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EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL

BOUNDARY CONDITIONS

ABDELHAMID BENMEZAI AND ABDELKADER SAADI

Abstract. In this paper, we study existence of positive solutions to the three-

point fractional boundary value problem (FBVP for short)
Dα

0+
u(t) + λf(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3

u(0) = u′(0) = 0

u′(1)− µu′(η) =

∫ 1

0
g(s)u′(s)ds

where λ is a positive parameter, Dα
0+

is the standard Riemann-Liouville dif-

ferential operator of order α ∈ (2, 3], η ∈ (0, 1) , µ ≥ 0, f : [0, 1] × [0,+∞) →
[0,+∞) is a continuous function and g : (0, 1) → (0,+∞) is a continuous in-

creasing function and
∫ 1
0 sα−2g(s)ds < +∞. Existence results are obtained by

means of Krasnosel’skii ’s fixed point theorem.

1. Introduction

We investigate in this paper, existence of positive solutions to the three-point
fractional boundary value problem (FBVP for short),

Dα
0+u(t) + λf(t, u(t)) = 0, t ∈ (0, 1) , (1)

u(0) = u′(0) = 0, u′(1)− µu′(η) =

∫ 1

0

g(s)u′(s)ds, (2)

whereDα
0+ is the standard Riemann-Liouville differential operator of order α ∈

(2, 3], λ, µ, η are real parameters with λ > 0, µ ≥ 0, η ∈ (0, 1) , f : [0, 1]×[0,+∞) →
(0,+∞) is a continuous function and g : (0, 1) → (0,+∞) is a continuous function.

By a positive solution to FBVP (1)-(2), we mean a function u ∈ C [0, 1] such
that u is positive in (0, 1) having the fractional derivative Dα

0+u in C [0, 1] and u
satisfies all equations in (1)-(2).

Throughout this paper, we assume that the following condition hold.∫ 1

0

sα−2g(s)ds < +∞ and d = 1− µηα−2 −
∫ 1

0

sα−2g(s)ds > 0. (3)
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It is well known that fractional boundary value problems play a very important
role in both theories and applications. Recently, existence of positive solutions for
nonlinear three-point fractional boundary value problems has been studied by many
authors by using a nonlinear alternative of the Leray-Schauder, coincidence degree
theory, fixed point index theory, fixed point theorems in cones and so on. We refer
the reader to ([1, 2, 3, 7, 8, 19, 20, 21, 23]) and references therein. However, all of
these papers are concerned with problems with three-point boundary conditions,
for example

u(0) = 0, u(1) = βu(η),
u(0) = u(1) = 0, u′(1) = µu′(η),
u(0) = u′(0) = 0, u′(1)− µu′(η) = λ,
u(0)− βu′(0) = 0, αu(η) = u(1)
αu(0)− βu′(0) = 0, u′(η) + u′(1) = 0
u′(0) = 0, u′(1) = λu′(η)
u(0) = 0, u′(0) = u′(1) = αu′(η), etc...

Since many of physical systems can better be described by integral boundary condi-
tions, integral boundary conditions are encountered in various applications such as
population dynamics, blood flow models, chemical engineering and cellular systems.
Hence, boundary value problems with integral boundary conditions constitute a
very important class of problems. Also, note that integral boundary conditions
include multi-point and nonlocal boundary value problems as special cases, see
([4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 22]) and references therein. The aim of this
paper is to establish simple criteria for existence of at least one positive solution for
(1)-(2). The paper is organized as follows. Essentially in section 2, we present the
framework in which FBVP (1)-(2), is formulated in a fixed point equation. Section
3 is devoted to the main results and their proofs and is ended by illustrative exam-
ples. The main tool of this paper is the cone compression and expansion principale
in a Banach space of norm type, known also by the Krasnosels’kii’s fixed point
theorem in a cone.

2. Preliminaries

We begin this section by reminding the reader the following compression and ex-
pansion of a cone principale in a Banach space, known also to be the Krasnosels’kii’s
Theorem.

