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THE EXISTENCE OF DISTRIBUTIONAL CHAOS IN ABSTRACT

DEGENERATE FRACTIONAL DIFFERENTIAL EQUATIONS

M. KOSTIĆ

Abstract. Fractional calculus is a rapidly growing field of research, with nu-
merous applications in the areas of engineering, physics, chemistry, biology

and other sciences. In this paper, we analyze distributionally chaotic proper-

ties of abstract degenerate (multi-term) fractional differential equations with
Caputo derivatives, providing also several illustrative examples and possible

applications. Our results are formulated in the setting of infinite-dimensional
complex Fréchet spaces.

1. Introduction and preliminaries

Distributional chaos is very popular field of research in the theory of topological
dynamics of linear operators. Let us recall that the notion of distributional chaos
for interval maps was introduced by Schweizer and Smı́tal [1994]; for some other
relevant references on distributional chaos, one may refer e.g. to [4, 10-11, 35,
40]. A linear continuous operator T acting on a Fréchet space X is said to be
distributionally chaotic iff there exist an uncountable set S ⊆ X (scrambled set)
and σ > 0 such that for each ε > 0 and for each pair x, y ∈ S of distinct points we
have that

dens
({
k ∈ N : d

(
T kx, T ky

)
≥ σ

})
= 1 and

dens
({
k ∈ N : d

(
T kx, T ky

)
< ε
})

= 1,

where d(·, ·) denotes the metric on X and the upper density of a set D ⊆ N is
defined by

dens(D) := lim sup
n→+∞

card(D ∩ [1, n])

n
.

If we can choose S to be dense in X, then we say that T is densely distribution-
ally chaotic; see [21] for more details about linear dynamics of single operators.
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The notion of a (densely) distributionally chaotic strongly continuous semigroup
on Fréchet space has been recently introduced in [15] (joint work with Conejero,
Miana and Murillo-Arcila; cf. also [1, 6-8, 13] for further information concern-
ing distributionally chaotic strongly continuous semigroups on Banach spaces) as
follows: A strongly continuous semigroup (T (t))t≥0 ⊆ L(X) is said to be distribu-
tionally chaotic iff there are an uncountable set S ⊆ X and σ > 0 such that for
each ε > 0 and for each pair x, y ∈ S of distinct points we have that

Dens
(
{t ≥ 0 : d(T (t)x, T (t)y) ≥ σ}

)
= 1 and

Dens
(
{t ≥ 0 : d(T (t)x, T (t)y) < ε}

)
= 1,

where the upper density of a set D ⊆ [0,∞) is defined now by

Dens(D) := lim sup
t→+∞

m(D ∩ [0, t])

t
,

with m(·) being the Lebesgue’s measure on [0,∞). If, moreover, we can choose
S to be dense in X, then (T (t))t≥0 is said to be densely distributionally chaotic.
The question whether an operator T ∈ L(X) or a strongly continuous semigroup
(T (t))t≥0 ⊆ L(X) is distributionally chaotic or not is closely connected with the
existence of distributionally irregular vectors, i.e., those elements x ∈ X such that
for each σ > 0

dens
({
k ∈ N : d

(
T kx, 0

)
> σ

})
= 1 and

dens
({
k ∈ N : d

(
T kx, 0

)
< σ

})
= 1,

respectively,

Dens
(
{t ≥ 0 : d(T (t)x, 0) > σ}

)
= 1 and

Dens
(
{t ≥ 0 : d(T (t)x, 0) < σ}

)
= 1.

Distributionally chaotic properties of abstract non-degenerate fractional differential
equations in Banach spaces has been analyzed in [29], where it has been pointed out
that the notion of distributional chaos is much more appropriate for dealing with
fractional equations than that of the usually considered Devaney chaos. On the
other hand, the most intriguing hypercyclic and topologically mixing properties of
abstract degenerate (multi-term) fractional differential equations has been recently
considered in [27]-[28]. The main aim of this paper is continue these research
studies by enquiring into the basic distributionally chaotic properties of solutions
to abstract degenerate (multi-term) fractional differential equations with Caputo
derivatives. The notion of subspace distributional chaoticity plays an important
role in our analysis (cf. [5] and [25] for more details about subspace hypercyclicity
and subspace topologically mixing properties of abstract differential equations).

Throughout this paper, we assume that X is an infinite-dimensional Fréchet
space over the field od complex numbers, and that the topology of X is induced by
the fundamental system (pn)n∈N of increasing seminorms (our results admit very
simply reformulations in the setting of real Fréchet spaces and, because of that,
we will omit all related details for the sake of brevity and better exposition). The
translation invariant metric d : X ×X → [0,∞), defined by

d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X, (1)
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satisfies the following properties:

d(x+ u, y + v) ≤ d(x, y) + d(u, v), x, y, u, v ∈ X, (2)

d(cx, cy) ≤ (|c|+ 1)d(x, y), c ∈ C, x, y ∈ X, (3)

and

d(αx, βx) ≥ |α− β|
1 + |α− β|

d(0, x), x ∈ X, α, β ∈ C. (4)

Given x ∈ X and ε > 0 in advance, set L(x, ε) := {y ∈ X : d(x, y) < ε} (if
(Z, ‖ · ‖Z) is a Banach space under consideration, then it will be assumed that the
metric on Z is given by dZ(x, y) := ‖x − y‖Z , x, y ∈ Z; the norm on X will be
abbreviated to ‖ · ‖). Let Y be another Fréchet space over the field of complex
numbers, let the topology of Y be induced by the fundamental system (pYn )n∈N of
increasing seminorms, and let dY (·, ·) denote the induced metric on Y (cf. (1)). By
L(X,Y ) we denote the space which consists of all continuous linear mappings from
X into Y ; L(X) ≡ L(X,X). Let B be the family of bounded subsets of X and let
pn,B(T ) := supx∈B p

Y
n (Tx), n ∈ N, B ∈ B, T ∈ L(X,Y ). Then pn,B(·) is a seminorm

on L(X,Y ) and the system (pn,B)(n,B)∈N×B induces the Hausdorff locally convex
topology on L(X,Y ). Henceforth A and B denote two closed linear operator acting
on X, C ∈ L(X) denotes an injective operator satisfying CA ⊆ AC, CB ⊆ BC, and

the convolution like mapping ∗ is given by f ∗g(t) :=
∫ t

0
f(t−s)g(s) ds. The domain,

range and kernel space of A are denoted by D(A), R(A) and N(A), respectively.
Since no confusion seems likely, we will identify A with its graph. Suppose now
that F is a linear subspace of X. Then the part of A in F, denoted by A|F , is a
linear operator defined by D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax,

x ∈ D(A|F ). Set D∞(A) :=
⋂
n∈ND(An), pm,n(x) :=

∑n
i=0 pm(Aix), x ∈ D∞(A),

m, n ∈ N, and A∞ := A|D∞(A). Then the system (pm,n)m,n∈N induces a Fréchet
topology on D∞(A). We will denote this space by [D∞(A)]; then it is clear that

A∞ ∈ L([D∞(A)]). If X̃ is a closed linear subspace of X, then X̃ is a Fréchet space

itself and the fundamental system of seminorms which induces the topology on X̃ is
(pn|X̃)n∈N. By I we denote the identity operator on X; if Z is a general topological

space and Z0 ⊆ Z, then by Z0
Z

we denote the adherence of Z0 in Z (we will use
the abbreviation Z0, if there is no risk for confusion).

Given s ∈ R in advance, set dse := inf{l ∈ Z : s ≤ l}. The Gamma function is
denoted by Γ(·) and the principal branch is always used to take the powers. Set
C− := {z ∈ C : <z < 0}, 0ζ := 0, gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0), Nl := {1, · · ·, l},
N0
l := {0, 1, · · ·, l} (l ∈ N) and g0(t) := the Dirac δ-distribution.
Assume α > 0, m = dαe, β > 0 and γ ∈ (0, 1). Recall that the Caputo fractional

derivative Dα
t u ([9], [25]) is defined for those functions u ∈ Cm−1([0,∞) : X) for

which gm−α ∗ (u −
∑m−1
k=0 ukgk+1) ∈ Cm([0,∞) : X); if this is the case, then we

have

Dα
t u(t) =

dm

dtm

[
gm−α ∗

(
u−

m−1∑
k=0

ukgk+1

)]
.

Denote by Eα,β(z) the Mittag-Leffler function Eα,β(z) :=
∑∞
n=0 z

n/Γ(αn + β),
z ∈ C ([9]). Set, for short, Eα(z) := Eα,1(z), z ∈ C. We shall use the following
asymptotic formulae ([9], [25]): If 0 < α < 2 and β > 0, then

Eα,β(z) =
1

α
z(1−β)/αez

1/α

+ εα,β(z), | arg(z)| < απ/2, (5)
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and

Eα,β(z) = εα,β(z), | arg(−z)| < π − απ/2, (6)

where

εα,β(z) =

N−1∑
n=1

z−n

Γ(β − αn)
+O

(
|z|−N

)
, |z| → ∞. (7)

The reader may consult [25] for further information concerning the Laplace trans-
form and analytical properties of functions with values in sequentially complete
locally convex spaces (cf. [2] for the Banach space case). By L and L−1 we de-
note the Laplace transform and its inverse transform, respectively. We say that
a function h : (a,∞) → X belongs to the class LT − X iff there exists a func-
tion f ∈ C([0,∞) : X) such that for each n ∈ N there exists Mn > 0 satisfying
pn(f(t)) ≤Mne

at, t ≥ 0 and h(λ) =
∫∞

0
e−λtf(t) dt, λ > a (a ∈ R).

