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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS

FOR COUPLED SYSTEMS OF FRACTIONAL ∆-DIFFERENCE

BOUNDARY VALUE PROBLEMS

YOUSEF GHOLAMI, KAZEM GHANBARI

Abstract. In this paper, we establish the solvability of coupled systems of

two-point fractional ∆-difference boundary value problems. To this aim we use
the nonlinear alternative of Leray-Schauder and Krasnoselskii-Zabreiko fixed
point theorems for existence results and by imposing Lipschitzian conditions
on nonlinearities uniqueness of solutions will be concluded. In this paper,

Green functions play crucial role for linking considered fractional ∆-difference
boundary value problems and fixed point techniques in relevant Banach spaces.
At the end we present some numerical examples to illustrate the obtained main
results.

1. Introduction

The theory of fractional calculus has been recognized in the recent decades as an
effective tool for studying both theoretical and computational approaches of mathe-
matical based systems, particularly memory dependent ones. In this way fractional
differential equations that generalizes integer-order differential equations plays pi-
oneering role. Every interested follower can find great number of research works
dealing with nonlinear fractional boundary value problems, see [12],[13]. Although
in view point of comparison, investigation about discrete fractional boundary value
problems has very poor historical perspective, see for instance [2]-[5],[7].
F. Atici and P. Eloe in [3], considered the two-point fractional ∆-difference bound-
ary value problem{

−∆νy(t) = f(t+ ν − 1, y(t+ ν − 1)), t = 1, 2, ..., b+ 1,
y(ν − 2) = 0, y(ν + b+ 1) = 0,

(1)

where 1 < ν ≤ 2 is a real number and, b ≥ 2 is an integer and ∆ν denotes fractional
∆-difference operator of order ν > 0. f : [ν, ν + b]Nν−1 ×R → R is continuous. The
authors using Guo-Krasnoselskii fixed point theorem obtained at least one positive
solution for (1) on a cone in a Banach space.
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In this paper we consider the coupled system of two-point fractional ∆-difference
boundary value problems

(
∆α
a+u(t)

∆α
a+v(t)

)
+

(
f(t+ α− 1, v(t+ α− 1)
g(t+ α− 1, u(t+ α− 1))

)
= 0,

(
u(α+ a− 2)
u(α+ b+ 1)

)
=

(
0
0

)
=

(
v(α+ a− 2)
v(α+ b+ 1)

)
,

(2)

such that 1 < α ≤ 2, t ∈ [a, b+ 1]Nα−1 = {a, a+ 1, ..., b, b+ 1}, a, b ∈ Z such that
a ≥ 1, b ≥ 2 and f, g : [α+a−1, α+b]Nα−1 ×R → R+ are continuous functions. We
will apply couple of different fixed point theorems for obtaining the same outcome
as obtained in [3] . In addition for demonstrating uniqueness of solutions we apply
so called Lipschitzian conditions to obtain a contraction mapping. In this position
the organization of the paper can be stated as follows: in section 2, we give some
standard definition and technical lemmas related to the discrete fractional calculus
and some functional analysis. In section 3, the main existence and uniqueness
results of the paper in theoretical manner will be concluded and in the last section
illustrating obtained main results some numerical examples for each fixed point
technique will be represented.

2. Technical Background

We divide this section into the couple of steps. First we give some necessary
preliminaries of fractional ∆-difference calculus.

Definition 2.1. Fractional falling function tα is defined by:

tα =
Γ(t+ 1)

Γ(t+ 1− α)
, t ∈ R\{..., α− 3, α− 2, α− 1}, α ∈ R, (3)

such that

(i) tα = 0, provided that {t+ 1− α} ∈ Z≤0, α ∈ R,
(ii) t0 = 1.

Lemma 2.2. [2] Suppose all the following fractional falling functions are well de-
fined. Then

(P1) ∆tt
α = αtα−1,

(P2) (t− α)tα = tα+1

(P3) α
α = Γ(α+ 1),

where α ∈ R and denoted by ∆t the forward difference operator with respect to the
variable t.

Now we define fractional ∆-difference operators as below.