Theorem 2.1. [17] Let X be a Banach space and P ⊂ X be a cone in X. Assume
that Ω1 and Ω2 are open subsets of X with 0 ∈ Ω1, and Ω1 ⊂ Ω2 . Let T : P −→ P
be a completely continuous operator such that, either

a) ∥Tu∥ ≤ ∥u∥, ∀u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≥ ∥u∥, ∀u ∈ P ∩ ∂Ω2 ; or
b) ∥Tu∥ ≥ ∥u∥, ∀u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≤ ∥u∥, ∀u ∈ P ∩ ∂Ω2.
Then T has a fixed point in P ∩

(
Ω2\Ω1

)
.

Now, let us recall some basic facts related to the theory of fractional differen-
tial equations. Let β be a positive real number, the Riemann-Liouville fractional
integral of order β of a function f : (0,+∞) → R is defined by

Iβ0+f(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds, (4)
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where Γ(β) is the gamma function, provided that the right side is pointwise defined

on (0,+∞). For example, we have for any real σ > −1, Iβ0+t
σ = Γ(σ+1)

Γ(σ+β+1) t
σ+β .

The Riemann-Liouville fractional derivative of order β, of a continuous function
f : (0,+∞) → R is given by

Dβ
0+f(t) =

1

Γ(n− β)

(
d

dt

)n ∫ t

0

f(s)

(t− s)β−n+1
ds, (5)

where n = [β] + 1, [β] denotes the integer part of the number β, provided that
the right side is pointwise defined on (0,∞). As a basic example, we quote for

σ > −1, Dβ
0+t

σ = Γ(σ+1)
Γ(σ−β+1) t

σ−β . Thus, if u ∈ C (0, 1)∩L1 (0, 1), then the fractional

differential equation Dβ
0+u(t) = 0 has u(t) =

∑i=[β]+1
i=1 cit

β−i, ci ∈ R, as unique

solution and if u has a fractional derivative of order β in C (0, 1) ∩ L1 (0, 1) , then

Iβ0+D
β
0+u(t) = u(t) +

i=[β]+1∑
i=1

cit
β−i, ci ∈ R. (6)

For a detailled presentation on fractional differential equations see [16, 18]

Now, let us introduce some functions needeed for the fixed point formulation of
FBVP (1)-(2). Set for (t, s) ∈ [0, 1]× [0, 1]

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1
tα−1(1− s)α−2, 0 ≤ t ≤ s ≤ 1

(7)

G1(t, s) =
1

Γ(α)

{
tα−2(1− s)α−2 − (t− s)α−2, 0 ≤ s ≤ t ≤ 1
tα−2(1− s)α−2, 0 ≤ t ≤ s ≤ 1

(8)

and

H(t, s) = G(t, s) +
µtα−1

d
G1(η, s). (9)

Lemma 2.2. For all (t, s) ∈ [0, 1]× [0, 1], we have

P1) 0 ≤ G1(t, s) ≤ 1
Γ(α) t

α−2 (1− s)
α−2

,

P2) tα−1G(1, s) ≤ G(t, s) ≤ G(1, s), (t, s) ∈ [0, 1]× [0, 1] ,
P3) tα−1H(1, s) ≤ H(t, s) ≤ H(1, s), (t, s) ∈ [0, 1]× [0, 1] ,

Proof.P1) is obvious and P3) is easily obtained from P2). Thus, we have to prove
P2). Let (t, s) ∈ [0, 1]× [0, 1], we distinguish two cases.

Case 1: 0 ≤ s ≤ t ≤ 1. In this case, set

θs (t) = tα−1(1− s)α−2 − (t− s)α−1

and note that

d

dt
θs (t) = (α− 1) tα−2(1− s)α−2 − (α− 1) (t− s)α−2

= (α− 1)
(
(t− ts)α−2 − (t− s)α−2

)
≥ 0.

Thus, we have

G(t, s)

G(1, s)
=
tα−1(1− s)α−2 − (t− s)α−1

s(1− s)α−2
=
θs (t)

θs (1)
≤ 1

and
G(t, s)

G(1, s)
≥ tα−1(1− s)α−2 − (t− ts)α−1

s(1− s)α−2
= tα−1.
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Case 2: 0 ≤ t ≤ s ≤ 1. In this case we have

tα−1 ≤ G(t, s)

G(1, s)
=
tα−1(1− s)α−2

s(1− s)α−2
=
tα−1

s
≤ sα−1

s
= sα−2 ≤ 1.

