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ON MILD SOLUTIONS TO CAPUTO TYPE DIFFERENTIAL

EQUATIONS OF ARBITRARY ORDER WITH NONLOCAL

MULTI-POINT-STRIP CONDITIONS

BASHIR AHMAD1, AHMED ALSAEDI, ALAA ALSHARIF

Abstract. We investigate the existence of mild solutions for one-dimensional
nonlinear Caputo type differential equations of arbitrary order supplemented
with nonlocal multipoint-strip conditions involving first-order derivative of the
unknown function. The nonlocal multipoint-strip condition relates the linear

combination of nonlocal values of the first-order derivative of the unknown
function with its value on a strip of arbitrary size. Existence and uniqueness
results for the given problem are obtained via appropriate fixed point theorems.
Some examples illustrating the main results are also presented. Finally we

discuss an analog Stieltjes multipoint-strip conditions case.

1. Introduction

In the recent years, the research on fractional differential equations (supple-
mented with a variety of initial and boundary conditions) has picked up a great
momentum and the subject has been extensively developed from theoretical point of
view. It has been mainly due to widespread applications of fractional calculus mod-
elling techniques in several disciplines of applied and technical sciences. Examples
include viscoelasticity, control theory, biological sciences, ecology, aerodynamics,
electro-dynamics of complex medium, environmental issues, etc. For more details,
we refer the reader to the works ([1]-[7]). A salient feature of fractional-order dif-
ferential and integral operators is their nonlocal nature that helps to trace the past
history of several materials and processes.

Fractional-order boundary value problems involving classical, nonlocal, multi-
point, periodic/anti-periodic, fractional-order, and integral boundary conditions
have recently been investigated by many researchers.

Nonlocal conditions, dated back to the works [8, 9, 10], are found to be more
practical (than the classical initial/boundary conditions) to describe some peculiar-
ities of physical, chemical or other processes happening inside the domain.
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Computational fluid dynamics (CFD) studies of blood flow are directly related
to the boundary data and it is not always justified to assume a circular cross-
section. An effective approach for handling this issue is to apply integral boundary
conditions [11]. Also, integral boundary conditions are used to regularize ill-posed
parabolic backward problems in time partial differential equations, see for example,
mathematical models for bacterial self-regularization [12].

For some recent works on boundary value problems of fractional-order, we refer
the reader to ([13]-[26]) and the references cited therein.

In this paper, we consider a new class of boundary value problems of Caputo
type fractional differential equations of arbitrary order involving a nonlocal sub-
strip condition given by

cDqx(t) = f(t, x), n− 1 < q ≤ n, n ≥ 2 , t ∈ [0, 1],

x(0) = δx(σ), x′(0) = x′′(0) = ... = x(n−2)(0) = 0, δ ∈ R,

ax′(ζ1) + bx′(ζ2) = c

∫ ξ

η

x′(s)ds, 0 < σ < ζ1 < η < ξ < ζ2 < 1,

(1)

where cDq denote Caputo derivative of order q and f : [0, 1] × R → R is a given
continuous function. The integral boundary condition in (1) implies that the linear
combination of the values of the first-order derivative of the unknown function at
nonlocal positions ζ1 and ζ2 (off the strip) is proportional to its strip contribu-
tion occupying the position (η, ξ). This work is motivated by a recent paper [17]
and addresses a new situation which has practical applications in geophysics and
acoustics. In the rest of the paper, by a solution of problem (1), we mean a mild
solution.

The paper is organized as follows. In Section 2, we recall some definitions and
establish an auxiliary lemma for the linear variant of problem (1). In Section 3,
we present our main existence results. We emphasize that the tools of fixed point
theory employed in this section are the standard ones; however their exposition
provides a deep insight in terms of the existence criteria for solutions of the problem
at hand. Section 4 is devoted to the study of Stieltjes type strip conditions.

2. Preliminaries

This section is devoted to some preliminary concepts of fractional calculus that
we need in the forthcoming analysis [3, 5].