Definition 2.3. [1] The left sided fractional ∆-sum of order α > 0 for function f
is defined as

∆−α
a+ f(t) =

1

Γ(α)

t−α∑
s=a

(t− σ(s))α−1f(s), (4)

where σ(s) = s+ 1.
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Definition 2.4. [1] The left sided fractional ∆-difference of order α for function
f is given by

∆α
a+f(t) = ∆n

t∆
−(n−α)
a+ f(t) =

1

Γ(n− α)
∆n
t

t−(n−α)∑
s=a

(t− σ(s))n−α−1f(s)

, (5)

such that n = [α] + 1 and denoted by ∇t the backward difference operator with
respect to the variable t.

Remark 2.5. The fractional left and right sided ∆-sums of order α > 0, defined
by (4) have the following properties:

(i) ∆−α
a+ maps functions defined on Na to functions defined on Na+α.

(ii) ∆α
a+ maps functions defined on Na to functions defined on Na+(n−α),

where Nc = {c, c+ 1, c+ 2, ...}.

Lemma 2.6. [8] Assume that f is a real-valued function and µ > 0, 0 ≤ n− 1 <
ν ≤ n. Then

(Q1) ∆−µ
a+ ∆−ν

a+ f(t) = ∆
−(µ+ν)
a+ f(t) = ∆−ν

a+∆−µ
a+ f(t),

(Q2) ∆−ν
a+ ∆ν

a+f(t) = f(t) + c1(t − a)ν−1 + c2(t − a)ν−2 + ... + cn(t − a)ν−n ,
ci ∈ R, i = 1, 2, ..., n.

(Q3) ∆ν
a+ ∆−ν

a+ f(t) = f(t).

(Q4) ∆−ν
a+ (t− a)ν =

Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a)µ+ν , µ+ ν + 1 ̸∈ Z≤0.

In this position we define relevant Banach spaces that will be covered the main
purposes as below:

E = B×B, (6a)

B =
({
x
∣∣x : [α+ a− 1, α+ b]Nα−1 → R, x(α+ a− 2) = x(α+ b+ 1) = 0

}
, ∥.∥B

)
,

(6b)
endowed with the norm

∥(x, y)∥E = ∥x∥B + ∥y∥B, ∥x∥B = sup
t∈[α+a−1,α+b]Nα−1

|x(t)|. (6c)

As stated above, we use the nonlinear alternative of the Leray-Schauder and Kras-
noselskii -Zabreiko fixed point theorems for solvability verification of the coupled
system (2). So we state these theorems as follows, respectively.

Theorem 2.7. [14],[10] Let C be a convex subset of a Banach space, U be a open
subset of C with 0 ∈ U . Then every completely continuous map T : U → C has at
least one of the two following properties:

(E1) There exist an u ∈ U such that Tu = u.
(E2) There exist an v ∈ ∂U and λ ∈ (0, 1) such that v = λTv.

Theorem 2.8. [11],[9] Let X be a Banach space. Assume that T : X → X is a
completely continuous mapping. If L : X → X be a linear bounded mapping such
that 1 is not an eigenvalue of L and

lim
∥u∥→∞

∥Tu− Lu∥
∥u∥

= 0, (7)

then T has a fixed point in X.
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3. Main Results

Lemma 3.1. Let 1 < α ≤ 2, a, b ∈ Z, a ≥ 1, b ≥ 2 and h : [α+a−1, α+b]Nα−1 → R.
u(t) solves the fractional ∆-difference boundary value problem ∆α

a+u(t) + h(t+ α− 1) = 0, 1 < α ≤ 2, t = a, a+ 1, ..., b, b+ 1,

u(α+ a− 2) = 0, u(α+ b+ 1) = 0,
(8)

if and only if u(t) be the unique solution of the fractional ∆-sum equation

u(t) =

b+1∑
s=a

G(t, s)h(s+ α− 1), (9)

where

G(t, s)

=
1

Γ(α)


(t− a)α−1(α+ b− s)α−1

(α+ b− a+ 1)α−1 − (t− σ(s))α−1, a ≤ s+ α− 1 ≤ t ≤ b+ 1,

(t− a)α−1(α+ b− s)α−1

(α+ b− a+ 1)α−1 , a ≤ t ≤ s+ α− 1 ≤ b+ 1.