This complete the proof of Lemma 2.2.

Let us introduce now, some spaces, cones and operators. In all this paper E
is the Banach space of all continuous function defined on [0, 1] endowed with its
sup-norm, designed by ∥·∥ . E+ is the cone of E, constituted of all nonnegative
function and K is the cone defined by

K =
{
u ∈ E : u(t) ≥ tα−1 ∥u∥ for all t ∈ [0, 1]

}
. (10)

Let L : E → E be the linear operator defined for u ∈ E by

Lu(t) =

∫ 1

0

H(t, s)u(s)ds+
tα−1

d

∫ 1

0

g(s)

(∫ 1

0

G1 (s, τ)u(τ)dτ

)
ds

and F : E+ → E+ the Nymetski associated with the nonlinearity f. Clearly, we
have that L is continuous, L (E+) ⊂ E+ and F is bounded (maps bounded sets
into bounded sets).

Lemma 2.3. Assume that Hypothesis (3) holds and let h ∈ C [0, 1] be a given
function. Then ϕ = Lh is the unique solution to the FBVP

Dα
0+u(t) + h(t) = 0, α ∈ (2, 3] , t ∈ (0, 1) , (11)

u(0) = u′(0) = 0, u′(1)− µu′(η) =

∫ 1

0

g(s)u′(s)ds. (12)

Proof.Using (6), we obtain from Equation (11) that

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1 + c2t

α−2 + c3t
α−3,

for some c1, c2, c3 ∈ R. We have then from (12), c2 = c3 = 0 and

c1 =
1

dΓ(α)

[∫ 1

0

(1− s)α−2h(s)ds− µ

∫ η

0

(η − s)α−2h(s)ds− ψ

]
,

where

ψ =

∫ 1

0

g(s)

(∫ s

0

(s− τ)
α−2

h(τ)dτ

)
ds.
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Therefore, the unique solution of (11)-(12) is

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ tα−1

dΓ(α)

∫ 1

0
(1− s)α−2h(s)ds

−µtα−1

dΓ(α)

∫ η

0
(η − s)α−2h(s)ds− tα−1

dΓ(α)

∫ 1

0
g(s)

(∫ s

0
(s− τ)

α−2
h(τ)dτ

)
ds

= − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ tα−1

Γ(α)

∫ 1

0
(1− s)α−2h(s)ds

+ (1−d)tα−1

dΓ(α)

∫ 1

0
(1− s)α−2h(s)ds− µtα−1

dΓ(α)

∫ η

0
(η − s)α−2h(s)ds

− tα−1

dΓ(α)

∫ 1

0
g(s)

(∫ s

0
(s− τ)

α−2
h(τ)dτ

)
ds

= − 1
Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ tα−1

Γ(α)

∫ 1

0
(1− s)α−2h(s)ds

+µηα−2tα−1

dΓ(α)

∫ 1

0
(1− s)α−2h(s)ds− µtα−1

dΓ(α)

∫ η

0
(η − s)α−2h(s)ds

+ tα−1

dΓ(α)

[∫ 1

0
sα−2g(s)ds

(∫ 1

0
(1− s)α−2h(s)ds−

∫ s

0
(s− τ)

α−2
h(τ)dτ

)
ds
]

= 1
Γ(α)

[∫ 1

0
tα−1(1− s)α−2h(s)ds−

∫ t

0
(t− s)α−1h(s)ds

]
+µtα−1

dΓ(α)

[∫ 1

0
ηα−2(1− s)α−2h(s)ds−

∫ η

0
(η − s)α−2h(s)ds

]
+ tα−1

dΓ(α)

[∫ 1

0
g(s)

(∫ 1

0
sα−2(1− τ)α−2h(τ)dτ −

∫ s

0
(s− τ)

α−2
h(τ)dτ

)
ds
]

=
∫ 1

0
G(t, s)h(s)ds+ µtα−1

d

∫ 1

0
G1(η, s)h(s)ds+

tα−1

d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ)h(τ)dτ

)
ds

=
∫ 1

0
H(t, s)h(s)ds+ tα−1

d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ)h(τ)dτ

)
ds.

The proof is complete.