Definition 2.1. The fractional integral of order r with the lower limit zero for a
function f is defined as

Irf(t) =
1

Γ(r)

∫ t

0

f(s)

(t− s)1−r
ds, t > 0, r > 0,

provided the right hand-side is point-wise defined on [0,∞), where Γ(·) is the gamma
function, which is defined by Γ(r) =

∫∞
0
tr−1e−tdt.

Definition 2.2. The Riemann-Liouville fractional derivative of order r > 0, n −
1 < r < n, n ∈ N , is defined as

Dr
0+f(t) =

1

Γ(n− r)

(
d

dt

)n ∫ t

0

(t− s)n−r−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).
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Definition 2.3. The Caputo derivative of order r for a function f : [0,∞) → R
can be written as

cDrf(t) = Dr

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < r < n.

Remark 2.4. If f(t) ∈ Cn[0,∞), then

cDrf(t) =
1

Γ(n− r)

∫ t

0

f (n)(s)

(t− s)r+1−n
ds = In−rf (n)(t), t > 0, n− 1 < q < n.

Lemma 2.5. [3] Let u ∈ Cm[0, 1] and v ∈ AC[0, 1]. Then, for ρ ∈ (m−1,m),m ∈ N
and t ∈ [0, 1],

(a): the general solution of the fractional differential equation cDρu(t) = 0 is
u(t) = b0 + b1t+ b2t

2 + ...+ bm−1t
m−1, where bi ∈ R, i = 0, 1, 2, ...,m− 1.

(b): Iρ cDρu(t) = u(t)−
∑m−1

k=0
tk

k!u
k(0).

(c): cDρIρv(t) = v(t).

Now we present an auxiliary lemma to define the solution for the problem (1).

Lemma 2.6. Let y ∈ C[0, 1]. Then the mild solution of the linear fractional differ-
ential equation

cDqx(t) = y(t), n− 1 < q ≤ n, n ≥ 2 , t ∈ [0, 1], (2)

supplemented with boundary conditions given in (1) is given by the integral equation

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
y(s)ds+

δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds

+
1

A

(δσn−1

1− δ
+ tn−1

)(
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
y(u)duds

− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
y(s)ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
y(s)ds

)
, (3)

where

A = (n− 1)
[
aζn−2

1 + bζn−2
2 − c

n− 1
(ξn−1 − ηn−1)

]
̸= 0. (4)

Proof. By Lemma 2.5 (b), the solution of fractional differential equation (2)
can be written as

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
y(s)ds+ c0 + c1t+ c2t

2 + ...+ cn−2t
n−2 + cn−1t

n−1, (5)

where c0, c1, ..., cn−1 ∈ R are arbitrary constants. Using the conditions: x′(0) =
x′′(0) = ... = x(n−2)(0) = 0, we find that c1 = c2 = ... = cn−2 = 0. Thus, (5) takes
the form:

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
y(s)ds+ c0 + cn−1t

n−1, (6)

which together with the conditions: x(0) = δx(σ) and ax′(ζ1)+bx
′(ζ2) = c

∫ ξ

η
x′(s)ds

yields

c0 =
1

1− δ

[
δ

∫ σ

0

(σ − s)q−1

Γ(q)
y(s)ds+

δσn−1

A

(
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
y(u)duds
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− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
y(s)ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
y(s)ds

)]
and

cn−1 =
1

A

[
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
y(u)duds− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
y(s)ds

− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
y(s)ds

]
,

where A is given by (4). Substituting the values of c0 and cn−1 in (6) completes
the solution (3).

3. Existence results

Let P = C([0, 1],R) denote the Banach space of all continuous functions from
[0,1] to R endowed with the norm :∥x∥ = sup{|x(t)|, t ∈ [0, 1]}.

In the rest of the paper, by a solution of problem (1), we mean a mild solution.

In Lemma 2.6, we replace y(t) by f(t, x(t)) and define an operator H: P −→ P
associated with problem (1) as follows:

(Hx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds+

δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f(s, x(s))ds

+
1

A

(δσn−1

1− δ
+ tn−1

)(
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
f(u, x(u))duds

− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
f(s, x(s))ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
f(s, x(s))ds

)
.(7)

Observe that the problem (1) has solutions if and only if the operator H has fixed
points.

