1qp(s)ds (3.6)

We claim that there exists a positive number p such that ϕDp ⊆ Dp. If it is not
true, then for each positive number p, there is a function xp(·) ∈ Dp, but ϕxp /∈ Dp,
that is ∥ϕxp(t)∥ > p for some t(p) ∈ [0, a], where t(p) denotes t is independent of
p. However, on the other hand, we have

p ≤ ∥(ϕxp)(t)∥
≤M [∥x0∥+M0L2(p+ 1) + (L3p+ L′

3)] +M0L2(p+ 1)

+
C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)
L2(p+ 1) +

αM

Γ(α+ 1)

∫ t

0

(t− s)α−1gp(s)ds

+
αM

Γ(α+ 1)

∫ t

0

(t− s)α−1qp(s)ds

≤M [∥x0∥+M0L2(p+ 1) + (L3p+ L′
3)] +M0L2(p+ 1)

+
C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)
L2(p+ 1) +

αM

Γ(α+ 1)

∫ a

0

(a− s)α−1gp(s)ds

+
αM

Γ(α+ 1)

∫ a

0

(a− s)α−1qp(s)ds. (3.7)

Dividing both sides of (3.7) by p and taking the lower limit as p→ +∞, we get

1 ≤MM0L2 +ML3 +M0L2 +
C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)
L2 +

αM

Γ(α+ 1)
γ1 +

αM

Γ(α+ 1)
γ2

or

M

[
M0L2 + L3 +

α

Γ(α+ 1)
γ1 +

α

Γ(α+ 1)
γ2

]
+M0L2 +

C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)
L2 ≥ 1 .

This contradicts (3.3). Hence, for positive p, ϕDp ⊆ Dp.

Next we will show that the operator ϕ has a fixed point onDp, which implies that
equation (1.1) has a mild solution. To this end, we decompose ϕ as ϕ = ϕ1 + ϕ2,
where the operators ϕ1, ϕ2 are defined on Dp, respectively, by

(ϕ1x)(t) = Sα(t)F (0, v(0))− F (t, v(t)) +

∫ t

0

(t− s)α−1ATα(t− s)F (s, v(s))ds
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and

(ϕ2x)(t) = Sα(t)[x0 − h(x)] +

∫ t

0

(t− s)α−1Tα(t− s)G(s, u(s))ds

+

∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
ds,

for 0 ≤ t ≤ a, and we will verify that ϕ1 is a contraction while ϕ2 is a compact
operator.

To prove that ϕ1 is a contraction, we take x1, x2 ∈ Dp, then for each 0 ≤ t ≤ a
and by condition (A1) and (3.2), we have

∥(ϕ1x1)(t)− (ϕ1x2)(t)∥
≤ ∥Sα(t)[F (0, v1(0))− F (0, v2(0))]∥+ ∥F (t, v1(t))− F (t, v2(t))∥

+

∥∥∥∥∫ t

0

(t− s)α−1ATα(t− s)[F (s, v1(s))− F (s, v2(s))]ds

∥∥∥∥
≤ (M + 1)M0L1 sup

0≤s≤a
∥x1(s)− x2(s)∥

+
C1−βΓ(1 + β)L1a

αβ

βΓ(1 + αβ)
sup

0≤s≤a
∥x1(s)− x2(s)∥

≤ L1

[
(M + 1)M0 +

C1−βΓ(1 + β)aαβ

βΓ(1 + αβ)

]
sup

0≤s≤a
∥x1(s)− x2(s)∥

= L0 sup
0≤s≤a

∥x1(s)− x2(s)∥.

Thus ∥ϕx1 − ϕx2∥ ≤ L0 sup0≤s≤a ∥x1(s)− x2(s)∥.
So by assumption 0 < L0 < 1, we see that ϕ1 is a contraction.
To prove that ϕ2 is a compact, firstly we prove that ϕ2 is continuous on Dp. Let

{xn} ⊆ Dp with xn → x in Dp, then by (A2)(i) and (A3)(i), we have

G(s, un(s)) → G(s, u(s)), n→ ∞,

K

(
t, xn(t),

∫ t

0

k(t, s, xn(s))ds

)
→ K

(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
, n→ ∞.