In the theory of non-degenerate equations, of concern is the following multi-term
problem:

Dαn
t u(t) +

n−1∑
i=1

AiD
αi
t u(t) = 0, t ≥ 0,

u(k)(0) = uk, k = 0, · · ·, dαne − 1,

where n ∈ N \ {1}, A1, · · ·, An−1 are closed linear operators on X and 0 ≤ α1 <
· · · < αn. The reader may consult [25, Section 2.10] for an extensive survey of
recent results on abstract multi-term fractional differential equations with Caputo
fractional derivatives (cf. [9, 19, 23, 25, 33, 36-37] for further information concerning
fractional calculus and fractional differential equations). Set mi := dαie, i ∈ Nn,
Ti,Lu(t) := AiD

αi
t u(t), if t ≥ 0, i ∈ Nn and αi > 0, and Ti,Ru(t) := Dαi

t Aiu(t),
if t ≥ 0 and i ∈ Nn; here, An := B is also a closed linear operator on X. Assume
that, for every t ≥ 0 and i ∈ Nn, Tiu(t) denotes exactly one of the terms Ti,Lu(t) or
Ti,Ru(t). In [27], we have considered the following degenerate multi-term fractional
Cauchy problem:

n∑
i=1

Tiu(t) = 0, t ≥ 0, (8)

accompanied with the following initial conditions:

u(k)(0) = uk, 0 ≤ k ≤ mQ − 1 and
(
Aiu

)(k)
(0) = ui,k if mi − 1 ≥ k ≥ mQ, (9)

where
I = {i ∈ Nn : αi > 0 and Ti,Lu(t) appears on the left hand side of (8)}, Q =
max I, if I 6= ∅ and Q = mQ = 0, if I = ∅. In order to simplify the notation, we
will use the shorthand (ACP) to denote the problem [(8)-(9)].

The most important subcases of problem (ACP) are Sobolev linear degenerate
equations:

B
d

dt
u(t) = Au(t), u(0) = x and

d

dt
Bu(t) = Au(t), Bu(0) = Bx (t ≥ 0). (10)

The reader may consult the monographs by Favini, Yagi [20], Carroll, Showalter
[12], Demidenko, Uspenskii [17], Melnikova, Filinkov [34] and Sviridyuk, Fedorov
[41] for further information concerning the wellposedness of problems stated in
(10). For the basic information about abstract degenerate Volterra equations and
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abstract degenerate fractional differential equations, the reader may consult the
forthcoming monograph [26].

We need the following definition from [27].
Definition 1 A function u ∈ C([0,∞) : X) is said to be a strong solution of
problem (ACP) iff the term Tiu(t) is well defined and continuous for any t ≥ 0,
i ∈ Nn, and (ACP) holds identically on [0,∞).
We focus special attention on distributionally chaotic solutions of the following
fractional Sobolev equations:

(DFP)R :

{
Dα
t Bu(t) = Au(t), t ≥ 0,

(Bu)(j)(0) = Bxj , 0 ≤ j ≤ dαe − 1

and

(DFP)L :

{
BDα

t u(t) = Au(t), t ≥ 0,
u(j)(0) = xj , 0 ≤ j ≤ dαe − 1.

Along with the problems (DFP)R and (DFP)L, we consider the associated abstract
integral equation:

Bu(t) = f(t) +

t∫
0

gα(t− s)Au(s) ds, t ≥ 0, (11)

where f ∈ C([0,∞) : X). Henceforth (DFP) denotes either (DFP)R or (DFP)L.
By a mild solution of the problem (DFP)R we mean any continuous function t 7→
u(t), t ≥ 0 such that the mapping t 7→ Bu(t), t ≥ 0 is continuous and A(gα ∗
u)(t) = Bu(t)−

∑dαe−1
k=0 gk+1(t)Bxk, t ≥ 0. The set of all vectors ~x = (Bx0, Bx1, · ·

·, Bxdαe−1) for which there exists a mild solution of problem (DFP)R will be denoted

by Zmildα,R (A,B).

2. Distributionally chaotic properties of abstract degenerate
fractional differential equations

We start this section by repeating some known facts about the existence and
uniqueness of strong solutions of problem (ACP); cf. [28] for more details. Recall
that n ∈ N \ {1}, as well as that A1, · · ·, An are closed linear operators on X
and 0 ≤ α1 < · · · < αn; mi = dαie (i ∈ Nn), Ti,Lu(t) = AiD

αi
t u(t), if t ≥ 0,

i ∈ Nn, αi > 0, Ti,Ru(t) = Dαi
t Aiu(t), if t ≥ 0, i ∈ Nn, and for every t ≥ 0,

i ∈ Nn, Tiu(t) denotes exactly one of the terms Ti,Lu(t) or Ti,Ru(t). Denote by
T the exact number of initial values subjected to the problem (ACP); that is,
T is the sum of number mQ and the cardinality of set consisting of those pairs
(i, j) ∈ Nn × N0

mn−1 for which mi − 1 ≥ j ≥ mQ. To make this more precise,
suppose that {i1, · · ·, is} = {i ∈ Nn : mi − 1 ≥ mQ} and i1 < · · · < is. Then
the set of all initial values appearing in (9) is given by {u0, · · ·, umQ−1;ui1,mQ , · ·
·, ui1,mi1−1; ···;uis,mQ , ···, uis,mis−1} = {(uj)0≤j≤mQ−1; (uis′ ,j)1≤s′≤s,mQ≤j≤mi

s′
−1}

so that T = mi1 + · · ·+mis +(1−s)mQ. Denote by Z (Zuniq) the set of all tuples of
initial values ~x = ((uj)0≤j≤mQ−1; (uis′ ,j)1≤s′≤s,mQ≤j≤mi

s′
−1) ∈ XT for which there

exists a (unique) strong solution of problem (ACP). Then Z is a linear subspace of
XT and Zuniq ⊆ Z, with equality iff the zero function is a unique strong solution of

the problem (ACP) with the initial value ~x = ~0.
The notion of (subspace) distributional chaoticity of problem (ACP) is intro-

duced in the following definition.
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Definition 2 Let X̃ be a closed linear subspace of XT. Then it is said that the
abstract Cauchy problem (ACP) is X̃-distributionally chaotic iff there are an un-

countable set S ⊆ X̃ ∩ Z and σ > 0 such that for each ε > 0 and for each pair
~x, ~y ∈ S of distinct tuples we have that there exist strong solutions t 7→ u(t; ~x),
t ≥ 0 and t 7→ u(t; ~y), t ≥ 0 of problem (ACP) with the property that

Dens
({
t ≥ 0 : d

(
u(t; ~x), u(t; ~y)

)
≥ σ

})
= 1 and

Dens
({
t ≥ 0 : d

(
u(t; ~x), u(t; ~y)

)
< ε
})

= 1.

If we can choose S to be dense in X̃, then we also say that the problem (ACP)

is densely X̃-distributionally chaotic (S is called a σX̃ -scrambled set). In the case

that X̃ = X, it is also said that the problem (ACP) is (densely) distributionally
chaotic; S is then called a σ-scrambled set.

Observe that any X̃-distributionally chaotic problem (ACP) is automatically ˜̃X-

distributionally chaotic for any closed linear subspace ˜̃X of XT containing X̃. This
implies that it is very important to know the minimal linear subspace X̃ of XT

such that the problem (ACP) is X̃-distributionally chaotic. On the contrary, we

are always trying to find the maximal possible linear subspace X̃ of XT for which

the problem (ACP) is densely ˜̃X-distributionally chaotic.
As mentioned in [27], it is very difficult to create a general theoretical concept

which would enable us to investigate distributionally chaotic properties of abstract
degenerate differential equations in a safe and sound way. For example, in Definition
2, we work only with strong solutions. Without any doubt, this is inevitable for
the problem (DFP)L, and a large number of similar problems, because then we
cannot define the notion of a mild solution so easily. On the other hand, the
notion introduced in Definition 2 can be slightly modified for the problem (DFP)R
by requiring that, for every two distinct tuples vectors of σX̃ -scrambled set S ⊆
X̃ ∩ Zmildα,R (A,B), there exist mild solutions t 7→ u(t; ~x), t ≥ 0 and t 7→ u(t; ~y),

t ≥ 0 of problem (DFP)R obeying the properties prescribed. We will not follow
this approach henceforth.
Definition 3 Let n ∈ N, let X̃ be a closed linear subspace of XT, and let ~x ∈ X̃∩Z.
Then it is said that the vector ~x is:

