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EXISTENCE OF SOLUTIONS FOR FRACTIONAL

HAMILTONIAN SYSTEMS WITH NONLINEAR DERIVATIVE

DEPENDENCE IN R

CÉSAR E. TORRES LEDESMA

Abstract. In this paper, we investigate the existence of solution for the frac-
tional differential equation with mixed derivatives

tD
α
∞(−∞Dα

t u(t)) + b(t)u(t) = f(t, u(t),−∞Dα
t u(t)) (1)

u ∈ Hα(R).

where α ∈ (1/2, 1) and f is a nonlinearity depending on the fractional deriv-

ative of the solution, The existence of a positive solution is stated through an
iterative method based on Mountain Pass techniques.

1. Introduction

Fractional differential equations appear naturally in a number of fields such as
physics, chemistry, biology, economics, control theory, signal and image processing,
blood flow phenomena, etc. During last decades, the theory of fractional differential
equations is an area intensively developed, due mainly to the fact that fractional
derivatives provide an excellent tool for the description of memory and hereditary
properties of various materials and processes (see [1, 2, 4, 8, 17] and the references
therein). Therein, the composition of fractional differential operators has got much
attention from many scientists, mainly due to its wide applications in modeling
physical phenomena exhibiting anomalous diffusion. Specifically, the models in-
volving a fractional differential oscillator equation, which contains a composition of
left and right fractional derivatives, are proposed for the description of the processes
of emptying the silo [5] and the heat flow through a bulkhead filled with granular
material [11], respectively. Their studies show that the proposed models based on
fractional calculus are efficient and describe well the processes.

In the aspect of theory, the study of fractional differential equations including
both left and right fractional derivatives has attracted much attention by using
variational methods [3, 6, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21]. It is not easy to
use the critical point theory to study the fractional differential equations including
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both left and right fractional derivatives, since it is often very difficult to establish
a suitable space and a variational functional for the fractional problem.

In [13], the author studied the fractional nonlinear Dirichlet problem

tD
α
T (0D

α
t u(t)) = f(t, u(t)), t ∈ [0, T ],

u(0) = u(T ) = 0,
(2)

where α ∈ ( 12 , 1), and f ∈ C([0, T ] × R,R) satisfies the Ambrosetti-Rabinowitz
condition

(AR) There is a constant µ > 2 such that

0 < µF (t, u) ≤ uf(t, u) for every t ∈ [0, T ] and u ∈ R \ {0}
This condition is an effective tool to guarantee the boundedness of the (PS) se-
quence.

When the nonlinearity f does not depend on −∞Dα
t u, in [6, 7, 12, 15, 16, 19,

20, 21], the authors use the Mountain Pass Theorem, Fountain Theorems and the
genus properties in critical point theory to study the existence and multiplicity
results for (1).

In [10], by performing variational methods combined with iterative technique,
Sun and Zhang investigated the solvability of the following fractional boundary
value problem

d
dt

(
p 0D

−β
t (u′(t)) + q tD

−β
1 (u′(t))

)
+ f(t, u(t)) = 0, t ∈ (0, 1), (3)

u(0) = u(1) = 0,

where β ∈ (0, 1), 0 < p = 1−q < 1, 0D
−β
t , and tD

−β
1 denote left and right Riemann-

Liouville fractional integrals of order β, respectively, and f : [0, 1] × R → R is
continuous.

Motivated by the previous works, in [18], by using mountain pass theorem and
iterative technique, Xie, Xiao and Luo, studied the existence of solutions for the fol-
lowing nonlinear fractional boundary value problem with dependence on fractional
derivative

tD
α
T (p(t)0D

α
t u(t)) = f(t, u(t), 0D

α
t u(t)), t ∈ [0, T ], (4)

u(0) = u(T ) = 0,

where 0D
α
t and tD

α
T are the left and right Riemann-Liouville fractional derivatives

of order 1/2 < α ≤ 1, respectively, and f ∈ C([0, T ]×R×R,R) and p ∈ C1([0, T ],R)
with p(t) > 0 for t ∈ [0, T ].