Lemma 2.4. Assume that Hypothesis (3) holds and let Tλ = λLF . We have then
i) Tλ is completely continuous,
ii) T (E+) ⊂ K and
iii) u ∈ K is a solution to FBVP (1)-(2) if and only if u is a fixed point of T.

Proof.i) This is due to the fact that the operator u→ tα−1

d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ)u(τ)dτ

)
ds

is one dimensional and continuous and the function H is uniformly continuous on
[0, 1]× [0, 1] .

ii) Let u ∈ E+, we have from P3) in Lemma 2.2 that

Tλu (t) = λ

∫ 1

0

H(t, s)f(s, u(s))ds+
λtα−1

d

∫ 1

0

g(s)

(∫ 1

0

G1 (s, τ) f(τ, u(τ))dτ

)
ds

≥ λtα−1

(∫ 1

0

H(1, s)f(s, u(s))ds+
1

d

∫ 1

0

g(s)

(∫ 1

0

G1 (s, τ) f(τ, u(τ))dτ

)
ds

)
≥ tα−1 ∥Tλu∥

showing that Tλu ∈ K.
iii) This is due to Lemma 2.3.

3. Main results

The statement of main results and their proofs need to introduce the following
notations. Set for ν = 0 or +∞

fν = limu→ν inf
(
mint∈[0,1]

f(t,u)
u

)
fν = limu→ν sup

(
maxt∈[0,1]

f(t,u)
u

)
Λν =

 (Γ0fν)
−1

if 0 < fν < +∞
0 if fν = +∞
+∞ if fν = 0

Λν =

 (Γ∞f
ν)

−1
if 0 < fν < +∞

+∞ if fν = 0
0 if fν = +∞
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where

Γ∞ =
∫ 1

0
H(1, s)ds+ 1

d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ) dτ

)
ds and

Γ0 =
∫ 1

0
sα−1H(1, s)ds+ 1

d

∫ 1

0
g(s)

(∫ 1

0
τα−1G1 (s, τ) dτ

)
ds

Theorem 3.1. Assume that Hypothesis (3) holds and Λ+∞ < Λ0. Then the FBVP
(1)-(2) has at least one positive solution for all λ ∈

(
Λ+∞,Λ

0
)
.

Proof.Let λ ∈
(
Λ+∞,Λ

0
)
and let ε > 0 be such that λ <

((
f0 + ε

)
Γ1

)−1
. There

exists r0 > 0 such that f(., x) ≤
(
f0 + ε

)
x for all x ∈ [0, r0] and t ∈ [0, 1] . Thus, if

u ∈ K is such that ∥u∥ = r0, we have

∥Tλu∥ ≤ λ
(
f0 + ε

)
r0

[∫ 1

0

H(1, s)ds+
1

d

∫ 1

0

g(s)

(∫ 1

0

G1 (s, τ) dτ

)
ds

]
= λ

(
f0 + ε

)
r0Γ∞ ≤ r0 = ∥u∥ .

Now, let M ∈ (0, f∞) be such that λ > (MΓ0)
−1
, there exists c > 0 such that

f(., x) ≥ Mx − c for all x ≥ 0 and t ∈ [0, 1] . At this stage, we claim that there
exists r∞ large such that ∥Tλu∥ ≥ ∥u∥ , for all u ∈ K ∩ ∂B(0, r∞). Indeed, if this is
not true and for all n ∈ N, there exists un ∈ K∩∂B(0, n) such that ∥Tλun∥ ≤ ∥un∥,
we have then,

∥Tλun∥+ ∥λL (c)∥ = ∥Tλun + λL (c)∥ ≥ Tλun (1) + λL (c) (1)

≥ λ
[∫ 1

0
H(1, s)Mun(s)ds+

1
d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ)Mun(τ)dτ

)
ds
]

≥ λM
[∫ 1

0
H(1, s)sα−1ds+ 1

d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ) τ

α−1dτ
)
ds
]
∥un∥

= λM ∥un∥Γ0

leading to

1 +
∥Tλun∥
∥un∥

≥ ∥Tλun∥
∥un∥

+
∥λL (c)∥
∥un∥

≥ λMΓ0.

in which letting n→ ∞, yields the contradiction 1 ≥ λMΓ0 > 1.
At the end, choosing Ων = {u ∈ E : ∥u∥ < rν} for ν = 0 or ∞, we obtain from

a) of Theorem 2.1 that T admits a fixed point u ∈ K with r0 ≤ ∥u∥ ≤ r∞, then
from iii) in Lemma 2.4, u is a positive solution to FBVP (1)-(2 ). The proof is
complete.