Since

∥G(s, un(s))−G(s, u(s))∥ ≤ 2gp(s),∥∥∥∥K (
t, xn(t),

∫ t

0

k(t, s, xn(s))ds

)
−K

(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)∥∥∥∥ ≤ 2qp(s).

By the dominated convergence theorem, we have

∥ϕ2xn − ϕ2x∥

= sup
0≤t≤a

∥∥∥∥Sα(t)[h(x)− h(xn)] +

∫ t

0

(t− s)α−1Tα(t− s)[G(s, un(s))−G(s, u(s))]ds

+

∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, xn(s),

∫ s

0

k(s, τ, xn(τ))dτ

)
−K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
ds

∥∥∥∥ → 0,

as n→ ∞, i.e. ϕ2 is continuous.
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Next, we prove that {ϕ2x : x ∈ Dp} is a family of equicontinuous functions. To
see this we fix t1 > 0 and let t2 > t1 and ε > 0, be enough small. Then

∥(ϕ2x)(t2)− (ϕ2x)(t1)∥
≤ ∥Sα(t2)− Sα(t1)∥ ∥x0 − h(x)∥

+

∫ t1−ε

0

∥(t2 − s)α−1Tα(t2 − s)− (t1 − s)α−1Tα(t1 − s)∥ ∥G(s, u(s))∥ds

+

∫ t1

t1−ε

∥(t2 − s)α−1Tα(t2 − s)− (t1 − s)α−1Tα(t1 − s)∥ ∥G(s, u(s))∥ds

+

∫ t2

t1

∥(t2 − s)α−1Tα(t2 − s)∥ ∥G(s, u(s))∥ds

+

∫ t1−ε

0

∥(t2 − s)α−1Tα(t2 − s)− (t1 − s)α−1Tα(t1 − s)∥

×
∥∥∥∥K (

s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)∥∥∥∥ ds
+

∫ t1

t1−ε

∥(t2 − s)α−1Tα(t2 − s)− (t1 − s)α−1Tα(t1 − s)∥

×
∥∥∥∥K (

s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)∥∥∥∥ ds
+

∫ t2

t1

∥(t2 − s)α−1Tα(t2 − s)∥
∥∥∥∥K (

s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)∥∥∥∥ ds.
We see that ∥(ϕ2x)(t2) − (ϕ2x)(t1)∥ tends to zero independently of x ∈ Dp as

t2 → t1, with ε sufficiently small since the compactness of Sα(t) for t > 0 (see
[25]) implies the continuity of Sα(t) for t > 0 in t in the uniform operator topology.
Similarly, using the compactness of the set h(Dp) we can prove that the function
ϕ2x, x ∈ Dp are equicontinuous at t = 0. Hence, ϕ2 maps Dp into a family of
eqiucontinuous functions.

It remains to prove that V (t) = {(ϕ2x)(t) : x ∈ Dp} is relatively compact in X.
V (0) is relatively compact in X. Let 0 < t ≤ a be fixed and 0 < ε < t, arbitrary
δ > 0, for x ∈ Dp, we define

(ϕε,δ2 x)(t) =

∫ ∞

δ

ηα(θ)S(t
αθ)[x0 − h(x)]dθ

+ α

∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ)S((t− s)αθ)G(s, u(s))dθds

+ α

∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ)S((t− s)αθ)

×
[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
dθds

= S(εαδ)

∫ ∞

δ

ηα(θ)S(t
αθ − εαδ)[x0 − h(x)]dθ

+ αS(εαδ)

∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ)S((t− s)αθ − εαδ)G(s, u(s))dθds
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+ αS(εαδ)

∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ)S((t− s)αθ − εαδ)

×
[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
dθds.