In this paper, we investigate the existence of solution for the following fractional
differential equation with mixed derivatives

tD
α
∞(−∞Dα

t u(t)) + b(t)u(t) = f(t, u(t),−∞Dα
t u(t)) (5)

u ∈ Hα(R).
where the constant α ∈ (1/2, 1), −∞Dα

t and tD
α
∞ denote left and right Liouville -

Weyl fractional derivatives of order α respectively and are defined by

−∞Dα
t u(t) =

d

dx
−∞I1−α

t u(t), tD
α
∞u(t) = − d

dt
tI

1−α
∞ u(t),

and b : R → R and f : R3 → R are continuous functions.
We note, because the dependence of the nonlinearity on the fractional derivative

of the solution, (5) is non-variational, we cannot find some functional such that its
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critical point is the solution corresponding to the problem (5), so the well-developed
critical point theory is of no avail for, at least, a direct attack to the problem (5)
above. However, when there is not the presence of the fractional derivative in
the nonlinearity term, problem (5) has been studied by establishing corresponding
variational structure in some suitable fractional space and applying the critical
points theorems, see [15, 16]. Motivated by the works of Xie, Xiao and Luo [18]
(see also [10]), for each w ∈ Hα(R) fixed, we consider the following fractional
differential equation with mixed derivatives

tD
α
∞(−∞Dα

t u(t)) + b(t)u(t) = f(t, u(t),−∞Dα
t w(t)) (6)

u ∈ Hα(R).

Now problem (6) is variational (see [15, 16]) and we can treat it by variational
methods.

Now we state our main assumptions. In order to find solutions of (6), we will
assume the following general hypotheses.

(B) There are positive constants β1, β2 ∈ R such that

0 < β1 < b(t) < β2, ∀t ∈ R

(f1) There is θ > 2 such that

0 < θF (t, σ, ξ) ≤ σf(t, σ, ξ) ∀(t, σ, ξ) ∈ R× R \ {0} × R,

where F (t, σ, ξ) =
∫ σ

0
f(t, s, ξ)ds.

(f2) There exists some positive continuous function ϱ : R → R with

lim
|t|→+∞

ϱ(t) = 0. (7)

such that

|f(t, σ, ξ)| ≤ ϱ(t)|σ|θ−1 for all (t, σ, ξ) ∈ R3,

(f3) There is µ > 2 such that lim|σ|→+∞
f(t,σ,ξ)
|σ|µ−1 = 0 uniformly with respect to

t, ξ ∈ R.
Remark 1 As a consequence of (f1), there are constants Λ1 > 0 and Λ2 > 0 such
that

F (t, σ, ξ) ≥ Λ1|σ|θ, |σ| ≥ 1 (8)

and

F (t, σ, ξ) ≤ Λ2|σ|θ, |σ| ≤ 1. (9)

In fact, by (f1) we note that: θF (t, sσ, ξ) ≤ sσf(t, sσ, ξ)). Let h(s) = F (t, sσ, ξ),
then

d

ds

(
h(s)s−θ

)
≥ 0. (10)

Considering |σ| ≤ 1, we integrate (10), from 1 until 1
|σ| and we get

F (t, σ, ξ) ≤ F (t,
σ

|σ|
, ξ)|σ|θ. (11)

By other hand, if |σ| ≥ 1, integrating (10), from 1
|σ| until 1 we get

F (t, σ, ξ) ≥ |σ|θF (t,
σ

|σ|
, ξ). (12)
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Now, since σ
|σ| ∈ B(0, 1) and B(0, 1) is compact, there are Λ1 > 0 and Λ2 > 0 such

that

Λ1 ≤ F (t, σ, ξ) ≤ Λ2, for every σ ∈ B(0, 1).

Therefore we get the affirmation.
Before stating our results let us introduce the main ingredients involved in our

approach. We let Hα(R) be the usual fractional Sobolev space (see Sect. §2)
equipped with the norm

∥u∥2α =

∫
R
u(t)2dt+

∫
R
|w|2αû2dw.