Theorem 3.2. Assume that Hypothesis (3) holds and Λ0 < Λ+∞. Then the FBVP
(1)-(2) has at least one positive solution for all λ ∈ (Λ0,Λ

+∞).

Proof.Let λ ∈ (Λ0,Λ
+∞) and let m ∈ (0, f0) be such that λ > (mΓ0)

−1
. There

exists r0 > 0 such that f(., x) ≥ mx for all x ∈ [0, r0] and t ∈ [0, 1] . Thus, if u ∈ K
is such that ∥u∥ = r0, we have

∥Tλu∥ ≥ Tλu (1) ≥ λmr0

[∫ 1

0

H(1, s)sα−1ds+
1

d

∫ 1

0

g(s)

(∫ 1

0

G1 (s, τ) τ
α−1dτ

)
ds

]
= λmr0Γ0 ≥ r0 = ∥u∥ .

Now, let ε > 0 be such that λ < ((f∞ + ε) Γ∞)
−1
, there exists c > 0 such that

f(., x) ≤ (f∞ + ε)x + c for all x ≥ 0 and t ∈ [0, 1] . At this stage, we prove that
there exists r∞ large such that ∥Tλu∥ ≤ ∥u∥ for all u ∈ K ∩ ∂B(0, r∞). By the
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contrary, suppose that for all n ∈ N, there exists un ∈ K ∩ ∂B(0, n) such that
∥Tλun∥ ≥ ∥un∥, we have then for all t ∈ [0, 1]

Tλun (t) ≤ λ
∫ 1

0
H(1, s) ((f∞ + ε)un(s) + c) ds

+λ
d

∫ 1

0
g(s)

(∫ 1

0
G1 (s, τ) ((f

∞ + ε)un(τ) + c) dτ
)
ds

≤ λ (f∞ + ε) Γ∞ ∥un∥+ cΓ∞

leading to

1 ≤ ∥Tλun∥
∥un∥

≤ λ (f∞ + ε) Γ∞ +
cΓ∞

∥un∥
,

in which letting n→ ∞, yields the contradiction 1 ≤ λ (f∞ + ε) Γ∞ < 1.
At the end, choosing Ων = {u ∈ E : ∥u∥ < rν} for ν = 0 or ∞, we obtain from b)

of Theorem 2.1 that T admits a fixed point u ∈ K with r0 ≤ ∥u∥ ≤ r∞, then from
iii) in Lemma 2.4, u is a positive solution to FBVP (1)-(2). The proof is complete.

Remark 3.3. Clearly Theorems 3.1 and 3.2 covers respectively the cases, f0 =
0, f∞ = +∞ and f∞ = 0, f0 = +∞. In particular, if f (t, u) = uγ with γ ∈
(0, 1) ∪ (1,+∞) then FBVP (1)-(2) admits a positive solution for all λ > 0.

Example 3.4. Consider FBVP (1)-(2) with f(t, u) = Au
1+u + Bu3

1+u2 . In this case

we have, f0 = f0 = A and f∞ = f∞ = B. Applying Theorems 3.1 and 3.2, we
obtain that for such a nonlinearity, FBVP (1)-(2) admits a positive solution for all
λ ∈ (Λ−,Λ+) where

Λ− =

{
(AΓ0)

−1
if AΓ0 > BΓ∞

(BΓ∞)
−1

if AΓ0 < BΓ∞
Λ+ =

{
(BΓ∞)

−1
if AΓ0 > BΓ∞

(AΓ0)
−1

if AΓ0 < BΓ∞.
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to thank his laboratory, Fixed Point Theory and Applications, for supporting this
work.

References

[1] R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary
value problems of of nonlinear fractional differential and inclusions, Acta Appli. Math. Doi
101 1007/s10440-008-9356-6.