(10)

Proof. Using property (Q2) in Lemma 2.6, one can reduce the fractional ∆- differ-
ence equation (8) to the fractional ∆-sum equation

u(t) = −∆α
a+h(t+ α− 1) + c1(t− a)α−1 + c2(t− a)α−2. (11)

Boundary condition u(α+ a− 2) = 0 and property (C3) of Lemma 2.2, ensure that
c2 = 0. Afterward, boundary condition u(α + b + 1) = 0 leads us to the unique
coefficient c1 given by:

c1 =

∆−α
a+ h(t+ α− 1)

∣∣∣∣
t=α+b+1

(α+ b− a+ 1)α−1 . (12)

Substituting c1, c2 into (11), it follows that

u(t) =
−1

Γ(α)

t−α∑
s=a

(t− σ(s))α−1h(s+ α− 1)

+
(t− a)α−1

Γ(α)(α+ b− a+ 1)α−1

b+1∑
s=a

(α+ b− s)α−1h(s+ α− 1)

=
−1

Γ(α)

t−α∑
s=a

[
(t− σ)α−1 − (t− a)α−1(α+ b− s)α−1

(α+ b− a+ 1)α−1

]
h(s+ α− 1)

+
(t− a)α−1

Γ(α)(α+ b− a+ 1)α−1

b+1∑
s=t−α+1

(α+ b− s)α−1h(s+ α− 1)

=
b+1∑
s=a

G(t, s)h(t+ α− 1).

The proof is completed. �
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Lemma 3.2. The Green function G(t, s) defined by (10) possesses the following
properties:

(i) G(t, s) > 0 for t ∈ [α+ a− 1, α+ b]Nα−1
and s ∈ [a, b+ 1]N.

(ii)

max
t∈[α+a−1,α+b]Nα−1

s∈[a,b+1]N

G(t, s) =

1

Γ(α)



b− a+ 2α

b− a+ 2

Γ(b− a+ 2)Γ2

(
b− a

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a

2
+ 1

) , a+ b : even,

b− a+ 2α+ 1

b− a+ 3

Γ(b− a+ 2)Γ2

(
b− a+ 1

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a+ 1

2
+ 1

) , a+ b : odd.

(13)

(iii) There exist a positive number γ ∈ (0, 1) such that for s ∈ [a, b+ 1]N

min
t∈[ b−a+1+α

4 ,
3(b−a+1+α)

4 ]

G(t, s) ≥ γ max
t∈[α+a−1,α+b]Nα−1

G(t, s).

Proof. Taking into account that the proof of items (i) and (iii) are same as in
Theorem 3.2 [3], we joust prove the item (ii). To this aim using property (C1) of
Lemma 2.2, a simple calculation yields us

∆tG(t, s) < 0, a ≤ s+ α− 1 ≤ t ≤ b+ 1,

∆tG(t, s) > 0, a ≤ t ≤ s+ α− 1 ≤ b+ 1.
(14)

Thus we conclude that for t ∈ [α+ a− 1, α+ b]Nα−1
, s ∈ [a, b+ 1]N,

max
t∈[α+a−1,α+b]Nα−1

G(t, s) = G(s+ α− 1, s), s ∈ [a, b+ 1]N.

Equivalently it follows that

max
t∈[α+a−1,α+b]Nα−1

s∈[a,b+1]N

G(t, s) = max
s∈[a,b+1]N

G2(s+ α− 1, s)

Γ(α)
, (15)

where

G2(t, s) =
(t− a)α−1(α+ b− s)α−1

(α+ b− a+ 1)α−1 , a ≤ t ≤ s+ α− 1 ≤ b+ 1.

On the other hand since

∆G2(s+ α− 1, s) =
(1− α)Γ(s+ α− a)Γ(α+ b− s)

(α+ b− a+ 1)⌊α−1⌋(s− a+ 2)!(b− s+ 2)!
[2s− (a+ b)],
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we conclude that G(s + α − 1, s) is increasing for s < a+b
2 and is decreasing for

s > a+b
2 . Therefore it follows that

max
s∈[a,b+1]N

G(s+ α− 1, s) =

G2

(
a+ b

2
+ α− 1,

a+ b

2

)
Γ(α)