For u ∈ Hα(R), b and f satisfying (B), (f1)− (f3), as we see in Sect. §3, we may
define the functional

Iw(u) =
1

2

(∫
R
(|−∞Dα

t u(t)|2 + b(t)|u(t)|2]dt
)
−
∫
R
F (t, u(t),−∞Dα

t w(t))dt (13)

which is of class C1 and we have

I ′w(u)v =

∫
R
[−∞Dα

t u(t)−∞Dα
t v(t)+b(t)u(t)v(t)]dt−

∫
R
f(t, u(t),−∞Dα

t w(t))v(t)dt,

(14)
for all v ∈ Hα(R). We say that u ∈ Hα(R) is a weak solution of (6) if u is a critical
point of Iw.

Now we are in a position to state our existence theorem
Theorem 1 Suppose that (B), (f1)−(f3) hold. Then there exist positive constants
K1 and K2 such that, for each w ∈ Hα(R), problem (6) has a weak nontrivial
solution uw such that K1 ≤ ∥uw∥α ≤ K2.

We prove the existence of weak solution of (6) by applying the mountain pass
theorem to the functional Iw defined on Hα(R). However, since the Palais-Smale
sequences lose compactness in R, we need extra arguments. To overcome this
difficulty we adapt some ideas from [21] and [18].

To state our main result concerns the solvability of equation (5), we need a
further assumption on f :

(f4) (i)

|f(t, σ1, ξ)− f(t, σ2, ξ)| ≤ L1|σ1 − σ2|,
for all (t, σ1, ξ), (t, σ2, ξ) ∈ R3 with σ1, σ2 ∈ [−ρ1, ρ1] and ξ ∈ R

(ii)

|f(t, σ, ξ1)− f(t, σ, ξ2)| ≤ L2|ξ1 − ξ2|,
for all (t, σ, ξ1), (t, σ, ξ2) ∈ R3 with σ ∈ [−ρ1, ρ1] and ξ1, ξ2 ∈ R, where
ρ1 is a positive constant (see section §4).

(iii) L1 + L2 < γ̃, where γ̃ = min{1, β1}.
Theorem 2 Assume conditions (B), (f1) − (f4) hold. Then problem (5) has a
nontrivial weak solution.

We proof Theorem 2, using iteration methods.
The rest of the paper is organized as follows: In section §2, we describe the

Liouville-Weyl fractional calculus and we introduce the fractional space that we
use in our work and some proposition are proven which will aid in our analysis. In
section §3, we give the proof of Theorem 1. Finally, in section §4, we give the proof
of Theorem 2.
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2. Preliminary Results

2.1. Liouville-Weyl Fractional Calculus. In this section we introduce some
basic definitions of fractional calculus which are used further in this paper. For
more details we refer the reader to [1].

The Liouville-Weyl fractional integrals of order 0 < α < 1 are defined as

−∞Iαx u(x) =
1

Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ (15)

xI
α
∞u(x) =

1

Γ(α)

∫ ∞

x

(ξ − x)α−1u(ξ)dξ (16)

The Liouville-Weyl fractional derivative of order 0 < α < 1 are defined as the
left-inverse operators of the corresponding Liouville-Weyl fractional integrals

−∞Dα
xu(x) =

d

dx
−∞I1−α

x u(x) (17)

xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x) (18)

We establish the Fourier transform properties of the fractional integral and frac-
tional differential operators. Recall that the Fourier transform û(w) of u(x) is
defined by

û(w) =

∫ ∞

−∞
e−ix.wu(x)dx.

Let u(x) be defined on (−∞,∞). Then the Fourier transform of the Liouville-Weyl
integral and differential operator satisfies

̂−∞Iαx u(x)(w) = (iw)−αû(w), ̂
xIα∞u(x)(w) = (−iw)−αû(w) (19)

̂−∞Dα
xu(x)(w) = (iw)αû(w), ̂

xDα
∞u(x)(w) = (−iw)αû(w) (20)

2.2. Fractional Derivative Spaces. In this section we introduce some fractional
spaces for more detail see [15].
Let α > 0. Define the semi-norm

|u|Iα
−∞

= ∥−∞Dα
xu∥L2

and norm

∥u∥Iα
−∞

=
(
∥u∥2L2 + |u|2Iα

−∞

)1/2
, (21)

and let

Iα−∞(R) = C∞
0 (R)

∥.∥Iα−∞ .