For the sake of computational convenience, we set

β =
1

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)
+
( |δ|σn−1

|A(1− δ)|
+

1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+|a|ζ

q−1
1

Γ(q)
+|b|ζ

q−1
2

Γ(q)

)
.

(8)
Now we are in a position to present the main results of our paper. The first one

dealing with the existence and uniqueness of solutions for problem (1) is based on
Banach’s contraction mapping principle.

Theorem 3.1. Let f : [0, 1] × R −→ R be a continuous function satisfying the
Lipschitz condition:

(A1): |f(t, x)− f(t, y)| ≤ ℓ|x− y|, ℓ > 0, ∀t ∈ [0, 1], x, y ∈ R.
Then the problem (1) has a unique solution if ℓβ < 1, where β is given by (8).

Proof. In the first step, we show that the operator H defined by (7) satis-
fies the relation: HBr ⊂ Br, where Br = {x ∈ P : ∥x∥ ≤ r}, r > βα/(1 −
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βℓ), supt∈[0,1] |f(t, 0)| = α. For x ∈ Br, t ∈ [0, 1], it follows by Lipschitz condition
that

|f(t, x(t))| = |f(t, x(t))− f(t, 0) + f(t, 0)|
≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)| ≤ ℓ∥x∥+ α ≤ ℓr + α.

Then we have

∥(Hx)∥ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

+
|δ|

|1− δ|

∫ σ

0

(σ − s)q−1

Γ(q)
|f(s, x(s))|ds

+
1

|A|

( |δ|σn−1

|1− δ|
+ tn−1

)(
|c|
∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
|f(u, x(u))|duds

+ |a|
∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
|f(s, x(s))|ds

+ |b|
∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
|f(s, x(s))|ds

)}
≤ (ℓr + α) sup

t∈[0,1]

{ tq

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)

+
( |δ|σn−1

|A(1− δ)|
+
tn−1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)}
≤ (ℓr + α)β ≤ r,

where we have used (8). This shows that HBr ⊂ Br.
Now, for x, y ∈ R and for each t ∈ [0, 1], we obtain

∥Hx−Hy∥

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+
|δ|

|1− δ|

∫ σ

0

(σ − s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+
1

|A|

( |δ|σn−1

|1− δ|
+ tn−1

)(
|c|
∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
|f(u, x(u))− f(u, y(u))|duds

+ |a|
∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
|f(s, x(s))− f(s, y(s))|ds

+ |b|
∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
|f(s, x(s))− f(s, y(s))|ds

)}
≤ ℓ∥x− y∥ sup

t∈[0,1]

{ tq

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)

+
( δσn−1

|A(1− δ)|
+
tn−1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)}
≤ ℓβ∥x− y∥.



114 B. AHMAD, A. ALSAEDI, A. ALSHARIF JFCA-2016/7(2)

Since ℓβ < 1(given), the operator H is a contraction. Thus, by Banach’s contrac-
tion mapping principle, there exists a unique fixed point for the operator H which
corresponds to the unique solution for the problem (1). This completes the proof.

Our next existence result is based on Krasnoselskii’s fixed point theorem [27].

Lemma 3.2. (Krasnoselskii) Let S be a closed, convex, bounded and nonempty
subset of a Banach space X. Let G1,G2 be the operators such that (i) G1u+G2v ∈ S
whenever u, v ∈ S; (ii) G1 is compact and continuous; and (iii) G2 is a contraction.
Then there exists w ∈ S such that w = G1w + G2w.

Theorem 3.3. Let f : [0, 1]× R → R be a continuous function satisfying (A1). In
addition it is assumed that |f(t, x)| ≤ µ(t), ∀(t, x) ∈ [0, 1]×R, and µ ∈ C([0, 1],R+).
Then the problem (1) has at least one solution on [0, 1] if ℓγ < 1, where

γ =
|δ|σq

|1− δ|Γ(q + 1)
+
( |δ|σn−1

|A(1− δ)|
+

1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)
. (9)

Proof. Let us consider a set Bν = {x ∈ P : ∥x∥ ≤ ν} with ν ≥ β∥µ∥
(supt∈[0,1] |µ(t)| = ∥µ∥) and define the operators H1 and H2 on Bν as

(H1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds,

(H2x)(t) =
δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f(s, x(s))ds

+
1

A

(δσn−1

1− δ
+ tn−1

)(
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
f(u, x(u))duds

− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
f(s, x(s))ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
f(s, x(s))ds

)
.