Since S(εαδ), εαδ > 0 is a compact operator, then the set V ε,δ(t) = {(ϕε,δ2 x)(t) :
x ∈ Dp} is relatively compact in X for every ε, 0 < ε < t and for all δ > 0.
Moreover, for every x ∈ Dp, we have∥∥∥(ϕ2x) (t)− (

ϕε,δ2 x
)
(t)

∥∥∥
≤

∥∥∥∥∥
∫ δ

0

ηα (θ)S (tαθ) [x0 − h (x)] dθ

∥∥∥∥∥
+ α

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)α−1ηα (θ)S ((t− s)αθ)G (s, u(s)) dθ ds

∥∥∥∥∥
+ α

∥∥∥∥∫ t

0

∫ ∞

δ

θ(t− s)α−1ηα (θ)S ((t− s)αθ)G (s, u(s)) dθ ds

−
∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα (θ)S ((t− s)αθ)G (s, u(s)) dθ ds

∥∥∥∥
+ α

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)α−1ηα (θ)S ((t− s)αθ)

[
K

(
s, x(s),

∫ s

0

k (s, τ, x (τ)) dτ

)]
dθ ds

∥∥∥∥∥
+ α

∥∥∥∥∫ t

0

∫ ∞

δ

θ(t− s)α−1ηα (θ)S ((t− s)αθ)

[
K

(
s, x(s),

∫ s

0

k (s, τ, x (τ)) dτ

)]
dθ ds

−
∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα (θ)S ((t− s)αθ)

[
K

(
s, x(s),

∫ s

0

k (s, τ, x (τ)) dτ

)]
dθ ds

∥∥∥∥
≤

∥∥∥∥∥
∫ δ

0

ηα (θ)S (tαθ) [x0 − h (x)] dθ

∥∥∥∥∥
+ α

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)α−1ηα (θ)S ((t− s)αθ)G (s, u(s)) dθ ds

∥∥∥∥∥
+ α

∥∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)α−1ηα (θ)S ((t− s)αθ)G (s, u(s)) dθ ds

∥∥∥∥
+ α

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)α−1ηα (θ)S ((t− s)αθ)

[
K

(
s, x(s),

∫ s

0

k (s, τ, x (τ)) dτ

)]
dθ ds

∥∥∥∥∥
+ α

∥∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)α−1ηα (θ)S ((t− s)αθ)

[
K

(
s, x(s),

∫ s

0

k (s, τ, x (τ)) dτ

)]
dθ ds

∥∥∥∥
≤M [∥x0∥+ L3 ∥x∥+ L′

3]

∫ δ

0

ηα (θ) dθ

+ αM

(∫ t

0

(t− s)α−1gp(s)ds

)∫ δ

0

θηα (θ) dθ + αM

(∫ t

t−ε

(t− s)α−1gp(s)ds

)∫ ∞

0

θηα (θ) dθ

+ αM

(∫ t

0

(t− s)α−1qp(s)ds

)∫ δ

0

θηα (θ) dθ + αM

(∫ t

t−ε

(t− s)α−1qp(s)ds

)∫ ∞

0

θηα (θ) dθ
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,

≤M [∥x0∥+ L3 ∥x∥+ L′
3]

∫ δ

0

ηα (θ) dθ

+ αM

(∫ t

0

(t− s)α−1gp(s)ds

)∫ δ

0

θηα (θ) dθ +
αM

Γ (α+ 1)

(∫ t

t−ε

(t− s)α−1gp(s)ds

)
+ αM

(∫ t

0

(t− s)α−1qp(s)ds

)∫ δ

0

θηα (θ) dθ +
αM

Γ (α+ 1)

(∫ t

t−ε

(t− s)α−1qp(s)ds

)
Therefore, there are relatively compact sets arbitrarily close to the set V (t), t > 0.
Hence, the set V (t), t > 0 is also relatively compact in X.