Now we define the fractional Sobolev spaceHα(R) in terms of the fourier transform.
Let 0 < α < 1, let the semi-norm

|u|α = ∥|w|αû∥L2 (22)

and norm

∥u∥α =
(
∥u∥2L2 + |u|2α

)1/2
,

and let

Hα(R) = C∞
0 (R)

∥.∥α
.

We note that a function u ∈ L2(R) belong to Iα−∞(R) if and only if

|w|αû ∈ L2(R). (23)
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Moreover

|u|Iα
−∞

= ∥|w|αû∥L2 . (24)

Therefore Iα−∞(R) and Hα(R) are equivalent with equivalent semi-norm and norm.
Analogous to Iα−∞(R) we introduce Iα∞(R). Let the semi-norm

|u|Iα
∞

= ∥xDα
∞u∥L2

and norm

∥u∥Iα
∞

=
(
∥u∥2L2 + |u|2Iα

∞

)1/2
, (25)

and let

Iα∞(R) = C∞
0 (R)

∥.∥Iα∞ .

Moreover Iα−∞(R) and Iα∞(R) are equivalent, with equivalent semi-norm and norm
[15]. We recall the Sobolev Lemma.
Theorem 1 [12] If α > 1

2 , then Hα(R) ⊂ C(R) and there is a constant C = Cα

such that

sup
x∈R

|u(x)| ≤ C∥u∥α (26)

Remark 1 From Theorem 1, we now that if u ∈ Hα(R) with 1/2 < α < 1, then
u ∈ Lq(R) for all q ∈ [2,∞), because∫

R
|u(x)|qdx ≤ ∥u∥q−2

∞ ∥u∥2L2 .

Namely, the embedding Hα(R) ↪→ Lq(R) is continuous and there exists positive
constant Cq such that

∥u∥Lq ≤ Cq∥u∥α.
In what follows, we introduce the fractional space in which we will construct the
variational framework of (6). Let

Xα =

{
u ∈ Hα(R)|

∫
R

[
|−∞Dα

t u(t)|2 + b(t)|u(t)|2
]
dt < ∞

}
,

then Xα is a reflexive and separable Hilbert space with the inner product

⟨u, v⟩Xα =

∫
R
[(−∞Dα

t u(t), −∞Dα
t v(t)) + b(t)u(t)v(t)] dt

and the corresponding norm

∥u∥2Xα = ⟨u, u⟩Xα .

Lemma 1 Suppose b satisfies (B). Then Xα and Hα(R) are equal with equivalent
norms.
Proof. By (B) we have

γ̃∥u∥2α ≤ ∥u∥2Xα (27)

where γ̃ = min{1, β1}, and
∥u∥2Xα ≤ η∥u∥2α (28)

where η = max{1, β2}. �
Now we introduce more notations and some necessary definitions. Let B be a

real Banach space, I ∈ C1(B,R), which means that I is a continuously Fréchet-
differentiable functional defined on B. Recall that I ∈ C1(B,R) is said to satisfy
the Palais-Smale condition if any sequence {uk}k∈N ∈ B, for which {I(uk)}k∈N is
bounded and I ′(uk) → 0 as k → +∞, possesses a convergent subsequence in B.
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Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denote its boundary. For the reader convenience we recall the Mountain Pass
Theorems, see [9].
Mountain Pass Theorem Let B be a real Banach space and I ∈ C1(B,R)
satisfying the (PS) condition. Suppose that I(0) = 0 and

(i) there are constants ρ, β such that I∂Bρ
≥ β, and

(ii) there is an e ∈ B \Bρ such that I(e) ≤ 0

Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where

Γ = {γ ∈ C([0, 1],B) : γ(0) = 0, γ(1) = e}.