=
1

Γ(α)

b− a+ 2α

b− a+ 2

Γ(b− a+ 2)Γ2

(
b− a

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a

2
+ 1

) ,
(16)

if a+ b is even and

max
s∈[a,b+1]N

G(s+ α− 1, s) =

G2

(
a+ b+ 1

2
+ α− 1,

a+ b+ 1

2

)
Γ(α)

=
1

Γ(α)

b− a+ 2α+ 1

b− a+ 3

Γ(b− a+ 2)Γ2

(
b− a+ 1

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a+ 1

2
+ 1

) ,
(17)

if a+ b is odd. This completes the proof. �

We define the operator K : C ⊂ E → E as

K(u, v)(t) = ((K1v) (t), (K2u) (t)) , t ∈ [α+ a− 1, α+ b]Nα−1 (18)

where

(K1) v(t) =

b+1∑
s=a

G(t, s)f(s+ α− 1, v(s+ α− 1)),

t ∈ [α+ a− 1, α+ b]Nα−1

(K2)u(t) =
b+1∑
s=a

G(t, s)g(s+ α− 1, u(s+ α− 1)),

(19)

and

C = C1 ⊕ C2 =

{
(u, v) ∈ E

∣∣∣∣ w(t) ≥ 0, t ∈ [α+ a− 1, α+ b]Nα−1 ,

min
t∈∆

w(t) ≥ γ∥w∥B, w ∈ {u, v}
}
,

C1 =

{
(0, v) ∈ E

∣∣∣∣ v(t) ≥ 0, t ∈ [α+ a− 1, α+ b]Nα−1 , min
t∈∆

v(t) ≥ γ∥v∥B
}
,

C2 =

{
(u, 0) ∈ E

∣∣∣∣ u(t) ≥ 0, t ∈ [α+ a− 1, α+ b]Nα−1
, min

t∈∆
u(t) ≥ γ∥u∥B

}
,

∆ =

[
b− a+ 1 + α

4α
,
3(b− a+ 1 + α)

4α

]
.

(20)
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Remark 3.3. The operator K can be written in the form of the following matrix
equation

K(u, v)(t) =

b+1∑
s=a

(
G(t, s)
G(t, s)

)(
f(s+ α− 1, v(s+ α− 1)) 0

0 g(s+ α− 1, u(s+ α− 1))

)
.

(21)

So one can deduce that the coupled system of two-point fractional ∆-difference
boundary value problems (2) solves uniquely the matrix equation (21).

Remark 3.4. We notice that the item (iii) in Lemma 3.2, ensures that K(C) ⊂ C.

Relied on the above preliminaries, now we are ready to establish the existence
of at least one positive solution for the coupled system of two-point fractional
∆-difference boundary value problems (2) via the nonlinear alternative of Leray-
Schauder and Krasnoselskii-Zabreiko fixed point theorems stated above.

3.1. Existence. Let us turn to the nonlinear alternative of Leray-Schauder fixed
point theorem (Theorem (2.7)). To prove the existence at least one solution for
coupled system (2), we shall prove that just the first part of the nonlinear alterna-
tive of Leray-Schauder fixed point theorem (E1) is satisfied. To this aim we need
to impose some necessary conditions on both nonlinearities f and g of discrete
coupled system (2). As stated above f, g : [α + a − 1, α + b]Nα−1 × R → R+ are
positive continuous functions. So based on these functions we consider the following
hypotheses.

Hypotheses 3.5. There exist positive continuous functions ϕi : [α + a − 1, α +
b]Nα−1 → R+, i = 1, 2 and ψi : R → R+, i = 1, 2 with ψi increasing, such that

(H1) f(z, v) ≤ ϕ1(z)ψ1(|v|), (z, v) ∈ [α+ a− 1, α+ b]Nα−1 × R;
(H2) g(z, u) ≤ ϕ2(z)ψ2(|u|), (z, u) ∈ [α+ a− 1, α+ b]Nα−1 × R.

Remark 3.6. Finitely discrete nature of the summation operator K given by (18)-
(19) in combination with the Hypotheses 3.5, indicate that K is trivially completely
continuous.