(i) X̃-(ACP)-distributionally near to 0 iff there exist a set Z ⊆ [0,∞) and a
strong solution t 7→ u(t; ~x), t ≥ 0 of problem (ACP) such that

Dens(Z) = 1 and lim
t∈Z,t→+∞

u
(
t; ~x
)

= 0;

(ii) X̃-(ACP)-distributionally n-unbounded iff there exist a set Z ⊆ [0,∞) and
a strong solution t 7→ u(t; ~x), t ≥ 0 of problem (ACP) such that

Dens(Z) = 1 and lim
t∈Z,t→+∞

pn
(
u(t; ~x)

)
= +∞;

~x is said to be X̃-(ACP)-distributionally unbounded iff there exists q ∈
N such that ~x is X̃-(ACP)-distributionally q-unbounded (if (X, ‖ · ‖) is a
Banach space, this simply means that there exist a set Z ⊆ [0,∞) and a
strong solution t 7→ u(t; ~x), t ≥ 0 of problem (ACP) such that Dens(Z) = 1
and limt∈Z,t→+∞ ‖u(t; ~x)‖ = +∞);
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(iii) a X̃-(ACP)-distributionally irregular vector iff there exist an integer q ∈ N,
two subsets B0, B∞ of [0,∞) with Dens(B0) = Dens(B∞) = 1 and a
strong solution t 7→ u(t; ~x), t ≥ 0 of problem (ACP) such that

lim
t∈B0,t→+∞

u
(
t; ~x
)

= 0 and lim
t∈B∞,t→+∞

pq
(
u(t; ~x)

)
= +∞. (12)

In the case that X̃ = XT, then we also say that ~x is (ACP)-distributionally near to
0, resp., (ACP)-distributionally n-unbounded, (ACP)-distributionally unbounded;

a X̃-distributionally irregular vector for (ACP) is then called a distributionally ir-
regular vector for (ACP).

Suppose that X ′ ⊆ X̃ ∩ Z is a linear manifold. Then we say that X ′ is a X̃-
distributionally irregular manifold for (ACP) (distributionally irregular manifold for

(ACP), in the case that X̃ = XT) iff any element x ∈ X ′ \{0} is X̃-distributionally
irregular vector for (ACP). Further on, we say that X ′ is a uniformly

X̃-distributionally irregular manifold for (ACP) (uniformly distributionally irreg-

ular manifold for (ACP), in the case that X̃ = XT) iff there exists q ∈ N such
that, for every ~x ∈ X ′ \ {0}, there exist two subsets B0, B∞ of [0,∞) with
Dens(B0) = Dens(B∞) = 1 and a strong solution t 7→ u(t; ~x), t ≥ 0 of problem
(ACP) such that (12) holds. It can be simply verified with the help of transla-
tion invariance of metric d(·, ·) and inequalities (2)-(4) that the following holds: If

0 6= ~x ∈ X̃∩Z is a X̃-distributionally irregular vector for (ACP), then X ′ ≡ span{~x}
is a uniformly X̃-distributionally irregular manifold for (ACP).
Remark 1:

(i) If ~x is a X̃-distributionally irregular vector for (ACP), then ~x is both X̃-

(ACP)-distributionally near to 0 and X̃-(ACP)-distributionally unbounded.
The converse statement holds provided that strong solutions of problem
(ACP) are unique. If this is not the case and ~x 6= 0 is both X̃-(ACP)-

distributionally near to 0 and X̃-(ACP)-distributionally unbounded, then
we can prove the following (cf. Definition 2): There are an uncountable set

S ⊆ X̃ ∩ Z (S is, in fact, equal to span{~x}) and σ > 0 such that for each
ε > 0 and for each pair ~x, ~y ∈ S of distinct vectors we have that there
exist strong solutions t 7→ ui(t; ~x), t ≥ 0 and t 7→ ui(t; ~y), t ≥ 0 (i = 1, 2)
of problem (ACP) with the property that

Dens
({
t ≥ 0 : d

(
u1(t; ~x), u1(t; ~y)

)
≥ σ

})
= 1 and

Dens
({
t ≥ 0 : d

(
u2(t; ~x), u2(t; ~y)

)
< ε
})

= 1.

If this is the case, we say that the problem (ACP) is quasi X̃-distributio-

nally chaotic (quasi distributionally chaotic, provided that X̃ = XT). The
set S is called quasi σX̃ -scrambled set (quasi σ-scrambled set, provided that

X̃ = XT).

(ii) Suppose that (ACP) is X̃-distributionally chaotic and S is the correspond-
ing σX̃ -scrambled set. Then, for every two distinct vectors ~x, ~y ∈ S, ~x− ~y
is a X̃-distributionally vector for (ACP).

(iii) Suppose that (ACP) is quasi X̃-distributionally chaotic and S is the cor-
responding quasi σX̃ -scrambled set. Then, for every two distinct vectors

~x, ~y ∈ S, ~x − ~y is a quasi X̃-distributionally vector for (ACP), i.e., ~x − ~y
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is both X̃-(ACP)-distributionally near to 0 and X̃-(ACP)-distributionally
unbounded.

It is worth noting that the non-triviality of subspace
⋂n
i=1N(Ai) in X immediately

implies that the problem (ACP) is distributionally chaotic:
Example 1 Suppose that 0 6= x ∈

⋂n
i=1N(Ai). We can always find a sequence

(an)n∈N0
of non-negative real numbers and a scalar-valued function f ∈ C∞([0,∞))

such that a0 = 0, an > an−1 + 2, n ∈ N, limn→+∞(an−1 − 1)(an − 1)−1 = 0,
f(t) = 0 for t ∈

⋃
n∈N[a2n−1, a2n] and f(t) = 2n for t ∈

⋃
n∈N0

[a2n + 1, a2n+1 −
1]. Since the sets B0 :=

⋃
n∈N[a2n−1, a2n] and B∞ :=

⋃
n∈N0

[a2n + 1, a2n+1 − 1]
have the upper densities equal to 1, it is very simple to verify that the function
u(t; ~x) := f(t)x, t ≥ 0 is a strong solution of problem (ACP) with the initial value
~x = ((uj ≡ f (j)(0)x)0≤j≤mQ−1; (uis′ ,j ≡ 0)1≤s′≤s,mQ≤j≤mi

s′
−1) ∈ XT, as well as

that ~x is a distributionally irregular vector for (ACP). In particular, ~x = ~0 can be
a distributionally irregular vector for (ACP).
We leave to the interested reader problem of finding a quasi distributionally chaotic
problem (ACP) that is not distributionally chaotic. In the sequel, we will consider
only the classical notion of (subspace) distributional chaoticity of problem (ACP).
Lemma 1 ([15, Theorem 4.1]) Let Y be another Fréchet space over the field of
complex numbers, let the topology of Y be induced by the fundamental system
(pYn )n∈N of increasing seminorms, and let dY (·, ·) denote the induced metric on
Y. Suppose that X is separable, X0 is a dense linear subspace of X, (T (t))t≥0 ⊆
L(X,Y ) is a strongly continuous operator family, as well as:

(i) limt→+∞ T (t)x = 0, x ∈ X0,
(ii) there exist x ∈ X, m ∈ N and a set B ⊆ [0,∞) such that Dens(B) = 1,

and limt→+∞,t∈B p
Y
m(T (t)x) = ∞, resp. limt→+∞,t∈B ‖T (t)x‖Y = ∞ if

(Y, ‖ · ‖Y ) is a Banach space.

Then there exist a dense linear subspace S of X and a number σ > 0 such that for
each ε > 0 and for each pair x, y ∈ S of distinct points we have that

Dens
({
t ≥ 0 : dY

(
T (t)x, T (t)y

)
≥ σ

})
= 1 and

Dens
({
t ≥ 0 : dY

(
T (t)x, T (t)y

)
< ε
})

= 1.

In the analysis of existence and uniqueness of abstract degenerate fractional Cauchy
problems (DFP)R and (DFP)L, the notions of exponentially equicontinuous (gα, C)-
regularized resolvent family for (11) and exponentially equicontinuous (gα, C)-
regularized resolvent family generated by A, B are crucially important (cf. [20]
and [41] for some other approaches):
Definition 4 Suppose that α > 0, C ∈ L(X) is injective, CA ⊆ AC and CB ⊆ BC.

(i) [30, Definition 2.2] Suppose that R(t) : D(B) → E is a linear mapping
(t ≥ 0). Then the operator family (R(t))t≥0 is said to be an exponentially
equicontinuous (gα, C)-regularized resolvent family for (11) iff there exists
ω ≥ 0 such that the following holds:
(a) The mapping t 7→ R(t)x, t ≥ 0 is continuous for every fixed element

x ∈ D(B).
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(b) The family {e−ωtR(t) : t ≥ 0} is equicontinuous, i.e., for every n ∈ N,
there exist c > 0 and m ∈ N such that

pn
(
e−ωtR(t)x

)
≤ cpm(x), x ∈ D(B), t ≥ 0.