3. Proof of Theorem 1

Let w ∈ Hα(R). We say that u ∈ Xα is a weak solution of (6), if∫
R
[−∞Dα

t u(t)−∞Dα
t v(t) + b(t)u(t)v(t)]dt =

∫
R
f(t, u(t),−∞Dα

t w(t))v(t)dt, (29)

for all v ∈ Xα.
As usual, a weak solution of a problem as in (6), which is variational, is obtained

as a critical point of an associated functional Iw : Xα → R, defined by

Iw(u) =
1

2

(∫
R
(|−∞Dα

t u(t)|2 + b(t)|u(t)|2]dt
)
−
∫
R
F (t, u(t),−∞Dα

t w(t))dt.

The proof of Theorem 1, is broken into several lemmas. First we prove that the
functional Iw has the geometry of the Mountain-Pass Theorem.

First, we note, due to (7) and from (f2), it is easy to see that

f(t, σ, ξ) = o(σ) as σ → 0 (30)

uniformly with respect to t, ξ ∈ R and

|F (t, σ, ξ)| =
∣∣∣∣∫ 1

0

f(t, sσ, ξ)σds

∣∣∣∣ ≤ ϱ̃|σ|µ
∫ 1

0

sµ−1ds =
ϱ̃

µ
|σ|µ,

where ϱ̃ = maxt∈R ϱ(t). Hence, we have

|F (t, σ, ξ)| = o(σ2)

as σ → 0 uniformly with respect to t, ξ ∈ R. That is, for any ϵ > 0, there is δ > 0
such that

|F (t, σ, ξ)| ≤ ϵ|σ|2, (t, σ, ξ) ∈ R3 and |σ| ≤ δ. (31)

Lemma 1 Let w ∈ Hα(R). Under assumptions of Theorem 1, there exists ρ, β > 0
independent of w such that

Iw(u) ≥ β > 0, if ∥u∥α = ρ.

Proof. By (31), for all ϵ > 0, there exists δ > 0 such that |F (t, u, ξ)| ≤ ϵ|u|2
whenever |u| ≤ δ. Letting ρ = δ

Cα
and ∥u∥α = ρ, we have ∥u∥∞ ≤ δ. Hence, we

have

|F (t, u(t), ξ)| ≤ ϵ|u(t)|2 for all t, ξ ∈ R.
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Integrating on R, we get∣∣∣∣∫
R
F (t, u,−∞Dα

t w)dt

∣∣∣∣ ≤ ϵ∥u∥2L2 ≤ ϵC2
2∥u∥2α,

where C2 is defined in Remark 1 - section §2. In consequence, combining this with
Lemma 1 - section §2, we obtain that, for ∥u∥α = ρ,

Iw(u) =
1

2
∥u∥2Xα −

∫
R
F (t, u(t),−∞Dα

t w(t))dt

≥
(
γ̃

2
− ϵC2

2

)
∥u∥2α. (32)

Setting ϵ = γ̃
4C2

2
, the inequality (32) implies that

Iw|∂Bρ ≥ 1

4

γ̃δ2

C2
α

= β > 0.

�
Lemma 2 Let w ∈ Hα(R). Under assumptions of Theorem 1, fix φ ∈ C∞

0 (R) ⊂
Hα(R) with ∥φ∥α = 1, there exists s > 0 independent of w such that

Iw(sφ) ≤ 0, if s > s.

Proof. Let φ ∈ Hα(R) with |φ(t)| = 1 for all t ∈ [0, 1]. For every s ∈ [1,∞), by
(8) and Lemma 1 - section §2, we get

Iw(sφ) =
1

2
∥sφ∥2α −

∫
R
F (t, sφ(t),−∞Dα

t w(t))dt

≤ s2

2
∥φ∥2α − Λ1s

θ∥φ∥θLθ

Since θ > 2, we conclude taking s big enough. �
Now, our purpose is to show that Iw, satisfies the (PS)-condition. To do this,

firsts we prove the following Lemma.
Lemma 3 Let w ∈ Hα(R). Under the conditions of Theorem 1, ϕ′

w is compact,
i.e., ϕ′

w(un) → ϕ′
w(u) if un ⇀ u in Hα(R), where ϕw : Hα(R) → R is defined by

ϕw(u) =

∫
R
F (t, u,−∞Dα

t w)dt.