Theorem 3.7. Assume that the hypotheses (H1) and (H2) are satisfied. If there
exist positive constant ϱ such that

1

M
>

1

ϱ

[
ψ1(ϱ)

b+1∑
a

ϕ1(s+ α− 1) + ψ2(ϱ)
b+1∑
a

ϕ2(s+ α− 1)

]
, (22)

where M ∈ {Meven,Modd}, in which

Meven =
1

Γ(α)

b− a+ 2α

b− a+ 2

Γ(b− a+ 2)Γ2

(
b− a

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a

2
+ 1

) ,

Modd =
1

Γ(α)

b− a+ 2α+ 1

b− a+ 3

Γ(b− a+ 2)Γ2

(
b− a+ 1

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a+ 1

2
+ 1

) ,
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then the coupled system of two-point fractional ∆-difference boundary value prob-
lems (2) has at least one positive solution in C.

Proof. Let us consider the following coupled system of fractional λ-parametric ∆-
difference boundary value problems

(
∆α
a+u(t)

∆β
a+v(t)

)
+

(
λ 0
0 λ

)(
f(t+ α− 1, v(t+ α− 1)
g(t+ α− 1, u(t+ α− 1))

)
= 0,

(
u(α+ a− 2)
u(α+ b+ 1)

)
=

(
0
0

)
=

(
v(α+ a− 2)
v(α+ b+ 1)

)
,

(23)

for λ ∈ (0, 1). So solving (23) is equivalent to solving the fixed point problem
(u, v) = λK(u, v) where K is given by (18)-(19). Define

Ω =

{
(u, v) ∈ C| ∥u∥B, ∥v∥B <

ϱ

2

}
. (24)

We have to prove that (u, v) ̸= λK(u, v) for (u, v) ∈ ∂Ω and λ ∈ (0, 1). To this aim
suppose on contrary that there exists (u, v) ∈ ∂Ω such that (u, v) = λK(u, v) =
λ(K1v,K2u). So for λ ∈ (0, 1) it follows that

∥u∥B = λ sup
t∈[α+a−1,α+b]Nα−1

|K1v|

≤ sup
t∈[α+a−1,α+b]Nα−1

∣∣∣∣ b+1∑
s=a

G(t, s)f(s+ α− 1, v(s+ α− 1))

∣∣∣∣
≤M

b+1∑
s=a

f(s+ α− 1, v(s+ α− 1))

≤Mψ1(ϱ)

b+1∑
s=a

ϕ1(s+ α− 1).

(25)

Therefore it follows that

ϱ ≤ 2Mψ1(ϱ)
b+1∑
s=a

ϕ1(s+ α− 1). (26)

Similarly one has from v = λK2u that

ϱ ≤ 2Mψ2(ϱ)

b+1∑
s=a

ϕ2(s+ α− 1). (27)

From inequalities (26) and (27), it follows that

2

M
≤ 2

ϱ

[
ψ1(ϱ)

b+1∑
a

ϕ1(s+ α− 1) + ψ2(ϱ)

b+1∑
a

ϕ2(s+ α− 1)

]
,

which contradicts with (22). This contradiction demonstrates that according to
the Theorem 2.7, (E2) is not satisfied. Therefore we conclude that there exists
an (u, v) ∈ Ω such that (v, u) = K(u, v). Equivalently the coupled system of two-
point fractional ∆-difference boundary value problems (2) has at least one positive
solution in C. The proof is completed. �
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In this position, we consider the Krasnoselskii-Zabreiko fixed point theorem
(Theorem 2.8). According to this fixed point theorem, we shall approximate the
fractional ∆-sum operator K(u, v) defined by (18) with a linear operator that dos
not admit 1 as its eigenvalue. Therefore once again considering the nonlinearities
f and g defined above, the following hypotheses will help us to reach to the above
mentioned linear operators.

Hypotheses 3.8. Suppose there exit positive continuous functions Θi : [α + a −
1, α+ b]Nα−1 → R+, i = 1, 2 such that the following hypotheses hold:

(S1) lim
∥v∥B→∞

f(z, v)

|v|
= Θ1(z), (z, v) ∈ [α+ a− 1, α+ b]Nα−1 × R;

(S2) lim
∥u∥B→∞

g(z, u)

|u|
= Θ2(z), (z, u) ∈ [α+ a− 1, α+ b]Nα−1 × R.