(c) For every λ ∈ C with <λ > ω, the operator λαB − A is injective,
C(R(B)) ⊆ R(λαB −A) and

λα−1
(
λαB −A

)−1
CBx =

∞∫
0

e−λtR(t)x dt, x ∈ D(B). (13)

(ii) [31, Definition 2.3] An operator family (R(t))t≥0 ⊆ L(X, [D(B)]) is said
to be an exponentially equicontinuous (gα, C)-regularized resolvent family
generated by A, B iff there exists ω ≥ 0 such that the following holds:
(a) The mappings t 7→ R(t)x, t ≥ 0 and t 7→ BR(t)x, t ≥ 0 are continuous

for every fixed element x ∈ X.
(b) The family {e−ωtR(t) : t ≥ 0} ⊆ L(X, [D(B)]) is equicontinuous, i.e.,

for every n ∈ N, there exist c > 0 and m ∈ N such that

pn
(
e−ωtR(t)x

)
+ pn

(
e−ωtBR(t)x

)
≤ cpm(x), x ∈ X, t ≥ 0. (14)

(c) For every λ ∈ C with <λ > ω, the operator λαB − A is injective,
R(C) ⊆ R(λαB −A) and

λα−1
(
λαB −A

)−1
Cx =

∞∫
0

e−λtR(t)x dt, x ∈ X.

From [30-31], we know the following facts about exponentially equicontinuous
(gα, C)-regularized resolvent families introduced above (cf. Remark 2.4 of [31] for
their mutual relationship, and [25, Subsection 2.1.1] for non-degenerate case).
Lemma 2

(i) Let (R(t))t≥0 be an exponentially equicontinuous (gα, C)-regularized resol-
vent family for (11). Suppose that the following condition holds:
(P) There exists a number ω1 > ω such that, for every x ∈ X, there exists

a function h(λ;x) ∈ LT −X such that h(λ;x) = λα−1(λαB−A)−1Cx,
provided <λ > ω1.

Let x0, · · ·, xdαe−1 ∈ D(A) ∩D(B). Then the function

u(t; (BCx0, ···, BCxdαe−1)) :=
∑dαe
j=0

∫ t
0
gj(t−s)R(s)xj ds, t ≥ 0 is a unique

strong solution of (DFP)R, with the initial values Bxj replaced by BCxj
(0 ≤ j ≤ dαe − 1).

(ii) Let (R(t))t≥0 be an exponentially equicontinuous (gα, C)-regularized resol-
vent family generated by A, B. Then, for every x0, · · ·, xdαe−1 ∈ D(A) ∩
D(B), the function u(t; (Cx0, ···, Cxdαe−1)) :=

∑dαe
j=0

∫ t
0
gj(t−s)R(s)Bxj ds,

t ≥ 0 is a unique strong solution of problem (DFP)L, with the initial values
xj replaced by Cxj (0 ≤ j ≤ dαe − 1).

In the following theorem, we will consider the subspace distributionally chaotic
properties of problem (DFP)R.
Theorem 1 Suppose that α > 0, C ∈ L(X) is injective, CA ⊆ AC, CB ⊆ BC,
(R(t))t≥0 is an exponentially equicontinuous (gα, C)-regularized resolvent family for
(11), (P) holds and ∅ 6= V ⊆ N0

dαe−1. Let Fi be a separable complex Fréchet space,

let Fi ⊆ D(A)∩D(B), and let Fi be continuously embedded in X (i ∈ V). Suppose
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that for each n ∈ N and i ∈ V there exist a number cn,i > 0 and a continuous
seminorm qn,i(·) on Fi so that pn(CBfi) ≤ cn,iqn,i(fi), fi ∈ Fi. Set Gi := Fi, if i ∈
V, Gi := {0}, if i ∈ N0

dαe−1\V, and F :=
∏dαe−1
i=0 Gi. Suppose, further, that for each

i ∈ V there exists a dense subset F 0
i of Fi satisfying that limt→+∞(gi∗R(·)fi)(t) = 0,

fi ∈ F 0
i . Let there exist ~f∞ = (f0,∞, · · ·, fdαe−1,∞) ∈ F, m ∈ N and a set D ⊆ [0,∞)

such that Dens(D) = 1, and limt→+∞,t∈D pm(
∑
i∈V(gi ∗R(·)fi,∞)(t)) = +∞, resp.

limt→+∞,t∈D ‖
∑
i∈V(gi ∗R(·)fi,∞)(t)‖ = +∞ if (X, ‖ · ‖) is a Banach space. Then

we have that the problem (DFP)R is densely

{(CBf0, · · ·, CBfdαe−1) : ~f = (f0, · · ·, fdαe−1) ∈ F}
Xdαe

-distributionally chaotic.
Proof. It is clear that F is an infinite-dimensional separable complex Fréchet

space. Define V (t)~f :=
∑dαe−1
i=0 (gi ∗ R(·)fi)(t), t ≥ 0 (~f = (f0, · · ·, fdαe−1) ∈ F )

and F0 :=
∏dαe−1
i=0 G0

i , where G0
i := F 0

i , if i ∈ V, and G0
i := {0}, if i ∈ N0

dαe−1 \ V.
Then F0 is dense in F and (V (t))t≥0 ⊆ L(F,X) is a strongly continuous operator
family. An application of Lemma 1 yields that there exist a dense linear subspace

S of F and a number σ > 0 such that for each ε > 0 and for each pair ~f ′, ~f ′′ ∈ S
of distinct vectors we have that

Dens
({
t ≥ 0 : d

(
V (t)~f ′, V (t) ~f ′′

)
≥ σ

})
= 1 and

Dens
({
t ≥ 0 : d

(
V (t)~f ′, V (t) ~f ′′

)
< ε
})

= 1.

Suppose that CBfi = 0 for all i ∈ V and fi ∈ Fi. Then (13) and the uniqueness
theorem for the Laplace transform together imply that R(t)fi = 0 for all i ∈ V and

fi ∈ Fi, which contradicts the existence of m-distributionally unbounded vector ~f∞
from F. Hence, there exist i ∈ V and fi ∈ Fi such that CBfi 6= 0. Using this fact
and the continuity of mapping CB : Fi → X for each i ∈ V, we can simply verify

that {(CBf0, · · ·, CBfdαe−1) : ~f = (f0, · · ·, fdαe−1) ∈ S} is a non-trivial subspace of

Xdαe. Now the final conclusion simply follows by using the continuity of mappings
CB : Fi → X (i ∈ V) once more, and Lemma 2(i).

Similarly, by using Lemma 1 and Lemma 2(ii), we can prove the following theo-
rem on subspace distributional chaoticity of problem (DFP)L.
Theorem 2 Suppose that α > 0, C ∈ L(X) is injective, CA ⊆ AC, CB ⊆ BC,
(R(t))t≥0 is an exponentially equicontinuous (gα, C)-regularized resolvent family
generated by A, B, and ∅ 6= V ⊆ N0

dαe−1. Let Fi be a separable complex Fréchet

space, and let Fi ⊆ D(A) ∩ D(B) (i ∈ V). Suppose that for each n ∈ N and
i ∈ V there exist a number cn,i > 0 and a continuous seminorm qn,i(·) on Fi so
that pn(Bfi) + pn(Cfi) ≤ cn,iqn,i(fi), fi ∈ Fi. Set Gi := Fi, if i ∈ V, Gi := {0},
if i ∈ N0

dαe−1 \ V, and F :=
∏dαe−1
i=0 Gi. Suppose, further, that for each i ∈ V

there exists a dense subset F 0
i of Fi satisfying that limt→+∞(gi ∗ R(·)Bfi)(t) = 0,

fi ∈ F 0
i . Let there exist ~f = (f0, · · ·, fdαe−1) ∈ F, m ∈ N and a set D ⊆ [0,∞)

such that Dens(D) = 1, and limt→+∞,t∈D pm(
∑
i∈V(gi ∗R(·)Bfi)(t)) = +∞, resp.

limt→+∞,t∈D ‖
∑
i∈V(gi ∗R(·)Bfi)(t)‖ = +∞ if (X, ‖ · ‖) is a Banach space. Then

we have that the problem (DFP)L is densely

{(Cf0, · · ·, Cfdαe−1) : ~f = (f0, · · ·, fdαe−1) ∈ F}
Xdαe

-distributionally chaotic.
Remark 2:
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(i) Suppose that l ∈ N0. Then the increasing family of seminorms pA,B,Cn,l (·) :=

pn(C−l·) + pn(C−lA·) + pn(C−lB·) (n ∈ N) turns Cl(D(A) ∩ D(B)) into
a Fréchet space, which will be denoted by [D(A) ∩ D(B)]lC in the sequel.
In the concrete situation of Theorem 1 or Theorem 2, Fi can be chosen to
be some of closed linear subspaces of [D(A)∩D(B)]lC that is separable for
the topology induced from [D(A) ∩D(B)]lC . If X is separable and C = I,
then for each number λ > ω the mapping (λαB − A)−1 : X → [D(A) ∩
D(B)] (≡ [D(A)∩D(B)]0I) is a linear topological isomorphism and, in this
case, [D(A) ∩D(B)] and Fi will be separable (i ∈ V).