Proof. Assume that un ⇀ u in Hα(R). Then there exists a constant K > 0 such
that

∥un∥α ≤ K and ∥u∥α ≤ K. (33)

In view of (f2), for any ϵ > 0, there exists R > 0 such that

|f(t, u, ξ)| ≤ ϵ|u|θ−1 and |f(t, un, ξ)| ≤ ϵ|un|θ−1 (34)
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for (t, u, ξ) ∈ R3 with |t| > R. Consequently, for n large enough, we have

|⟨ϕ′
w(un)− ϕ′

w(u), v⟩| =

∣∣∣∣∫
R
[f(t, un,−∞Dα

t w)− f(t, u,−∞Dα
t w)]v(t)dt

∣∣∣∣
≤

∣∣∣∣∣
∫
|t|≤R

(f(t, un,−∞Dα
t w)− f(t, u,−∞Dα

t w))vdt

∣∣∣∣∣
+

∣∣∣∣∣
∫
|t|>R

(f(t, un,−∞Dα
t w)− f(t, u,−∞Dα

t w))vdt

∣∣∣∣∣
≤ ϵ∥v∥∞ +

∫
|t|>R

|f(t, un,−∞Dα
t w)||v|dt

+

∫
|t|>R

|f(t, u,−∞Dα
t w)||v|dt

≤ ϵCα∥v∥α + ϵ

∫
|t|>R

|un|θ−1|v|dt+ ϵ

∫
|t|>R

|u|θ−1|v|dt

≤ ϵCα∥v∥α + ϵ

∫
|t|>R

(
θ − 1

θ
|un|θ +

1

θ
|v|θ
)
dt

+ϵ

∫
|t|>R

(
θ − 1

θ
|u|θ + 1

θ
|v|θ
)
dt

≤ ϵCα∥v∥α +
ϵ(θ − 1)

θ

∫
|t|>R

(|un|θ + |u|θ)dt

+
2ϵ

θ

∫
|t|>R

|v|θdt.

Here we apply Young inequality:

ab ≤ ap

p
+

bq

q
, a, b > 0, p, q > 1 and

1

p
+

1

q
= 1.

Consequently, we obtain that

∥ϕ′
w(un)− ϕ′

w(u)∥H−α = sup
∥v∥α=1

∣∣∣∣∫
R
(f(t, un,−∞Dα

t w)− f(t, u,−∞Dα
t w))v(t)dt

∣∣∣∣
≤ ϵCα + 2ϵ(CθK)

θ θ − 1

θ
+ ϵCθ

θ

2

θ
,

which implies that ϕ′
w is a compact operator. �

Lemma 4 Under the conditions of Theorem 1, Iw satisfies the (PS) condition.
Proof. Assume that {un}n∈N ⊂ Hα(R) is a sequence such that {Iw(un)}n∈N is
bounded and I ′w(un) → 0 as n → +∞. Then there exists a constant C > 0 such
that

|Iw(un)| ≤ C and ∥I ′w(un)∥H−α ≤ C (35)

for every n ∈ R, where H−α(R) is the dual space of Hα(R).
Firstly, we show that {un}n∈N is bounded. In fact, in view of (f1) and (35), we

obtain that
1

2
∥un∥2Xα <

∫
R
F (t, un(t),−∞Dα

t w(t))dt+ C, (36)
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and∫
R
f(t, un(t),−∞Dα

t w(t))un(t)dt < C∥un∥Xα +

∫
R
(|−∞Dα

t un(t)|2 + b(t)|un(t)|2)dt.