Thus, by Arzela-Ascoli Theorem ϕ2 is a compact operator. Those arguments
enable us to conclude that ϕ = ϕ1 + ϕ2, is a condensing map Dp, and by the fixed
point theorem of Sadovskii there exists a fixed point x(·) for ϕ on Dp. Therefore,
the nonlocal Cauchy problem (1.1) has a mild solution, and the proof is completed.

4. Application

As an application of theorem, we shall consider the system (1.1) with control
parameter such as:

cDα[x(t) + F (t, x(t), x(b1(t)), . . . , x(bm(t)))] +Ax(t)

= Cw(t) +G(t, x(t), x(a1(t)), . . . , x(an(t))) +K

(
t, x(t),

∫ t

0

k(t, s, x(s))ds

)
,

t ∈ J = [0, a],

x(0) + h(x) = x0, (4.1)

where the control function w(·) is given in L2(J,W ) – the Banach space of admissi-
ble control function with W as a Banach space and C is a bounded linear operator
from W into X. The mild solution of the system (4.1) is given by

x (t) = Sα (t) [x0 + F (0, x(0), x (b1(0)) , . . . , x (bm(0)))− h (x)]

− F (t, x (t) , x (b1 (t)) , . . . , x (bm (t)))

+

∫ t

0

(t− s)α−1ATα(t− s)F (s, x(s), x (b1(s)) , . . . , x (bm(s))) ds

+

∫ t

0

(t− s)α−1Tα(t− s)G (s, x(s), x (a1(s)) , . . . , x (an(s))) ds

+

∫ t

0

(t− s)α−1Tα(t− s)Cw(s)ds

+

∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k (s, τ, x (τ)) dτ

)]
ds, t ∈ [0, a]

Definition 4.1. The system (4.1) is said to be controllable on the interval J if for
every x0, x1 ∈ X, there exists a control w ∈ L2(J,W ) such that the solution x(·) of
(4.1) satisfies x(0) + h (x) = x0 and x (a) = x1.

(A5) The linear operator Q from W into X defined by

Qw =

∫ a

0

(a− s)
α−1

Tα (a− s)Cw(s)ds
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has an induced inverse operator Q̃−1 which takes values in L2 (J,W ) / kerQ

and there exists a positive constant M1 such that ∥CQ̃−1∥ ≤M1.

Theorem 4.1. If the assumptions (A1)-(A5) are satisfied then the system (4.1) is
controllable on J provided that

L0 = L1

[
(M + 1)M0 +

C1−β Γ(1 + β)aαβ

β Γ (1 + αβ)

]
< 1 (4.2)

M

[
M0L2 + L3 +

α

Γ (α+ 1)
(γ1 + γ2)

]
+M0L2 +

C1−β Γ(1 + β)aαβ

β Γ (1 + αβ)
L2

+
MM1

Γ (α+ 1)

[
MM0L2 +ML3 +M0L2 +

C1−β Γ(1 + β)aαβ

β Γ (1 + αβ)
L2

]
aα

+
αM2M1a

α (γ1 + γ2)

(Γ (α+ 1))
2 < 1. (4.3)

Proof. Using the assumption (A5), for an arbitrary function x(·), define the control
w(t) = Q̃−1 [x1 − Sα(t){x0 + F (0, v(0))− h(x)}+ F (a, v(a))

−
∫ a

0

(a− s)α−1ATα(a− s)F (s, v(s))ds

−
∫ a

0

(a− s)α−1Tα(a− s)

×
{
G(s, u(s)) +K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)}
ds

]
(t)

We shall show that when using this control the operator

(ψx) (t) = Sα (t) {x0 + F (0, v(0))− h (x)} − F (t, v (t))

+

∫ t

0

(t− s)α−1ATα(t− s)F (s, v(s)) ds

+

∫ t

0

(t− s)α−1Tα(t− s)

×
{
Cw(s) +G(s, u(s)) +K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)}
ds, t∈J

has a fixed point x(·). Then this fixed point x(·) is a mild solution of the problem
(4.1), and we can easily verify that x(a) = ψ(x)(a) = x1. This means that the
control w steers the system from the initial state x0 to x1 in time a, which implies
that the system is controllable. Our aim is to prove that there exists a positive
number p such that ψDp ⊆ Dp.