(ii) If we suppose additionally that R(t)B ⊆ BR(t), t ≥ 0 in the formulation
of Theorem 2, then we do not need to assume that for each n ∈ N and
i ∈ V there exist a number cn,i > 0 and a continuous seminorm qn,i(·) on
Fi so that pn(Bfi) ≤ cqn,i(fi), fi ∈ Fi (because, in this case, the operator

VL(t)~· =
∑dαe−1
i=0 (gi ∗R(·)B·i)(t), t ≥ 0 (~· = (·0, · · ·, ·dαe−1) ∈ F ) belongs to

the space L(F,X) and (VL(t))t≥0 is a strongly continuous operator family
in L(F,X) on account of (14)).

In [27, Theorem 5] and [28, Remark 1(ii)], we have recently reconsidered the Desch-
Schappacher-Webb and Banasiak-Moszyński criteria for chaos of strongly continu-
ous semigroups ([18], [5]). The following important theorem holds good (cf. [27]-[28]
for the notion):
Theorem 3 Suppose that α ∈ (0, 2) and Ω is an open connected subset of C which
satisfies Ω ∩ (−∞, 0] = ∅ and Ω ∩ iR 6= ∅. Let f : Ωα → X be an analytic mapping

such that f(λα) ∈ N(A − λαB) \ {0}, λ ∈ Ω, and let X̃ := span{f(λα) : λ ∈ Ω}.
Then the problems (DFP)R and (DFP)L are X̃-topologically mixing; furthermore,

if Af(λα) ∈ X̃ for all λ ∈ Ω, then the problems (DFP)X̃R and (DFP)X̃L , obtained by
replacing the operators A and B in (DFP)R and (DFP)L with the operators A|X̃
and B|X̃ , respectively, are topologically mixing in the Fréchet space X̃.

Keeping Theorem 3 in mind, it is very natural to raise the following issue:

Problem 1. Suppose that α ∈ (0, 2) and Ω is an open connected subset of C
which satisfies Ω ∩ (−∞, 0] = ∅ and Ω ∩ iR 6= ∅. Let f : Ωα → X be an
analytic mapping such that f(λα) ∈ N(A− λαB) \ {0}, λ ∈ Ω. Does there exist a
closed linear subspace X ′ of Xdαe such that the problems (DFP)R and (DFP)L are
(densely) X ′-distributionally chaotic?

The method proposed in the proofs of [15, Theorem 4.1] and its discrete precursor
[11, Theorem 15] cannot be applied here and, because of that, we will have to
follow some other paths capable of moving us towards a solution of this problem.
Unfortunately, we will present only some partial answers to Problem 1 by assuming
that the strong solutions of problem (DFP) are goverened by an exponentially
equicontinuous (gα, C)-regularized resolvent family for (11) (in the case of problem
(DFP)R) or an exponentially equicontinuous (gα, C)-regularized resolvent family
generated by A, B (in the case of problem (DFP)L); this has not been the case in
our previous research studies [27-28]. We start by stating the following result.
Theorem 4

(i) Suppose that 0 < α < 2, C ∈ L(X) is injective, CA ⊆ AC, CB ⊆ BC,
(R(t))t≥0 is an exponentially equicontinuous (gα, C)-regularized resolvent
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family for (11), (P) holds and ∅ 6= V ⊆ N0
dαe−1. Let Fi be a separa-

ble complex Fréchet space, let Fi ⊆ D(A) ∩ D(B), and let Fi be con-
tinuously embedded in X (i ∈ V). Suppose that for each n ∈ N and
i ∈ V there exist a number cn,i > 0 and a continuous seminorm qn,i(·)
on Fi so that pn(CBfi) ≤ cn,iqn,i(fi), fi ∈ Fi. Set Gi := Fi, if i ∈ V,
Gi := {0}, if i ∈ N0

dαe−1 \ V, and F :=
∏dαe−1
i=0 Gi. Let Hi : Ωα → Fi

be an analytic mapping such that Hi(λ
α) ∈ N(A − λαB) \ {0}, λ ∈ Ω

(i ∈ V). Set F ′i := span{Hi(λα) : λ ∈ Ω}
Fi

(i ∈ V), F ′i := {0} (i ∈
N0
dαe−1 \ V) and F ′ :=

∏dαe−1
i=0 F ′i . Then the problem (DFP)R is densely

{(CBf ′0, · · ·, CBf ′dαe−1) :
~f ′ = (f ′0, · · ·, f ′dαe−1) ∈ F ′}

Xdαe

-distributionally
chaotic.

(ii) Suppose that 0 < α < 2, C ∈ L(X) is injective, CA ⊆ AC, CB ⊆ BC,
(R(t))t≥0 is an exponentially equicontinuous (gα, C)-regularized resolvent
family generated by A, B, and ∅ 6= V ⊆ N0

dαe−1. Let Fi be a separable

complex Fréchet space, and let Fi ⊆ D(A) ∩D(B) (i ∈ V). Suppose that
for each n ∈ N and i ∈ V there exist a number cn,i > 0 and a continuous
seminorm qn,i(·) on Fi so that pn(Bfi)+pn(Cfi) ≤ cn,iqn,i(fi), fi ∈ Fi. Set

Gi := Fi, if i ∈ V, Gi := {0}, if i ∈ N0
dαe−1 \ V, and F :=

∏dαe−1
i=0 Gi. Let

Hi : Ωα → Fi be an analytic mapping such that Hi(λ
α) ∈ N(A−λαB)\{0},

λ ∈ Ω (i ∈ V). Set F ′i := span{Hi(λα) : λ ∈ Ω}
Fi

(i ∈ V), F ′i := {0}
(i ∈ N0

dαe−1\V) and F ′ :=
∏dαe−1
i=0 F ′i . Then the problem (DFP)L is densely

{(Cf ′0, · · ·, Cf ′dαe−1) :
~f ′ = (f ′0, · · ·, f ′dαe−1) ∈ F ′}

Xdαe

-distributionally chaotic.

Proof. Suppose that Ω0 is an arbitrary open connected subset of Ω which admits
a cluster point in Ω. Then the (weak) analyticity of mapping λ 7→ Hi(λ

α) ∈ Fi,
λ ∈ Ω implies that Ψ(Ω0, i) := span{Hi(λ

α) : λ ∈ Ω0} is dense in the Fréchet space
F ′i ; in particular, (F ′i )0 := Ψ(Ω∩C−, i) is dense in F ′i (i ∈ V). The remaining part
of proof is almost the same in cases (i) and (ii), so that we will consider only (i).
Since Hi(λ

α) ∈ N(A − λαB) \ {0}, λ ∈ Ω, we can apply the uniqueness theorem
for Laplace transform, (13) and the well known identity

∞∫
0

e−zttβ−1Eα,β
(
tαλα

)
dt =

zα−β

zα − λα
, <z > |λ|, λ ∈ Ω,

see e.g. [9, (1.26)], in order to see that R(t)Hi(λ
α) = Eα(tαλα)CHi(λ

α), t ≥ 0,
λ ∈ Ω and that (gi ∗ Eα(·αλα))(t) = tiEα,i+1(tαλα), t ≥ 0, i ∈ N0 (i ∈ V). Now
the claimed assertion follows from an application of Theorem 1 and the asymptotic
expansion formulae (5)-(7).
Remark 3: Suppose that the requirements of Problem 1 hold, C ∈ L(X) is
injective, CA ⊆ AC, CB ⊆ BC, X is separable, l ∈ N0 and ∅ 6= V ⊆ N0

dαe−1.

(i) Let (R(t))t≥0 be an exponentially equicontinuous (gα, C)-regularized resol-
vent family for (11), and let (P) hold. Then the closed graph theorem
implies that (λαB − A)−1C ∈ L(X) for all λ ∈ C with <λ > ω1. Suppose
that <λ0 > ω1, (λαB−A)−1CA ⊆ A(λαB−A)−1C and (λαB−A)−1CB ⊆
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B(λαB −A)−1C for all λ ∈ C with <λ > ω1. Set

Xl := span
{
Cl
(
λα0B −A

)−1
Cf
(
λα
)

: λ ∈ Ω
}[D(A)∩D(B)]lC

.

Then the mapping G : X → [D(A) ∩D(B)]lC , given by G(x) := Cl(λα0B −

A)−1Cx, x ∈ X, is continuous and the space G(X)
[D(A)∩D(B)]lC

is sep-
arable. Set Fi := [D(A) ∩ D(B)]lC (i ∈ V). Define Gi and the space
F as in the formulation of Theorem 4(i). Then, for every i ∈ V, the
mapping Hi : Ωα → Fi, given by Hi(λ

α) := Cl(λα0B − A)−1Cf(λα),
λ ∈ Ω, is analytic (i ∈ V). Define now F ′i and F ′ as in the formulation
of Theorem 4(i). Applying Theorem 4(i), we get that (DFP)R is densely

{(CBf ′0, · · ·, CBf ′dαe−1) :
~f ′ = (f ′0, · · ·, f ′dαe−1) ∈ F ′}

Xdαe

-distributionally

chaotic (observe that Cl(Xm) = Xm+l and C(Xl) ⊆ Xl for all l, m ∈ N0,
as well as that X0 ⊇ X1 ⊇ · · · ⊇ Xl ⊇ · · · and {(CBf ′0, · · ·, CBf ′dαe−1) :

~f ′ = (f ′0, · · ·, f ′dαe−1) ∈ F ′} = {(x0, · · ·, xdαe−1) ∈ Xdαe : xi = 0 for i ∈
N0
dαe−1 \ V, and xi ∈ B(Xl+1) for i ∈ V}; in the sequel, we will use the

abbreviation X
dαe
B,l,V to denote the above set).