For x, y ∈ Bν , it is easy to show that ∥(H1x) + (H2x)∥ ≤ ∥µ∥β ≤ ν ( β is given by
(8)), which means that H1x+H2y ∈ Bν .

Using (A1) and (9), for x, y ∈ R, t ∈ [0, 1], we obtain

∥(H2x)− (H2y)∥

≤ sup
t∈[0,1]

{ |δ|
|1− δ|

∫ σ

0

(σ − s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+
1

|A|

( |δ|σn−1

|1− δ|
+ tn−1

)(
|c|
∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
|f(u, x(u))− f(u, y(u))|duds

+ |a|
∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
|f(s, x(s))− f(s, y(s))|ds

+ |b|
∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
|f(s, x(s))− f(s, y(s))|ds

)}
≤ ℓ∥x− y∥ sup

t∈[0,1]

{ |δ|σq

|1− δ|Γ(q + 1)

+
( |δ|σn−1

|A(1− δ)|
+
tn−1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)}
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≤ ℓγ∥x− y∥.

This shows that H2 a contraction in view of the condition ℓγ < 1.
Continuity of f implies that the operatorH1 is continuous. Also, H1 is uniformly

bounded on Bν as

∥H1x∥ ≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

}
≤ sup

t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
µ(s)ds

}
≤ ∥µ∥ sup

t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
ds
}
≤ ∥µ∥

Γ(q + 1)
.

Moreover, with sup(t,x)∈[0,1]×Bν
|f(t, x)| = f <∞ and 0 < t1 < t2 < 1, we have∣∣∣(H1x)(t2)− (H1x)(t1)
∣∣∣

=
∣∣∣ ∫ t2

0

(t2 − s)q−1

Γ(q)
f(s, x(s))ds−

∫ t1

0

(t1 − s)q−1

Γ(q)
f(s, x(s))ds

∣∣∣
=

∣∣∣ ∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]

Γ(q)
f(s, x(s))ds+

∫ t2

t1

(t2 − s)q−1

Γ(q)
f(s, x(s))ds

∣∣∣
≤ f

Γ(q + 1)

(
2|t2 − t1|q + |tq2 − tq1|

)
,

which tends to zero independent of x as (t2 − t1) → 0. This implies that H1 is
relatively compact on Bν . Hence by the Arzelá − Ascoli theorem, H1 is compact
on Bν . Thus the hypothesis of Krasonselskii’s fixed theorem is satisfied and conse-
quently the problem (1) has at least one solution on [0, 1]. This completes the proof.

Our next result relies on the following fixed point theorem [27].

Theorem 3.4. Let X be a Banach space. Assume that T : X −→ X is a completely
continuous operator and the set V = {u ∈ X|u = ϵTu, 0 < ϵ < 1} is bounded. Then
T has a fixed point in X.

Theorem 3.5. Assume that exists a positive constant L1 such that |f(t, x)| ≤ L1

for all t ∈ [0, 1], x ∈ R. Then there exists at least one solution for the problem (1)
on [0, 1].

Proof. In the first step, we show that the operator H is completely continuous.
Clearly continuity of H follows from the continuity of f and it is easy to establish
by the given assumption that |(Hx)(t)| ≤ L1β = L2, where β is given by (8). Let
0 < t1 < t2 < 1, we get

|(Hx)(t2)− (Hx)(t1)|

=
∣∣∣ ∫ t2

0

(t2 − s)q−1

Γ(q)
f(s, x(s))ds−

∫ t1

0

(t1 − s)q−1

Γ(q)
f(s, x(s))ds

+
(tn−1

2 − tn−1
1 )

A

[
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
f(u, x(u))duds

− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
f(s, x(s))ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
f(s, x(s))ds

]∣∣∣
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≤ L1

[2|t2 − t1|q + |tq2 − tq1|
Γ(q + 1)

+
|t(n−1)
2 − t

(n−1)
1 |

|A|

(
|c| (ξ

q − ηq)

Γ(q + 1)

+ |a|ζ
q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)]
.