Theorem 3.9. Assume that the hypotheses (S1) and (S2) hold. Let

b+1∑
s=a

G(t, s) < max

{
∥Θ1∥B, ∥Θ2∥B

}−1

, t ∈ [α+ a− 1, α+ b]Nα−1 . (28)

Then the coupled system of two-point fractional ∆-difference boundary value prob-
lems (2) has at least one positive solution in C.

Proof. Consider the linear bounded mappings Li : Ci → E, i = 1, 2 given by

L1v(t) =
b+1∑
s=a

G(t, s)v(s+ α− 1)Θ1(s+ α− 1),

L2u(t) =
b+1∑
s=a

G(t, s)u(s+ α− 1)Θ2(s+ α− 1).

(29)

Obviously one can derive

∥L1v∥B ≤
b+1∑
s=a

G(t, s)∥v∥B∥Θ1∥B

≤
b+1∑
s=a

G(t, s)∥v∥B max

{
∥Θ1∥B, ∥Θ2∥B

}
< ∥v∥B,

(30)

which illustrates that 1 can not be an eigenvalue of L1. Similarly L2 can not admit
1 as its eigenvalue. Therefore if we define L(u, v) = (L1v, L2u), then (1, 1) can not
be the eigenvalue of L. Now considering the limit approach of the hypotheses (S1)
and (S2), for arbitrary ϵ > 0 we have

∥T1v − L1v∥B ≤
b+1∑
s=a

G(t, s)∥f(t+ α− 1, v)− |v|Θ1∥B

≤
b+1∑
s=a

G(t, s)ϵ∥v∥B < (b− a+ 2)Mϵ∥v∥B.

(31)

Similarly we have

∥T2u− L2u∥B < (b− a+ 2)Mϵ∥u∥B. (32)
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Note thatM appeared in (31 is defined as Theorem 3.7. Using the inequalities (31)
and (32), we conclude that

lim
(u,v)→(∞,∞)

∥K(u, v)− L(u, v)∥E
∥(u, v)∥E

≤ lim
∥u∥B→∞
∥v∥B→∞

{
∥K1v − L1v∥B

∥v∥B
+

∥K2u− L2u∥E
∥u∥B

}
< 2ϵ(b− a+ 2)M,

(33)

for arbitrary ϵ > 0. Thereby Theorem 2.8 ensures that the matrix equation K(u, v)
defined by (18)-(19) has at least one fixed point in C. Equivalently the coupled
system of two-point fractional ∆-difference boundary value problems (2) has at
least one positive solution in C. The proof is completed. �

After proving the existence at least one positive solution for the coupled system
(2), we are going to present the uniqueness result for coupled system (2) as follows.

3.2. Uniqueness.

Theorem 3.10. Assume that the nonlinearities f(z, v) and g(z, u) both are Lips-
chitzian in v and u, respectively, that is there exist real parameters li > 0, i = 1, 2
such that for (ui, vi) ∈ C, i = 1, 2

|f(z, v1)− f(z, v2)| ≤ l1∥v1 − v2∥B, |g(z, u1)− g(z, u2)| ≤ l2∥u1 − u2∥B. (34)

Then the coupled system of two-point fractional ∆-difference boundary value prob-
lems (2) has exactly one positive solution in C provided that

(b− a+ 2)liM < 1, i = 1, 2, (35)

where M ∈ {Meven,Modd}, in which

Meven =
1

Γ(α)

b− a+ 2α

b− a+ 2

Γ(b− a+ 2)Γ2

(
b− a

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a

2
+ 1

) ,

Modd =
1

Γ(α)

b− a+ 2α+ 1

b− a+ 3

Γ(b− a+ 2)Γ2

(
b− a+ 1

2
+ α

)
Γ(α+ b− a+ 2)Γ2

(
b− a+ 1

2
+ 1

) .
Proof. First, let us recall once again the fractional ∆-sum operator K(u, v).

K(u, v)(t) = ((K1v) (t), (K2u) (t)) , t ∈ [α+ a− 1, α+ b]Nα−1 (36)

where

(K1) v(t) =
b+1∑
s=a

G(t, s)f(s+ α− 1, v(s+ α− 1)),

t ∈ [α+ a− 1, α+ b]Nα−1

(K2)u(t) =

b+1∑
s=a

G(t, s)g(s+ α− 1, u(s+ α− 1)).