(ii) Let (R(t))t≥0 be an exponentially equicontinuous (gα, C)-regularized resol-
vent family generated by A, B, obeying additionally that (λαB − A)−1C
commutes with A and B for all λ ∈ C with <λ > ω. Then Theorem 4(ii)
and a similar argumentation imply that the problem (DFP)L is densely

{(x0, · · ·, xdαe−1) ∈ Xdαe : xi = 0, i ∈ N0
dαe−1 \ V; xi ∈ Xl+1, i ∈ V}

Xdαe

-distributionally chaotic. We will denote the above set simply by X
dαe
l,V .

Now we will present an illustrative example of application of obtained theoretical
results.
Example 2. Suppose that 0 < α < 2, cos(π/α) ≤ 0, l ∈ N0, ∅ 6= V ⊆ N0

dαe−1, 1 ≤
p <∞, ω ≥ 0, P1(z) and P2(z) are non-zero complex polynomials, N1 = dg(P1(z)),

N2 = dg(P2(z)), P2(x) 6= 0 for all x ∈ R, β > 1
2

(N1+N2)
min(1,α) and

sup
x∈R
<

((
P1(x)

P2(x)

)1/α)
≤ ω.

Then there exist numbers z0 ∈ C and r ≥ 0 such that:

P1

(
−iz0

)
= re±iαπ/2P2

(
−iz0

)
, P2

(
z0

)
6= 0

and

P1(−i·)′
(
z0

)
P2

(
−iz0

)
− P1

(
z0

)
P2(−i·)′

(
z0

)
6= 0.

Let a > 0 be such that |<
(
z0

)∣∣ < a/p. Set ρ(x) := e−a|x|, x ∈ R,

Lpρ(R) :=

{
f : R→ C | f(·) is measurable,

∫
R
|f(x)|pρ(x) dx <∞

}
and ‖f‖ := (

∫
R |f(x)|pρ(x) dx)1/p; equipped with this norm, X := Lpρ(R) becomes

an infinite-dimensional separable complex Banach space. It is well known that the
operator −iA0, defined by

D
(
−iA0

)
:=
{
f ∈ X | f(·) is loc. abs. continuous, f ′ ∈ X

}
,
(
−iA0

)
f := f ′,
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is the generator of a C0-group on X (cf. [18, Theorem 4.9]). Therefore, we can

define the closed linear operators A := P1(A0) and B := P2(A0) on X by using the
functional calculus for bounded commuting C0-groups (cf. [16] and [25, Section 2.5]
for more details); these operators are densely defined, and B is injective ([30]). Ar-
guing as in [27, Example 7], we obtain that there exist an open connected subset Ω
of C\ (−∞, 0] intersecting the imaginary axis and an open connected neighborhood
W of point z0, contained in the vertical strip {z ∈ C : |<(z)| < a/p}, such that the
mapping (P1(−i·)/P2(−i·))−1 : Ωα →W is well defined, analytic and bijective. Set

f
(
λα
)

:= e(P1(−i·)/P2(−i·))−1(λα)·, λ ∈ Ω

and, for every t ≥ 0,

Rα(t) :=

(
Eα

(
tα
P1(x)

P2(x)

)(
1 + |x|2

)−β/2)(
A0

)
, Gα(t) := P2

(
A0

)−1
Rα(t).

Then (Rα(t))t≥0 ⊆ L(X) is a global exponentially bounded (gα, Rα(0))-regularized
resolvent family for (11), (P) holds, (Gα(t))t≥0 ⊆ L(X, [D(B)]) is a global expo-
nentially bounded (gα, Rα(0))-regularized resolvent family generated by A, B, the
mapping f : Ωα → X is analytic and Af(λα) = λαBf(λα), λ ∈ Ω [30-31]. Fur-
thermore, there exists ω1 > ω such that (λαB − A)−1C commutes with A and
B for all λ ∈ C with <λ > ω1; here C = Rα(0). By the considerations from

Remark 3, it readily follows that the problem (DFP)R ((DFP)L) is densely X
dαe
B,l,V -

distributionally chaotic (densely X
dαe
l,V -distributionally chaotic); unfortunately, in

the present situation, we do not know to say anything about the optimality of this
result. Before quoting some concrete examples where the established conclusions
can be applied, it should be noticed that we can prove a similar result provided that
the state space is chosen to be the Banach space C0,ρ(R) (cf. [18, Definition 4.3]) or

the Fréchet space X ′ := {f ∈ C∞(R) : f (n) ∈ Lpρ(R) for all n ∈ N0}, equipped with

the following family of seminorms pn(f) :=
∑n
j=0 ‖f (j)‖Lpρ(R), n ∈ N0; in this case,

the operators A|X′ and B|X′ are linear and continuous on X ′, (C|X′)
−1 ∈ L(X ′),

as well as ((C|X′)
−1Rα(t)|X′)t≥0 ⊆ L(X ′) is a global exponentially equicontinuous

(gα, IX′)-regularized resolvent family for (11), (P) holds in our concrete situation,
and ((C|X′)

−1Gα(t)|X′)t≥0 ⊆ L(X ′, [D(B|X′)]) is a global exponentially equicon-
tinuous (gα, IX′)-regularized resolvent family generated by A|X′ , B|X′):

(i) Assuming that P1(z) = −α0z
2−β0z

4 and P2(z) = γ0+z2, where α0, β0, γ0

are positive real numbers, we are in a position to clarify some results on
subspace distributionally chaoticity of equation(

γ0 −∆
)
Dα
t u = α0∆u− β0∆2u,

for which it is well known that plays an important role in evolution mod-
elling of some problems appearing in the theory of liquid filtration ([41]),
on Lpρ(R) or C0,ρ(R); see also [27, Example 8], where we have considered
topologically mixing properties of this equation on symmetric spaces of non-
compact type, Damek-Ricci, Riemannian symmetric or Heckman-Opdam
root spaces ([23], [3], [38]).

(ii) Assuming that P1(z) = z2 and P2(z) = −ηz2 − 1, where η > 0, we are in
a position to clarify some results on subspace distributionally chaoticity of
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the Barenblatt-Zheltov-Kochina equation (cf. [17, Example 1.6, p. 50]):

(η∆− 1)Dα
t u(t) + ∆u = 0 (η > 0).

This equation is very important in the study of fluid filtration in fissured
rocks.

In the remaining part of paper we will always assume that Tnu(t) = BDαn
t u(t) =

Tn,Lu(t). Then it is evident that the abstract degenerate Cauchy problem

BDαn
t u(t) +

n−1∑
i=1

Tiu(t) = 0; u(k)(0) = uk, 0 ≤ k ≤ mn − 1 (15)

is a special subcase of problem (ACP). The Caputo fractional derivative Dαn
t u(t)

is defined for any strong solution t 7→ u(t), t ≥ 0 of problem (15) and this, in turn,

implies that we can define the Caputo fractional derivative Dζ
tu(t) for any number

ζ ∈ [0, αn] ([25]). Motivated by our recent research study [28], we introduce the
following notion:
Definition 5. Let X̃ be a closed linear subspace of Xmn , let k ∈ N, and let
~β = (β1, β2, · · ·, βk) ∈ [0, αn]k. Then it is said that the abstract Cauchy problem

(15) is (X̃, ~β)-distributionally chaotic iff there are an uncountable set S ⊆ X̃ ∩ Z
and σ > 0 such that for each ε > 0 and for each pair ~x, ~y ∈ S of distinct tuples we
have that there exist strong solutions t 7→ u(t; ~x), t ≥ 0 and t 7→ u(t; ~y), t ≥ 0 of
problem (15) with the property that

Dens

({
t ≥ 0 :

k∑
i=1

d
(
Dβi
t u(t; ~x),Dβi

t u(t; ~y)
)
≥ σ

})
= 1 and

Dens

({
t ≥ 0 :

k∑
i=1

d
(
Dβi
t u(t; ~x),Dβi

t u(t; ~y)
)
< ε

})
= 1.

As before, if we can choose S to be dense in X̃, then we say that the problem (15) is

densely (X̃, ~β)-distributionally chaotic (S is called a (σX̃ ,
~β)-scrambled set). In the

case X̃ = Xmn , it is also said that the problem (15) is (densely) ~β-distributionally

chaotic; S is then called a (σ, ~β)-scrambled set.
Before proceeding further, it would be worthwhile to mention that the classical

definitions of X̃-distributional chaos of problem (15) follows by plugging ~β = (0, 0, ··
·, 0) ∈ [0, αn]k in Definition 5 and that we can also define some other notions

of X̃-distributional chaos of problem (15) by replacing, optionally, some of terms

Dβi
t u(t; ~x) and Dβi

t u(t; ~y) in Definition 5 with Dβi
t A
′
iu(t; ~x) or A′′i D

βi
t u(t; ~x), and

Dβi
t B

′
iu(t; ~y) or B′′i Dβi

t u(t; ~y), respectively, where A′i, A
′′
i , B

′
i, B

′′
i are closed linear

operators on X (1 ≤ i ≤ k). We leave details to the reader.
Now we would like to present an illustrative example from [14].