If this is not true, then for each positive number p, there exists a function
xp(·) ∈ Dp, but ψxp /∈ Dp, that is ∥ψxp(t)∥ > p for some t(p) ∈ [0, a], from

p < ∥ψ(xp)(t)∥
≤M [∥x0∥+M0L2(p+ 1) + (L3p+ L′

3)] +M0L2(p+ 1)

+
C1−βΓ(1 + β)

βΓ(1 + αβ)
aαβL2(p+ 1) +

αM

Γ(α+ 1)

∫ a

0

(a− s)α−1gp(s)ds

+
αM

Γ(α+ 1)

∫ a

0

(a− s)α−1qp(s)ds
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+
αMM1

Γ(α+ 1)

∫ a

0

(a− s)α−1[∥x1∥+M{∥x0∥+M0L2(p+ 1) + (L3p+ L′
3)}

+M0L2(p+ 1) +
C1−βΓ(1 + β)

βΓ(1 + αβ)
aαβL2(p+ 1)

+
αM

Γ(1 + α)

∫ a

0

(a− τ)α−1gp(τ)dτ +
αM

Γ(1 + α)

∫ a

0

(a− τ)α−1qp(τ)dτ ]ds

Dividing on both sides by p and taking the lower limit as p→ +∞, we get

1 ≤MM0L2 +ML3 +M0L2 +
C1−β Γ(1 + β)

β Γ (1 + αβ)
aαβL2 +

αM

Γ (1 + α)
(γ1 + γ2)

+
MM1

Γ (1 + α)

[
MM0L2 +ML3 +M0L2 +

C1−β Γ(1 + β)

β Γ (1 + αβ)
aαβL2

]
aα

+
αM2M1

(Γ (1 + α))
2 (γ1 + γ2) a

α

This implies that(
MM0L2 +ML3 +M0L2 +

C1−βΓ(1 + β)

βΓ(1 + αβ)
aαβL2

)(
1 +

MM1

Γ(1 + α)
aα

)
+

αM

Γ (1 + α)
(γ1 + γ2)

(
1 +

MM1

Γ (1 + α)
aα

)
≥ 1.

However, this contradicts (4.3). Hence for positive number p, ψDp ⊆ Dp. In order
to apply Sadovskii’s fixed point theorem, we decompose ψ = ψ1 + ψ2, where the
operators ψ1, ψ2 are defined on Dp, by

(ϕ1x) (t) = Sα (t)F (0, v(0))− F (t, v (t)) +

∫ t

0

(t− s)α−1ATα(t− s)F (s, v(s)) ds

and

(ϕ2x) (t)

= Sα (t) [x0 − h (x)] +

∫ t

0

(t− s)α−1Tα(t− s)G (s, u(s)) ds

+

∫ t

0

(t− s)α−1Tα(t− s)

[
K

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ

)]
ds

+

∫ t

0

(t− s)α−1Tα(t− s)CQ̃−1 [x1 − Sα (a) {x0 − h (x) + F (0, v(0))}+ F (a, v (a))

−
∫ a

0

(a− s)α−1ATα(a− s)F (s, v(s))ds

−
∫ a

0

(a− s)α−1Tα(a− s){G(s, u(s))

+K(s, x(s,

∫ s

0

k(s, τ, x(τ))dτ)}ds](s)ds

for t ∈ J . By similar manner as we have done it in Theorem 3.1, we can prove that
ψ1 verify a contraction condition and also verify that ψ2 is a compact operator.
Hence it is omitted. �
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5. Conclusion

In this paper, the existences of the mild solutions of the neutral fractional in-
tegrodifferential equations with nonlocal initial conditions are discussed. We have
used the fractional power of operators and the Sadovskii’s fixed point theorem to
establish the existence results. In the last, we have given an example to illustrate
the application of the abstract results.
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