[2] B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional

boundary conditions. Fixed Point Theory 13, 329-336 (2012).
[3] B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional

differential equations with three-point boundary conditions. Computers & Mathematics with
Applications, vol. 58, no. 9, pp. 1838–1843, 2009.

[4] B. Ahmad, J. Nieto, Existence results for nonlinear boundary value problems of fractional
integro differential equations with integral boundary conditions, Boundary Value Problems,
vol. 2009(2009), Article ID 708576, 11 pages.

[5] B. Ahmad and J. J. Nieto, Riemann-Liouville fractional integro-differential equations with

fractional nonlocal integral boundary conditions. Boundary Value Problems, 2011, 36 (2011),
11 pages.

[6] B. Ahmad, S. K. Ntouyas and A. Alsaadi, New existence results for nonlinear fractional

differential equations with three-point integral boundary conditions, Advances in Difference
Equations. vol 2011, ID 107384, 11 pages.



152 ABDELHAMID BENMEZAI AND ABDELKADER SAADI JFCA-2016/7(2)

[7] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear

Analysis: Theory, Methods & Applications, 72(2010), 916-924.
[8] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equa-

tion with fractional ordre and nonlocal conditions, Nonlinear Analysis: Theory, Methods &
Applications, 71(2009), 2391-2396.

[9] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with
integral boundary value conditions. J. Math. Anal. Appl.389, 403-411 (2012).

[10] J. Caballero, I. Cabrera, and K. Sadarangani, Positive solutions of nonlinear fractional dif-
ferential equations with Integral boundary value conditions, Abstract and Applied Analysis,

Vol 2012, Article ID 303545,11 pages.
[11] M. Feng, X. Zhang and W. Ge, New existence results for Higher-order nonlinear fractional

differential equations with integral boundary conditions, Boundary Value Problems, vol 2011,
ID 720702, 20 pages.

[12] D. Fu, W. Ding, Existence of positive solutions of third-order boundary value problems with
integral boundary conditions in Banach spaces. Adv. Differ. Equ. 2013, 65 (2013).

[13] M. Jia, X. Liu; Three nonnegative solutions for fractional differential equations with integral
boundary conditions, Comput. Math. Appl. 62(2011) 1405-1412.

[14] J. JIN, X. LIU, M. JIA., Existence of positive solutions for singular fractional differential
equations with integral boundary conditions, Electronic Journal of Differential Equations,
vol. 2012 (2012), No. 63, pp. 1-14.

[15] R. A. Khan, M. Ur Rehman and J. Henderson, Existence and uniqueness of solutions for
nonlinear fractional differential equations with integral boundary conditions, Fractional Dif-
ferential Calculs, vol 1, Number 1 (2011), 29-43.

[16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional

Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Am-
sterdam, 2006.

[17] M. A. Krasnosel’skii, Positive solutions of operator equations, Noordhoof, Gronignes,1964.
[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[19] A. Saadi, M. Benbachir, Positive solutions for three-point nonlinear fractional boundary value
problems, E. J. Qualitative Theory of Diff. Equ, 3 (2011) 1-19.

[20] A. Saadi, A Benmezai, M. Benbachir, Positive solutions for three-point nonlinear fractional
semi- positone boundary value problems, PanAmerican Mathematical Journal, Vol. 22(2012),

Number 4, 41-57.
[21] A. Saadi, A Benmezai, Positive solutions for three-point nonlinear singular semi- positone

fractional boundary value problems, Journal of Advanced Research in Dynamical and Control
Systems, vol. 5, Issue. 1, 2013, pp. 1-17.

[22] W. Sudsutad, J. Tariboon, Boundary value problems for fractional differential equations with
three-point fractional integral boundary conditions, Adv. Differ. Equ. 2012, 93 (2012).

[23] J. Tariboon, T. Sitthiwirattham, Positive solutions of a nonlinear integral boundary value

Problem, Boundary Value Problems, vol 2010, ID 519210, 11 pages.

A. Benmezai, Faculty of Mathematics, USTHB, Algiers, Algeria
E-mail address: aehbenmezai@gmail.com

A. Saadi, Faculty of Sciences, University of Bechar, BO 117, 8000, Bechar, Algeria

E-mail address: Abdsaadi@yahoo.fr