Example 3. The study of various hypercyclic, chaotic and topologically mixing
properties of the viscous van Wijngaarden-Eringen equation:(

1− a2
0uxx

)
utt = (Reb)

−1uxxt + uxx, (16)

which corresponds to the linearized version of the equation that models the acoustic
planar propagation in bubbly liquids, has been recently carried out by Conejero,
Lizama and Murillo-Arcila in [14]; here a0 > 0 denotes the dimensionless bubble
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radius and Reb > 0 is a Reynolds number. The state space in their analysis is
chosen to be the space Xρ of real analytic functions of Herzog type

Xρ :=

{
f : R→ C ; f(x) =

∞∑
n=0

anρ
n

n!
xn, x ∈ R for some (an)n≥0 ∈ c0(N0)

}
,

which is an isomorphic copy of the sequence space c0(N0). More precisely, it has
been proved that the bounded matricial operator

A :=

[
O I

−(1− a2
0uxx)−1uxx (Reb)

−1(1− a2
0uxx)−1uxx

]
generates a strongly continuous semigroup on X2

ρ satisfying the assumptions of

Desch-Schappacher-Webb criterion, provided a0 < 1,
√

5/6 < a0Reb < 1/2 and
ρ > r0a

−1
0 /(2−1a−2

0 (Reb)
−1−3r0) (r0 := 4−1a−2

0 (Reb)
−1(1−4a2

0Re2
b)

1/2). This im-
mediately implies that the abstract degenerate second order Cauchy problem (16)
is densely (0, 1)-distributionally chaotic (cf. Definition 5, as well as [27, Remark 6]
and Theorem 5 below).

From the point of view of linear dynamics, the abstract degenerate equations
with integer order derivatives have certain peculiarities compared with abstract
degenerate fractional differential equations. For example, the following theorem
cannot be so simply reformulated for fractional multi-term problem (15) (cf. [28,
Remark 2(iii)], and [28, Section 2] for the notion used):
Theorem 5. ([28, Theorem 3]) Let αi = i for all i ∈ Nn, let Ω be an open
non-empty subset of C intersecting the imaginary axis, and let f : Ω → E be an
analytic mapping satisfying that

Pλf(λ) =

(
λαnB +

n−1∑
i=0

λαiAi

)
f(λ) = 0, λ ∈ Ω. (17)

Set ~xλ := [f(λ) λf(λ) · · · λn−1f(λ)]T (λ ∈ Ω), E0 := span{ ~xλ : λ ∈ Ω},
Ẽ := Ě := E0, ~β := (0, 1, · · ·, n − 1), W := Nn and Êi := span{f(λ) : λ ∈ Ω},
i ∈ W. Let ∅ 6= S ⊆ En be such that E0 ⊆ Orb(S; (Di)1≤i≤l). Then ~xλ ∈ MD,
λ ∈ Ω and the abstract Cauchy problem

(ACP )B,n : Bu(n)(t) +

n−1∑
i=0

Tiu(t) = 0, t ≥ 0; u(i)(0) = xi, 0 ≤ i ≤ n− 1

is DP-topologically mixing provided that
∑q
j=1 e

λj ·f(λj) ∈ P(
∑q
j=1 ~xλj ) for any∑q

j=1 ~xλj ∈ E0 (q ∈ N; λj ∈ Ω, 1 ≤ j ≤ q); here, T0u(t) = A0u(t).

The following problem arises immediately:

Problem 2. Let αi = i for all i ∈ Nn, let Ω be an open non-empty subset
of C intersecting the imaginary axis, and let f : Ω → E be an analytic mapping

satisfying (17). Does there exist a tuple ~β ∈ [0, αn]k and a closed linear subspace X ′

of Xn such that the problem (ACP)B,n is (densely) (X ′, ~β)-distributionally chaotic?

This problem can be also rephrased for certain classes of abstract degenerate
multi-term fractional differential equations that are not of general type (ACP)
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considered here; because of that, we shall skip all details (see also [28, Remark
2(ii)]).

Now we are going to enquire into the basic distributionally chaotic properties of
the following special subcase of problem (15):

BDαn
t u(t) +

n−1∑
i=1

AiD
αi
t u(t) = 0; u(k)(0) = uk, 0 ≤ k ≤ mn − 1. (18)

In our analysis, we are primarily concerned with exploiting Lemma 1 and, because
of that, we need to assume that strong solutions of (18) are goverened by some
known degenerate resolvent families for (18); besides of that, it is very important
to know whether strong solutions of (18) are unique or not. In this paper, we
will focus our attention on the use of so-called (C1, C2)-existence and uniqueness
families for (18) (cf. [32, Definition 3.1] for a slightly general notion):
Definition 6. Suppose that the operators C1 ∈ L(X) and C2 ∈ L(X) are
injective.

(i) A strongly continuous operator family (E(t))t≥0 ⊆ L(X) is said to be
a C1-existence family for (18) iff, for every x ∈ X, the following holds:
E(·)x ∈ Cmn−1([0,∞) : [D(B)]), E(i)(0)x = 0 for every i ∈ N0 with
i < mn − 1, Aj(gαn−αj ∗ E(mn−1))(·)x ∈ C([0,∞) : X) for 0 ≤ j ≤ n, and

BE(mn−1)(t)x+

n−1∑
j=1

Aj
(
gαn−αj ∗ E(mn−1)

)
(t)x = C1x, t ≥ 0.

(ii) A strongly continuous operator family (U(t))t≥0 ⊆ L(X) is said to be a
C2-uniqueness family for (18) iff, for every t ≥ 0 and x ∈

⋂
0≤j≤nD(Aj),

the following holds:

U(t)Bx+

n−1∑
j=1

(
gαn−αj ∗ U(·)Ajx

)
(t) = gmn(t)C2x.

Suppose 0 ≤ i ≤ mn − 1. Then we define Di := {j ∈ Nn−1 : mj − 1 ≥ i},
D′i := Nn−1 \Di and

Di :=

{
ui ∈

⋂
j∈D′i

D(Aj) : Ajui ∈ R(C1), j ∈ D′i

}
.

The existence of a C2-uniqueness family for (18) implies the uniqueness of strong
solutions of this problem, while the existence of a C1-existence family for (18)
implies the following:
Lemma 3. ([32, Theorem 3.4(i)]) Suppose that (E(t))t≥0 is a C1-existence family
for (18), and ui ∈ Di for 0 ≤ i ≤ mn − 1. Define, for every t ≥ 0,

u(t) :=

mn−1∑
i=0

uigi+1(t)−
mn−1∑
i=0

∑
j∈Nn−1\Di

(
gαn−αj ∗ E(mn−1−i)

)
(t)C−1

1 Ajui. (19)

Then the function t 7→ u(t), t ≥ 0 is a strong solution of (18).
The Laplace transform techniques can be used to prove the following:
Lemma 5. ([32, Theorem 3.5]) Suppose that (E(t))t≥0 ⊆ L(X), (U(t))t≥0 ⊆
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L(X), ω ≥ 0, C1 ∈ L(X) and C2 ∈ L(X) are injective. Set

Pλ := B +

n−1∑
j=1

λαj−αnAj , <λ > 0.

(i) Suppose that the operator Pλ is injective for every λ > ω, as well as that
there exist strongly continuous operator families (W (t))t≥0 ⊆ L(X) and
(Wj(t))t≥0 ⊆ L(X) such that {e−ωtW (t) : t ≥ 0} and {e−ωtWj(t) : t ≥ 0}
are equicontinuous (1 ≤ j ≤ n) as well as that:

∞∫
0

e−λtW (t)x dt = λ−1P−1
λ C1x and

∞∫
0

e−λtWj(t)x dt = λαj−αn−1AjP
−1
λ C1x,

for every λ > ω, x ∈ X and j ∈ Nn. Then there exists a C1-existence family
for (18), denoted by (E(t))t≥0. Furthermore, E(mn−1)(t)x = W (t)x, t ≥ 0,

x ∈ X and Aj(gαn−αj ∗ E(mn−1))(t)x = Wj(t)x, t ≥ 0, x ∈ X, j ∈ Nn.
(ii) Suppose (U(t))t≥0 is strongly continuous and the operator family
{e−ωtU(t) : t ≥ 0} is equicontinuous. Then (U(t))t≥0 is a C2-uniqueness
family for (18) iff, for every x ∈

⋂n
j=0D(Aj), the following holds:

∞∫
0

e−λtU(t)Pλx dt = λ−mnC2x, <λ > ω.