(37)
Therefore,

1

2
∥un∥2Xα <

1

θ

∫
R
f(t, un(t),−∞Dα

t w(t))un(t)dt+ C

<
1

θ

[
C∥un∥Xα + ∥un∥2Xα

]
+ C.

So (
1

2
− 1

θ

)
∥un∥2Xα <

C

θ
∥un∥Xα + C, (38)

since θ > 2, by (38), the boundness of {un}n∈N follows directly.
On the other hand, according to Lemma 3, ϕ′

w is compact. Therefore, there
exists a subsequence, still denotes as {un}n∈N, such that un ⇀ u in Hα(R) and
ϕ′
w(un) → ϕ′

w(u). So

⟨I ′w(un)− I ′w(u), un − u⟩ = ∥un − u∥2Xα − ⟨ϕ′
w(un)− ϕ′

w(u), un − u⟩.

Therefore, as I ′w(un) → 0, we deduce that

∥un − u∥Xα → 0 as n → 0

and prove that the (PS) condition holds. �
Proof of Theorem 1. It its clear that Iw(0) = 0 and by Lemma 1, Lemma
2, Iw ∈ C1(Hα(R),R) satisfies the mountain pass geometry conditions and by
Lemma 4, satisfies the (PS) condition. Therefore, by the Mountain Pass Theorem,
Iw possesses a critical value cw ≥ β > 0 given by

cw = inf
γ∈Γw

max
s∈[0,1]

Iw(γ(s)),

where

Γw = {γ ∈ C([0, 1],Hα(R)) : γ(0) = 0, γ(1) = e}.
Hence there is 0 ̸= uw ∈ Hα(R) such that

Iw(uw) = cw and I ′w(uw) = 0.

That is, (6) has at least one nontrivial weak solution.
Further, since uw is weak solution of problem (6), we have∫

R
[−∞Dα

t uw(t)−∞Dα
t uw(t)+b(t)uw(t)uw(t)dt =

∫
R
f(t, uw(t),−∞Dα

t w(t))uw(t)dt.

(39)
By (30) and (f3), for every ϵ > 0 there is Cϵ > 0 such that

|f(t, σ, ξ)| ≤ ϵ|σ|+ Cϵ|σ|µ−1.

This implies

∥uw∥2Xα ≤ ϵC2
2∥uw∥2α + CϵC

µ
µ∥uw∥µα,

and by Lemma 1 - section §2, we get

γ̃ − ϵC2
2

CϵC
µ
µ

∥uw∥2α ≤ ∥uw∥µα.
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Let ϵ > 0 small enough, such that
γ̃−ϵC2

2

CϵC
µ
µ

> 0. Since µ > 2 we can take

K1 =

(
γ̃ − ϵC2

2

CϵC
µ
µ

) 1
µ−2

,

to get

K1 ≤ ∥uw∥α. (40)

On the other hand, by mountain pass characterization of the critical level, we
have

cw = Iw(uw) ≤ max
s∈[0,∞)

Iw(sφ). (41)

Further, by (8) and φ ∈ Hα(R) with |φ(t) = 1| for all t ∈ [0, 1], we have

Iw(sφ) ≤
s2

2
∥φ∥2Xα − Λ1s

θ∥φ∥θLθ .

Then

cw ≤ max
s≥0

Iw(sφ) ≤ max
s≥0

(
s2

2
∥φ∥2Xα − Λ1s

θ∥φ∥θLθ

)
:= K̃.

Note that, since θ > 2, K̃ is well defined. Since I ′w(uw)uw = 0, then

γ̃(
1

2
− 1

θ
)∥uw∥2α ≤ Iw(uw)−

1

θ
I ′w(uw)uw = cw ≤ K̃,

taking

K2 =

(
K̃

γ̃
(
1
2 − 1

θ

))1/2

,

we get

∥uw∥α ≤ K2. (42)

�

4. Proof of Theorem 2

To prove Theorem 2, we construct iterative sequence (un) and we show that (un)
is convergent to a nontrivial solution u ∈ Hα(R) of problem

tD
α
∞(−∞Dα

t u(t)) + b(t)u(t) = f(t, u(t),−∞Dα
t u(t)) (43)

u ∈ Hα(R).