Clearly, the right-hand side tends to zero independently of x ∈ Bρ as t2 −→ t1.
Thus, by the Arzelá theorem, the operator H is completely continuous.
Next, we consider the set V = {x ∈ P : ϵHx, 0 < ϵ < 1}. To show that V is
bounded, let x ∈ [0, 1]. Then

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds+

δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f(s, x(s))ds

+
1

A

(δσn−1

1− δ
+ tn−1

)(
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
f(u, x(u))duds

− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
f(s, x(s))ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
f(s, x(s))ds

)
.

As before, it can be shown that |x(t)| = ϵ|(Hx)(t)| ≤ L1β = L2. Hence, ∥x∥ ≤
L2,∀x ∈ V, t ∈ [0, 1]. So V is bounded. Thus, the conclusion of Theorem 3.4 applies
and the problem (1) has at least one solution on [0, 1]. This completes the proof.

Lemma 3.6. (Nonlinear alternative for single valued maps [28] )
Let E be a Banach space E1 a closed, convex subset of E, V an open subset of E1,
and 0 ∈ V . Suppose that U : V −→ E1 is a continuous, compact (that is, U(V ) is
a relatively compact subset ofE1 ) map. Then either

(i): U has a fixed point in V , or
(ii): there is a x ∈ ∂V (the boundary of V in E1 ) and κ ∈ (0, 1) with x = κ

U(x).

Theorem 3.7. Let f : [0, 1] × R −→ R be a continuous function. Further, it is
assumed that

(A2): there exist a function p ∈ C([0, 1],R+)and a nondecreasing function
ψ : R+ −→ R+ such that |f(t, x)| ≤ p(t)ψ(∥x∥), ∀(t, x) ∈ [0, 1]× R;

(A3): there exists a constant M > 0 such that

M
{
ψ(M)∥p∥

[ 1

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)

+
( |δ|σn−1

|A(1− δ|)
+

1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)]}−1

> 1.

Then the problem (1) has at least one solution on [0, 1].

Proof. Let us consider the operator H : P −→ P defined by(7) and show that
H maps bounded sets into bounded sets in P. For a given positive number ρ, let
Bρ = {x ∈ P : ∥x∥ ≤ ρ} be a bounded set in P. Then, for x ∈ Bρ together with
(A2), we obtain

|(Hx)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
p(s)ψ(∥x∥)ds+ |δ|

|1− δ|

∫ σ

0

(σ − s)q−1

Γ(q)
p(s)ψ(∥x∥)ds
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+
1

|A|

( |δ|σn−1

|1− δ|
+ tn−1

)(
|c|
∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
p(u)ψ(∥x∥)duds

+ |a|
∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
p(s)ψ(∥x∥)ds+ |b|

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
p(s)ψ(∥x∥)ds

)
≤ ψ(ρ)∥p∥

[ 1

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)

+
( |δ|σn−1

|A(1− δ)|
+

1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)]
,

where A is given by (4). As in the proof of the previous result, for 0 < t1 < t2 < 1
and x ∈ Bρ. we have that the operator H is completely continuous. Thus, it follows
that H maps bounded sets into equicontinuous sets of P.
Let x be a solution for the given problem. Then, for λ ∈ (0, 1), as before, we obtain

|x(t)| = |λ(Hx)(t)| ≤ ψ(∥x∥)∥p∥
[ 1

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)

+
( |δ|σn−1

|A(1− δ)|
+

1

|A|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)]
.

which, on taking the norm for t ∈ [0, 1], yields

∥x∥
{
ψ(∥x∥)∥p∥

[ 1

Γ(q + 1)
+

|δ|σq

(1− δ)Γ(q + 1)

+
( 1

|A|
+

|δ|σn−1

|A(1− δ)|

)(
|c| (ξ

q − ηq)

Γ(q + 1)
+ |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)]}−1

≤ 1.