(37)
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Therefore, using the assumption (34), one has

∥K1(v1)−K1(v2)∥B =

∥∥∥∥ b+1∑
s=a

G(t, s)
{
f(s+ α− 1, v1)− f(s+ α− 1, v2)

}∥∥∥∥
B

≤M

b+1∑
s=a

∥f(s+ α− 1, v1)− f(s+ α− 1, v2)∥B

≤ (b− a+ 2)Ml1∥v1 − v2∥B.

(38)

So we have

∥K1(v1)−K1(v2)∥B ≤ (b− a+ 2)Ml1∥v1 − v2∥B. (39)

Similarly, one may derive the following

∥K2(u1)−K2(u2)∥B ≤ (b− a+ 2)Ml2∥u1 − u2∥B. (40)

Using the inequalities (39) and (40), we conclude that

∥K(u1, v1)−K(u2, v2)∥E = ∥K1(v1)−K1(v2)∥B + ∥K2(u1)−K2(u2)∥B
≤ (b− a+ 2)l1M∥v1 − v2∥B + (b− a+ 2)l2M∥u1 − u2∥B
< ∥v1 − v2∥B + ∥u1 − u2∥B = ∥(u1, v1)− (u1, v1)∥E .

(41)

Thus we have proved that the fractional ∆-sum operator K(u, v) is a contraction
mapping. So the Banach fixed point theorem ensures that the discrete fixed point
equation (v, u) = K(u, v) and equivalently the coupled system of two-point frac-
tional ∆-difference boundary value problems (2) has exactly one positive solution
in C. This completes the proof. �

4. Numerical Examples

Example 4.1. Consider the following coupled system of two-point fractional ∇-
difference boundary value problems

 ∆
3
2

0+u(t)

∆
3
2

0+v(t)

+

 f(t+ 1
2 , v(t+

1
2 )

g(t+ 1
2 , u(t+

1
2 ))

 = 0,

 u( 12 )

u( 192 )

 =

 0

0

 =

 v( 12 )

v( 192 )

 .

(42)

Considering the system (42), one can recognize that α = 3
2 and a = 1, b = 8.

Taking into account that a+ b is odd, we have M =Modd. Thereby choosing ϱ = 5
and taking

f(t+ α− 1, v) = exp(−(t+ α− 1))︸ ︷︷ ︸
ϕ1

1 +
|v|
3︸ ︷︷ ︸

ψ1

 ,

g(t+ α− 1, u) = exp(−(t+ α− 1))︸ ︷︷ ︸
ϕ2

ln(1 + |u|)︸ ︷︷ ︸
ψ2

,

(43)
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it is easy to check that the conditions (H1) and (H2) hold. Consequently a direct
calculation demonstrates that

1

M
≈ 5.18485 > 0.082042 ≈ 1

ϱ

[
ψ1(ϱ)

b+1∑
a

ϕ1(s+ α− 1) + ψ2(ϱ)

b+1∑
a

ϕ2(s+ α− 1)

]
.

Therefore Theorem 3.7 implies that the coupled system (42) admits at least one
positive solution in C. On the other hand, since

|f(t+ α− 1, v1)− f(t+ α− 1, v2)| ≤ 0.027362∥v1 − v2∥B,
|g(t+ α− 1, u1)− g(t+ α− 1, u2)| ≤ 0.082085∥u1 − u2∥B,

(44)

so, choosing l1 = 0.03 and l2 = 0.09 we deduce that

(b− a+ 2)Ml1 ≈ 0.052075 < 1, (b− a+ 2)Ml2 ≈ 0.150225 < 1.

Therefore, Theorem 3.10 ensures the existence of a unique positive solution for
coupled system (42) in C.

Example 4.2. Let us consider the coupled system (42). Suppose that

f(t+ α− 1, v) = (10t+ α− 1)−2︸ ︷︷ ︸
Θ1

v,

g(t+ α− 1, u) = exp(−(10t+ α− 1))︸ ︷︷ ︸
Θ2

u, t ∈ [1, 10]N.
(45)

Thus hypotheses (S1) and (S2) are satisfied. Since a+ b is even, so we have M ≈
0.018368. On the other hand a simple computation shows that ∥Θ1∥B = 0.007561
and ∥Θ2∥B ≈ 0.000027. Thus we have

9∑
s=2

G(t, s) ≈ 0.165313 < 132.25 ≈ max

{
∥Θ1∥B, ∥Θ2∥B

}−1

.