We consider the solution (un) of the following problem

(Pn)

{
tD

α
∞(−∞Dα

t un(t)) + b(t)un(t) = f(t, un(t),−∞Dα
t un−1(t))

un ∈ Hα(R),

starting with an arbitrary u0 ∈ Hα(R). By iterative technique, we can get a
sequence {un}, the nontrivial point obtained by Theorem 1. Moreover, by Theorem
1, we know that: 0 < K1 ≤ ∥un∥α ≤ K2 and by Theorem 1 - section §2, there
exists positive constant ρ1, such that

∥un∥∞ ≤ ρ1. (44)
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By (14) and I ′un
(un+1)(un+1 − un) = 0 and I ′un−1

(un)(un+1 − un) = 0, we obtain∫
R
[−∞Dα

t un+1 · −∞Dα
t (un+1 − un) + b(t)un+1(un+1 − un)]dt

=

∫
R
f(t, un+1,−∞Dα

t un)(un+1 − un)dt,

and ∫
R
[−∞Dα

t un · −∞Dα
t (un+1 − un) + b(t)un(un+1 − un)]dt

=

∫
R
f(t, un,−∞Dα

t un−1)(un+1 − un)dt,

hence

∥un+1 − un∥2Xα =

∫
R
(f(t, un+1,−∞Dα

t un)− f(t, un,−∞Dα
t un−1))(un+1 − un)dt.

So, we have

∥un+1 − un∥2Xα =

∫
R
(f(t, un+1,−∞Dα

t un)− f(t, un,−∞Dα
t un))(un+1 − un)dt

+

∫
R
(f(t, un,−∞Dα

t un)− f(t, un,−∞Dα
t un−1))(un+1 − un)dt

≤ L1

∫
R
|un+1 − un|2dt+ L2

∫
R
|−∞Dα

t (un − un−1)| · |un+1 − un|dt

≤ L1∥un+1 − un∥2L2 + L2∥un+1 − un∥L2∥−∞Dα
t (un − un−1)∥L2

≤ L1∥un+1 − un∥2α + L2∥un+1 − un∥α∥un − un−1∥α.

By Lemma 1 - section §2, we obtain

∥un+1 − un∥2Xα ≤ L1

γ̃
∥un+1 − un∥2Xα +

L2

γ̃
∥un+1 − un∥Xα∥un − un−1∥Xα .

Since L1 + L2 < γ̃, then

∥un+1 − un∥Xα ≤ L2

γ̃ − L1
∥un − un−1∥Xα , (45)

and then (un) be a Cauchy sequence in Hα(R), so there exists a u ∈ Hα(R) such
that (un) converges strongly to u in Hα(R) and by (40), we know that u ̸= 0.

In order to show that u is a weak solution of problem (43), we need to prove
that ∫

R
[−∞Dα

t u−∞Dα
t v + b(t)uv]dt =

∫
R
f(t, u,−∞Dα

t u)vdt ∀v ∈ Hα(R).

It suffices to show that∫
R
f(t, un,−∞Dα

t un−1)vdt →
∫
R
f(t, u,−∞Dα

t u)vdt as n → ∞.
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Indeed, it follows from the assumption (f4) that∫
R
[f(t, un,−∞Dα

t un−1)− f(t, u,−∞Dα
t u)]vdt

=

∫
R
[f(t, un,−∞Dα

t un−1)− f(t, un,−∞Dα
t u)]vdt

+

∫
R
[f(t, un,−∞Dα

t u)− f(t, u,−∞Dα
t u)]v(t)dt

≤ L1

∫
R
|un − u||v|dt+ L2

∫
R
|−∞Dα

t (un − un−1)||v|dt

≤ [L1∥un − u∥α + L2∥un−1 − u∥α] ∥v∥α
→ 0, n → ∞.

Therefore, we obtain a nontrivial solution of problem (43). �
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E-mail address: ctl 576@yahoo.es, ctorres@dim.uchile.cl