In view of (A3), there exists M such that ∥x∥ ̸= M. Let us choose M1 = {x ∈
P : ∥x∥ < M + 1}. Since the operator H : M1 → P is continuous and completely
continuous. From the choice of M1, there is no x ∈ ∂M1 such that x = λH(x) for
some λ ∈ (0, 1). Consequently, by Lemma 3.6, we deduce that the operator H has
a fixed point x ∈ M1 which is a solution of the problem (1). This completes the
proof.

Example 3.8. Consider a fractional boundary value problem given by

cDqx(t) = f(t, x), 5 < q ≤ 6, t ∈ [0, 1],

x(0) = δx(σ), x′(0) = x′′(0) = x′′′(0) = x(4)(0) = 0,

ax′(ζ1) + bx′(ζ2) = c

∫ ξ

η

x′(s)ds, 0 < σ < ζ1 < η < ξ < ζ2 < 1.

(10)

Here q = 11/2, δ = 1/2, a = 5, b = 3, c = 1, σ = 1/6, ζ1 = 1/3, ζ2 = 3/4, η =
1/2, ξ = 2/3, and f(t, x) = 3e−tx+6t2 sinx+cos 3(t+1). With the given data, we
find that ℓ = 9, |A| ≈ 4.954298 and β ≈ 6.84021 × 10−3, where β is given by (8).
Obviously all the conditions of Theorem 3.1 are satisfied with ℓβ < 1. Therefore,
by the conclusion of Theorem 3.1, there exists a unique solution for the problem
(10) on [0, 1].

Example 3.9. Consider the problem (10) with

f(t, x) = 2t2 +
8

3
t2 sinx (11)
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Clearly |f(t, x)| ≤ p(t)ψ(|x|) with p(t) = 2t2, ψ(|x|) = 1+ 4
3x. By the assumption

(A3) of Theorem 3.7, we find that M > 0.0139346. Thus, by Theorem 3.7, there
exists at least one solution for the problem (10) with f(t, x) given by (11).

4. Stieltjes type multi-point-strip conditions

In this section, we consider a Caputo type fractional differential equation

cDqx(t) = f(t, x), n− 1 < q ≤ n, n ≥ 2 , t ∈ [0, 1], (12)

supplemented with Stieltjes type multi-point-strip conditions
x(0) = δx(σ), x′(0) = x′′(0) = ... = x(n−2)(0) = 0,

ax′(ζ1) + bx′(ζ2) = c

∫ ξ

η

x′(s)dφ(s), 0 < σ < ζ1 < η < ξ < ζ2 < 1,
(13)

where φ(s) is a function of bounded variation.
Relative to the problem (12)-(13), we have an operator Hs: P −→ P defined by

(Hsx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds+

δ

1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f(s, x(s))ds

+
1

As

(δσn−1

1− δ
+ tn−1

)(
c

∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
f(u, x(u))dudφ(s)

− a

∫ ζ1

0

(ζ1 − s)q−2

Γ(q − 1)
f(s, x(s))ds− b

∫ ζ2

0

(ζ2 − s)q−2

Γ(q − 1)
f(s, x(s))ds

)
,

(14)

where

As = (n− 1)
[
aζn−2

1 + bζn−2
2 − c

∫ ξ

η

sn−2dφ(s)
]
̸= 0 (15)

and

βs =
1

Γ(q + 1)
+

|δ|σq

|1− δ|Γ(q + 1)

+
1

|As|

( |δ|σn−1

|1− δ|
+ 1
)(

|c|
∫ ξ

η

∫ s

0

(s− u)q−2

Γ(q − 1)
dudφ(s) + |a|ζ

q−1
1

Γ(q)
+ |b|ζ

q−1
2

Γ(q)

)
.

(16)

With the help of the operatorHs and the constant βs, we can establish the existence
results for the problem (12)-(13) similar to the ones obtained in the previous section.

Acknowledgement. The authors thank the referees for their useful and con-
structive remarks.
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