Thereby Theorem 3.9 implies that the coupled system (42) has at least one positive
solution in C. On the other hand, since

|f(t+ α− 1, v1)− f(t+ α− 1, v2)| ≤ 0.00907∥v1 − v2∥B,
|g(t+ α− 1, u1)− g(t+ α− 1, u2)| ≤ 0.000028∥u1 − u2∥B,

(46)

so, choosing l1 = 0.01 and l2 = 0.00003, clearly (b− a+ 2)Mli < 1, i = 1, 2. Thus
Theorem 3.10 implies the existence of a unique positive solution for coupled system
(42) in C.

Acknowledgment

The authors are indebted to the anonymous referees for comments to improve
the presentation of the paper and suggesting the uniqueness results for original
version of the manuscript.

References

[1] Thabet Abdeljawad; Dual identities in fractional difference calculus within Riemann,

arXiv:1112-5795v2, (2013).
[2] Ferhan M. Atici, Paul W. Eloe; A Transform Method in Discrete Fractional Calculus, Int. J.

Difference Equ. Vol. 2, No. 2, (2007), pp. 165-176.

[3] Ferhan M. Atici, Paul W. Eloe; Two-point boundary value problems for finite fractional
difference equations, J. Difference Equ. Appl. Vol. 17, No. 4, (2011), pp. 445-456.



100 YOUSEF GHOLAMI, KAZEM GHANBARI JFCA-2016/7(2)

[4] Ferhan M. Atici, Paul W. Eloe; Initial value problems in discrete fractional calculus, Proc.

Amer. Math. Soc. Vol. 137, No. 3, (2009), pp. 981-989.
[5] Ferhan M. Atici, Paul W. Eloe; Discrete fractional calculus with the nabla operator, Electron.

J. Qual. Theory Differ. Equ., Spec. Ed. I, No. 3, (2009), pp. 1-12.
[6] Rui A. C. Ferreira, Some discrete fractional Lyapunov-type inequalities, Fractional. Differ.

Calc, Vol.5, No.1, (2015), pp.87-92.
[7] Cristopher S. Goodrich; Existence and uniqueness of solutions to a fractional difference equa-

tion with nonlocal conditions, Comput. Math. Appl., 61, (2011), pp. 191-202.
[8] Yousef Gholami, Kazem Ghanbari, New classes of Lyapunov type inequalities of fractional

∆-difference Sturm-Liouville problems with applications, Bull. Iranian Math. Soc. In press.
[9] Yousef Gholami; Existence results of positive solutions for boundary value problems of frac-

tional order with integro-differential boundary conditions, Differ. Equ. Appl. 6 (1) (2014),
pp.59-72.

[10] Yousef Gholami; Existence of an unbounded solution for multi-point boundary value problems
of fractional differential equations on an infinite domain, Fractional. Differ. Calc. 4 (2) (2014),
pp.125-136.

[11] Nickolai Kosmatov; Solutions to a class of nonlinear differential equations of fractional order,

Electron. J. Qual. Theory Differ. Equ., (2009), No. 20, 1-10.
[12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and Applications of fractional Differ-

ential Equations, North-Holland mathematics studies, Elsevier science, 204, (2006).

[13] I. Podlubny; Fractional Differential Equations, Mathematics in Science and Applications,
Academic Press, New York, 19, (1999).

[14] X.Zhao, W.Ge; Unbounded solutions for a fractional boundary value problem on the infinite
interval, Acta. Appl. Math, 109, (2010), 495-505.

Yousef Gholami

Department of Applied Mathematics, Sahand University of Technology, P. O. Box:
51335-1996, Tabriz, IRAN.

E-mail address: y gholami@sut.ac.ir

Kazem Ghanbari
Department of Applied Mathematics, Sahand University of Technology, P. O. Box:
51335-1996, Tabriz, IRAN.

E-mail address: kghanbari@sut.ac.ir