The following theorem can be proved by using Lemma 1 and Lemma 3.
Theorem 6. Suppose that C1 ∈ L(X) is injective and (E(t))t≥0 is a C1-existence
family for (18). Let F be a separable complex Fréchet space, let F ⊆ D0×D1× · ·
· ×Dmn−1, and let F be continuously embedded in Xmn . Define V (t) : F → X by

V (t)~u :=
∑mn−1
i=0 uigi+1(t)−

∑mn−1
i=0

∑
j∈Nn−1\Di(gαn−αj ∗ E

(mn−1−i))(t)C−1
1 Ajui

(t ≥ 0, ~u = (u0, u1, · · ·, umn−1) ∈ F ; cf. (19)). Suppose that V (t) ∈ L(F,X) for all
t ≥ 0, as well as that F0 is a dense subset of F satisfying that limt→+∞ V (t)~x = 0,
~x ∈ F0. Let there exist ~x ∈ F, m ∈ N and a set B ⊆ [0,∞) such that Dens(B) = 1,
and limt→+∞,t∈B pm(V (t)~x) = +∞, resp. limt→+∞,t∈B ‖V (t)~x‖X = +∞ if (X, ‖ ·
‖X) is a Banach space. Then the problem (18) is densely F

Xmn
-distributionally

chaotic.
Now we would like to present an illustrative application of Theorem 6 in the study
of distributionally chaotic properties of fractional analogons of the viscous van
Wijngaarden-Eringen equation.
Example 4. Suppose 1/2 < α ≤ 1 and p > 2. We are considering the following
fractional degenerate multi-term problem:(

1 + a2
0∆\

X,p

)
D2α
t u(t, x) + (Reb)

−1∆\
X,pD

α
t u(t, x) + ∆\

X,pu(t, x) = 0, t ≥ 0;

u(0, x) = u0(x), ut(0, x) = u1(x), (20)

on a symmetric space X of non-compact type and rank one. Let Pp be the parabolic

domain defined in [23]; then we know that int(Pp) ⊆ σp(∆
\
X,p). In our concrete

situation, we have that n = 3, α3 = 2α, α2 = α, α1 = 0, B = (1 + a2
0∆\

X,p),

A2 = (Reb)
−1∆\

X,p, A1 = ∆\
X,p and Pλ = 1 + (a2

0 + λ−α + λ−2α)∆\
X,p for <λ > 0.

Then it is clear that z(λ) := (a2
0 + λ−α + λ−2α)−1 → a−2

0 for |λ| → ∞, as well as
that

λ−1P−1
λ = λ−1z(λ)

(
z(λ) + ∆\

X,p

)−1
, <λ > 0 suff. large.



JFCA-2016/7(2) THE EXISTENCE OF DISTRIBUTIONAL CHAOS 171

Taking into account [25, Theorem 1.2.5] and the fact that the operator −∆\
X,p

generates an analytic strongly continuous semigroup on X, we may conclude from
the above that λ−1P−1

λ ∈ LT − L(X). Since λ−1z(λ)I ∈ LT − L(X) (cf. the proof
of [27, Theorem 11]), we can apply the resolvent equation and [25, Theorem 1.2.5]
in order to see that

λ−2α−1∆\
X,pz(λ)

(
z(λ) + ∆\

X,p

)−1 ∈ LT − L(X),

λ−α−1(Reb)
−1∆\

X,pz(λ)
(
z(λ) + ∆\

X,p

)−1 ∈ LT − L(X)

and

λ−1
(
1 + a2

0∆\
X,p

)
z(λ)

(
z(λ) + ∆\

X,p

)−1 ∈ LT − L(X).

By Lemma 4(i), we have that there exists an exponentially bounded I-existence
family (E(t))t≥0 for (20). It is not difficult to see with the help of Lemma 4(ii) that
(E(t))t≥0 is likewise an exponentially bounded I-uniqueness family for (20), so that

the strong solutions of (20) are unique. Furthermore, we have that Di = D(∆\
X,p)

for i = 0, 1. Let f : int(Pp) → X \ {0} be an analytic mapping satisfying that

∆\
X,pf(λ) = λf(λ), λ ∈ int(Pp). Using the proof of [27, Theorem 11], we get that

the function t 7→ u(t; (f(λ), f(λ′))), t ≥ 0, given by

u
(
t;
(
f(λ), f(λ′)

))
:= H0(λ, t)f(λ) +H1(λ

′, t)f(λ′), t ≥ 0
(
λ, λ′ ∈ int(Pp)

)
,

where

H0(λ, t) := L−1

(
z2α−1 − (Reb)

−1
(
λ− a2

0

)−1
zα−1

z2α − (Reb)−1
(
λ− a2

0

)−1
zα −

(
λ− a2

0

)−1

)
(t), t ≥ 0,

and

H1(λ′, t) := L−1

(
z2α−1

z2α − (Reb)−1
(
λ′ − a2

0

)−1
zα −

(
λ′ − a2

0

)−1

)
(t), t ≥ 0,

is a unique strong solution of (20) with u(0, ·) = f(λ) and ut(0, ·) = f(λ′). Direct
computations, similar to those already established in [27, Example 13], show that

H0(λ, t) =
r1(λ)− (Reb)

−1
(
λ− a20

)−1

√
Dλ

er1(λ)t −
r2(λ)− (Reb)

−1
(
λ− a20

)−1

√
Dλ

er2(λ)t

if α = 1,

H0(λ, t) =
t−α√
Dλ

[
Eα,1−α

(
r1(λ)t

α)− Eα,1−α(r2(λ)tα)]
−

(Reb)
−1
(
λ− a20

)−1

√
Dλ

[
Eα
(
r1(λ)t

α)− Eα(r2(λ)tα)], t > 0,

if 0 < α < 1, and

H1(λ
′, t) =

t1−α√
Dλ

[
Eα,2−α

(
r1(λ

′)tα
)
− Eα,2−α

(
r2(λ

′)tα
)]
, t > 0,

where

r1,2(λ) :=
(Reb)

−1
(
λ− a20

)−1 ±
√

(Reb)−2
(
λ− a20

)−2
+ 4
(
λ− a20

)−1

2

and
Dλ := (Reb)

−2(λ− a20)−2
+ 4
(
λ− a20

)−1
.
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Set F := [D(∆\
X,p)]× [D(∆\

X,p)]. Then F is a separable infinite-dimensional com-

plex Banach space. Define V (t) as in the formulation of Theorem 6, with C1 = I;
then it is clear that V (t) ∈ L(F,X) for all t ≥ 0. From the uniqueness of strong
solutions of (20), it readily follows that V (t)(f(λ), f(λ′)) = u(t; (f(λ), f(λ′))),
t ≥ 0 (λ, λ′ ∈ int(Pp)). Using the asymptotic expansion formulae (5)-(7) and
a simple analysis, we obtain that there exist a sufficiently small number ε > 0
and two sufficiently large negative numbers x− < 0 and x

′

− < 0 such that the

first requirement in Theorem 6 holds with F0 = span{(1 + ∆\
X,p)

−1f(λ) : λ ∈
L(x−, ε)} × span{(1 + ∆\

X,p)
−1f(λ′) : λ′ ∈ L(x

′

−, ε)}. It is clear that there exists

a great number of concrete situations (consider, for example, the case in which
a0 → 0+ and Reb → +∞) in which there exists a number λ0 ∈ int(Pp) such that

r1(λ0) ∈ Σγπ/2.

If this is the case, the vector (f(λ0), 0) is distributionally unbounded and the prob-
lem (20) is densely distributionally chaotic; observe also that the problem (20) is
densely (X × {0})-distributionally chaotic and ({0} × X)-distributionally chaotic
by Theorem 6. The same holds for the problem (20)’ obtained by interchanging

the terms (Reb)
−1∆\

X,pD
α
t u(t, x) and (Reb)

−1Dα
t ∆\

X,pu(t, x) in (20); this follows

directly from Definition 2 and the fact that the mapping t 7→ u(t; (f(λ), f(λ′))),
t ≥ 0, defined above, is still a strong solution of (20)’ for λ, λ′ ∈ int(Pp); cf.
[27]. Observe, finally, that all established conclusions for the problems (20) and

(20)’ continue to hold if we replace the operator ∆\
X,p and the state space X in our

analysis with the operator (∆\
X,p)∞ and the Fréchet space [D∞(∆\

X,p)], respectively.

In the previous example, we have employed some ideas contained in the proof
of [27, Theorem 11]. Assuming that the requirements of this theorem hold, we can
pose the problem of existence of a closed linear subspace X ′ of Xmn , an integer

k ∈ N and a tuple ~β ∈ [0, αn]k such that the problem [27, (8)] is (densely) (X ′, ~β)-
distributionally chaotic; a similar question can be posed for the problem (15), cf.
[28, Remark 1(iii)] for more details.

3. Conclusion

In this paper, we have enquired into the most important distributionally chaotic
properties of abstract degenerate (multi-term) fractional differential equations with
Caputo derivatives. We have proposed three interesting problems. In the present
situation, we can give only some partial answers to these problems by using Lemma
1 as an essential tool in the consideration.
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